JPS6049618B2 - Method for producing oxygen-containing compounds containing ethyl alcohol as the main component - Google Patents

Method for producing oxygen-containing compounds containing ethyl alcohol as the main component

Info

Publication number
JPS6049618B2
JPS6049618B2 JP58141087A JP14108783A JPS6049618B2 JP S6049618 B2 JPS6049618 B2 JP S6049618B2 JP 58141087 A JP58141087 A JP 58141087A JP 14108783 A JP14108783 A JP 14108783A JP S6049618 B2 JPS6049618 B2 JP S6049618B2
Authority
JP
Japan
Prior art keywords
catalyst
ethyl alcohol
rhodium
main component
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58141087A
Other languages
Japanese (ja)
Other versions
JPS6032735A (en
Inventor
寿広 斉藤
秀秋 松永
信之 谷口
勝 市川
裕司 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58141087A priority Critical patent/JPS6049618B2/en
Publication of JPS6032735A publication Critical patent/JPS6032735A/en
Publication of JPS6049618B2 publication Critical patent/JPS6049618B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は含酸素化合物の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing oxygen-containing compounds.

更に詳しくはロジウム触媒の存在下に一酸化炭素と水素
とを反応させて、エチルアルコールを主成分とする含酸
素化合物を製造する際に、助触媒成分として^バナジウ
ムと(B)鉄およびイリジウムの少なくとも1種とを併
用することを特徴とする方法に関する。 本発明方法に
おいて目的物とする含酸素化合物とは、アルコール、ア
ルデヒド、脂肪酸およびそのエステル等を意味する。
More specifically, when carbon monoxide and hydrogen are reacted in the presence of a rhodium catalyst to produce an oxygen-containing compound whose main component is ethyl alcohol, vanadium and (B) iron and iridium are used as promoter components. It relates to a method characterized in that it is used in combination with at least one kind. The oxygen-containing compounds targeted in the method of the present invention include alcohols, aldehydes, fatty acids, esters thereof, and the like.

更に詳しくは本発明における目的とする物質は炭素数2
の含酸素化合物、すなわちエチルアルコール、アセトア
ルデヒド、酢酸およびそのエステルである。さらに限定
的に言えば、本発明の目的物はエチルアルコールを主成
分とした炭素数2の含酸素化合物である。 含酸素化合
物、特にエチルアルコール等の含酸法によつて製造され
てきた。しかし近年の原油の価格の高騰により、著しい
製造価格の上昇が起り、原料転換の必要性が出じている
。 一方、豊富で且つ安価に入手可能な一酸化炭素およ
び水素の混合ガスより含酸素化合物を製造する方法が種
々検討されている。
More specifically, the target substance in the present invention has 2 carbon atoms.
oxygenated compounds, namely ethyl alcohol, acetaldehyde, acetic acid and its esters. More specifically, the object of the present invention is an oxygen-containing compound having 2 carbon atoms and containing ethyl alcohol as a main component. It has been produced by an acid-containing method using oxygen-containing compounds, especially ethyl alcohol. However, due to the rise in the price of crude oil in recent years, the manufacturing price has increased significantly, making it necessary to switch raw materials. On the other hand, various methods of producing oxygen-containing compounds from a mixed gas of carbon monoxide and hydrogen, which are abundant and available at low cost, have been studied.

即ち混合ガスを、ロジウムを主成分とし、チタン、ジル
コニウム、タングステン、マンガンなどの金属もしくは
金属酸化物より成る触媒の存在下に反応させて、炭素数
2の含酸素化合物を選択的に作る方法は公知てある。
しかしながら、かかる方法も副生する炭化水素、例えば
メタン等の量が多く、含酸素化合物の選択率が低い。
That is, a method for selectively producing an oxygen-containing compound having 2 carbon atoms by reacting a mixed gas with rhodium as the main component in the presence of a catalyst consisting of a metal or metal oxide such as titanium, zirconium, tungsten, or manganese. It is publicly known.
However, this method also produces a large amount of by-product hydrocarbons, such as methane, and has a low selectivity for oxygen-containing compounds.

さらに高価な貴金属であるロジウムあたりの目的化合物
の生成量がまだまだ少なく、経済的にもプロセス的にも
完成された技術が提供されていないのが実状である。
さらに目的化合物を高収量、高選択性で製造することを
目的として多数の元素との組合せが種々提案されている
が(例えば特開昭56−7727号、同56−8334
号、同56−83426号など)、組合せ成分によつて
は収量の低下をまねく場合も多数有り、また収量を高め
るが選択性を低下させるものも少なくないなど、好まし
い元素の組合せを見い出すのは容易でない。
Furthermore, the amount of target compounds produced based on rhodium, which is an expensive precious metal, is still small, and the reality is that no technology has been developed that is economically or process-perfect.
Furthermore, various combinations with a large number of elements have been proposed for the purpose of producing the target compound with high yield and high selectivity (for example, Japanese Patent Application Laid-open Nos. 56-7727 and 56-8334).
(No. 56-83426, etc.), there are many cases in which the yield decreases depending on the combination of components, and there are also many that increase the yield but reduce selectivity. It's not easy.

以上述べた如く、一酸化炭素および水素を含有する気体
よりエチルアルコールを主成分とする含酸素化合物を効
率よく、経済的に製造する方法は提供されていない。
As described above, no method has been provided for efficiently and economically producing an oxygen-containing compound containing ethyl alcohol as a main component from a gas containing carbon monoxide and hydrogen.

本発明者らは、一酸化炭素および水素を含有する気体よ
り、エチルアルコールを主成分とする含酸素化合物を効
率よく、経済的に製造する方法において、ロジウム触媒
当りの収量、選択性を改良すべく、多数の助触媒成分の
組合せ試験につき鋭意検討を重ねた結果、ロジウムに助
触媒としてバナジウムおよび鉄および/またはイリジウ
ムを組合せた触媒が好ましい収量と高選択性を有するこ
とを見い出し、本発明を完成するに至つた。
The present inventors aimed to improve the yield and selectivity per rhodium catalyst in a method for efficiently and economically producing an oxygen-containing compound containing ethyl alcohol as a main component from a gas containing carbon monoxide and hydrogen. As a result of intensive studies on combination tests of a large number of co-catalyst components, it was discovered that a catalyst in which rhodium is combined with vanadium and iron and/or iridium as a co-catalyst has a preferable yield and high selectivity. It was completed.

なお、一酸化炭素と水素より炭素数2個の含酸素化合物
を製造する際、ロジウムと鉄(特開昭51一80807
号)、ロジウムとバナジウム(特開昭57一6223鏝
)を組合せたいわゆる二元系触媒を使用することは公知
であるが、上記本発明のいわゆる三元系又は四元系触媒
はこれら公知の二元系触媒の結果から想定される収量、
選択性、特にエチルアルコールに関して著しい差異が有
り、言わば相乗効果を有することが認められた。以下、
本発明の方法について更に細に説明する。
In addition, when producing an oxygen-containing compound having two carbon atoms from carbon monoxide and hydrogen, rhodium and iron (JP-A-51-80807
Although it is known to use a so-called binary catalyst that combines rhodium and vanadium (Japanese Patent Application Laid-open No. 57-6223), the so-called ternary or quaternary catalyst of the present invention described above is a combination of these known catalysts. Yield expected from binary catalyst results,
It was found that there were significant differences in selectivity, especially for ethyl alcohol, and a synergistic effect, so to speak. below,
The method of the present invention will be explained in more detail.

本発明の触媒は上記の如くロジウムに助触媒として囚バ
ナジウムと(B)鉄およびイリジウムの少なくとも1種
とを含有する触媒てある。
As described above, the catalyst of the present invention is a catalyst containing rhodium, bound vanadium as a co-catalyst, and (B) at least one of iron and iridium.

反応条件下における各成分元素の状態はかならずしも明
らかでないが、反応の中心となるいわゆる活性点はロジ
ウムと(4)バナジウムおよび(B)鉄およびイリジウ
ムの少なくとも1種が共存する場所であるから、それら
元素の形は前駆体を含め何ら制約されるものではない。
そして触媒成分は担体なしても反応に供せられるが、通
常担体上に分散させて使用するのが好ましい。本発明方
法において用いられる触媒は貴金属を使用する場合に用
いられる常法に従つて調製することができる。
Although the state of each component element under the reaction conditions is not necessarily clear, the so-called active site that is the center of the reaction is a place where rhodium and (4) vanadium and at least one of (B) iron and iridium coexist. There are no restrictions on the form of the element, including the form of the precursor.
Although the catalyst component can be subjected to the reaction without a carrier, it is usually preferable to use it dispersed on a carrier. The catalyst used in the method of the present invention can be prepared according to conventional methods when using noble metals.

例えば、含浸法、浸漬法、イオン交換法、共沈法、混錬
法等によつて調製できる。触媒を構成する諸成分である
ロジウム、バトジウム、鉄およびイリジウムからの触媒
調製のために使用てきる原料化合物としては酸化物、塩
化物、オキシ塩化物、硝酸塩、炭酸塩等の無機塩、酢酸
塩、シユウ酸塩、アセチルアセトナート塩、ジメチルグ
リオキシム塩、エチレンジアミン酢酸塩等有機塩又はキ
レート化合物、カルボニル化合物、シクロペンタジエニ
ル化合物、アンミン錯体、金属アルコキシド化合物、ア
ルキル金属化合物等通常貴金属触媒を調製する際に用い
られる化物を使用することができる。以下に含浸法を例
にとり触媒の調製法を説明する。
For example, it can be prepared by an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, a kneading method, etc. Raw material compounds that can be used to prepare the catalyst from rhodium, batodium, iron, and iridium, which are the components that make up the catalyst, include inorganic salts such as oxides, chlorides, oxychlorides, nitrates, and carbonates, and acetates. , oxalates, acetylacetonate salts, dimethylglyoxime salts, ethylenediamine acetate salts, organic salts or chelate compounds, carbonyl compounds, cyclopentadienyl compounds, ammine complexes, metal alkoxide compounds, alkyl metal compounds, etc. Compounds that are used when doing so can be used. The method for preparing the catalyst will be explained below using the impregnation method as an example.

上記の金属化合物を水、メチルアルコール、エチルアル
コール、テトラヒドロフラン、ジオキサン、ノルマルヘ
キサン、ベンゼン、トルエン等の単独または混合溶媒に
溶解し、その溶液に担体を加え浸漬し、溶媒を留去し、
乾燥し、必要とあれば加熱、ガス処理等の処理を行い、
担体に金属化合物を担持する。
The above metal compound is dissolved in a single or mixed solvent such as water, methyl alcohol, ethyl alcohol, tetrahydrofuran, dioxane, n-hexane, benzene, toluene, etc., a carrier is added to the solution and immersed, and the solvent is distilled off.
Dry, heat, gas treatment, etc. if necessary.
A metal compound is supported on a carrier.

担持の手法としてはロジウム、バナジウムおよび鉄また
は/およびイリジウムの成分を含む原料化合物を同一溶
媒に同時に溶解した混合溶液を作り、これを担体に同時
に担持する方法、各成分を遂次的に担体に担持する方法
、あるいは各成分を必要に応じて還元、熱処理、ガス処
理等の処理を行いながら遂次的、段階的に担持する方法
などの各手法を用いることができる。
Supporting methods include preparing a mixed solution in which raw material compounds containing rhodium, vanadium, and iron or/and iridium components are dissolved simultaneously in the same solvent, and simultaneously supporting the solution on the carrier, and sequentially loading each component onto the carrier. Various techniques can be used, such as a method of supporting, or a method of supporting each component sequentially or stepwise while performing treatments such as reduction, heat treatment, and gas treatment as necessary.

その他の調製法、例えば担体のイオン交換能を利用した
イオン交換によつて金属を担持する方法、共沈法によつ
て触媒を調製する方法なども本発明方法に用いられる触
媒の調製手法として採用できる。
Other preparation methods, such as a method in which metals are supported by ion exchange using the ion exchange ability of a carrier, and a method in which a catalyst is prepared by a coprecipitation method, are also adopted as methods for preparing the catalyst used in the method of the present invention. can.

上述の手法によつて調製された触媒は通常還元ノ処理を
行うことにより活性化し次いで反応に供せられる。
The catalyst prepared by the above-mentioned method is usually activated by reduction treatment and then subjected to the reaction.

還元を行うには水素を含有する気体により昇温下で行う
ことが簡便であつて好ましい。この際還元温度として、
ロジウムの還元される温度、即ち100′C程度の温度
条件下でも還元処理が・できるが、好ましくは200′
C〜600℃の温度下で還元処理を行う。この際触媒の
各成分の分散を十分に行わせる目的で低温より徐々に、
あるいは段階的に昇温しながら水素還元を行つてもよい
。また還元剤を用いて、化学的に還元を行うこともでき
ノ る。たとえば一酸化炭素と水を用いたり、ヒドラジ
ン、水素化ホウ素化合物、水素化アルミニウム化合物な
どの還元剤を用いた還元処理を行つてもよい。
It is convenient and preferable to carry out the reduction using a hydrogen-containing gas at an elevated temperature. At this time, the reduction temperature is
The reduction treatment can be carried out at the temperature at which rhodium is reduced, that is, about 100'C, but preferably at 200'C.
The reduction treatment is carried out at a temperature of C to 600C. At this time, in order to sufficiently disperse each component of the catalyst,
Alternatively, hydrogen reduction may be performed while increasing the temperature in stages. It is also possible to perform chemical reduction using a reducing agent. For example, reduction treatment may be performed using carbon monoxide and water, or using a reducing agent such as hydrazine, a borohydride compound, or an aluminum hydride compound.

本発明において用いられる担体は、好ましくは比表面積
10〜1000rI1Iy1細孔径10A以上を有する
ものであれば通常担体として知られているものを使用す
ることができる。
As the carrier used in the present invention, those commonly known as carriers can be used as long as they preferably have a specific surface area of 10 to 1000 rI1Iy1 and a pore diameter of 10 A or more.

具体的な担体としては、シリカ、各種の珪酸塩、アルミ
ナ、活性炭、各種金属の酸化物(例えば酸化ジルコニウ
ム、酸化チタン、マグネシアなど)、モレキユーラーシ
ーブ、ケイソウ土などがあげられるが、シリカ系の担体
が好ましい。ロジウムと担体に対する比率は、担体の比
表面積を考慮して重量比で0.001〜0.飄好ましく
は0.001〜0.3である。
Specific carriers include silica, various silicates, alumina, activated carbon, oxides of various metals (e.g. zirconium oxide, titanium oxide, magnesia, etc.), molecular sieves, diatomaceous earth, etc. A carrier system is preferred. The ratio of rhodium to the carrier is 0.001 to 0.000 by weight considering the specific surface area of the carrier. It is preferably 0.001 to 0.3.

バナジウムとロジウムの比率はバナジウム/ロジウム(
原子比)で0.001〜1灰好ましくは0.01〜3の
範囲である。さらに鉄とロジウムの比率は鉄/ロジウム
(原子比)で0.001〜101好ましくは0.01〜
3の範囲であり、イリジウムとロジウムの比率はイリジ
ウム/ロジウム(原子比)で0.01〜3の範囲である
。また鉄とバナジウムの比率は、鉄/バナジウム(原子
比)で0.005〜101好ましくは0.01〜2の範
囲であり、イリジウムとバナジウムの比率は、イリジウ
ム/バナジウム(原子比)で0.05〜101好ましく
は0.01〜2の範囲である。本発明方法は、たとえば
固定床の流通式反応装置に適用することができる。
The ratio of vanadium and rhodium is vanadium/rhodium (
(atomic ratio) is in the range of 0.001 to 1 ash, preferably 0.01 to 3. Furthermore, the ratio of iron to rhodium is iron/rhodium (atomic ratio) of 0.001 to 101, preferably 0.01 to 101.
3, and the ratio of iridium to rhodium (atomic ratio) is in the range of 0.01 to 3. The ratio of iron to vanadium is iron/vanadium (atomic ratio) in the range of 0.005 to 101, preferably 0.01 to 2, and the ratio of iridium to vanadium is iridium/vanadium (atomic ratio) of 0.005 to 101, preferably 0.01 to 2. It is in the range of 05-101, preferably 0.01-2. The method of the present invention can be applied, for example, to a fixed bed flow reactor.

すなわち反応器内に触媒を充填し、原料ガスを送入して
反応を行わせる。生成物は分離し、未反応の原料ガスは
循環再使用することも可能である。また、本発明は流動
床式の反応装置にも適用できる。すなわち原料ガスと流
動化した触媒を同伴させて反応を行わせることもできる
。さらには本発明は溶媒中に触媒を分散させ、原料ガス
を送入し反応を行うことからなる液相不均一反応にも適
用できる。
That is, a reactor is filled with a catalyst, and a raw material gas is introduced to cause a reaction. It is also possible to separate the product and recycle and reuse the unreacted raw material gas. Further, the present invention can also be applied to a fluidized bed type reactor. That is, the reaction can also be carried out by bringing the raw material gas and the fluidized catalyst together. Furthermore, the present invention can also be applied to a liquid phase heterogeneous reaction in which a catalyst is dispersed in a solvent and a raw material gas is introduced to carry out the reaction.

本発明方法を実施するに際して採用される条件は、エチ
ルアルコールを主成分とする含酸素化合物を高収率・高
選択率て製造することを目的として種々の反応条件の因
子を有機的に組合せて選択される。
The conditions adopted when implementing the method of the present invention are organic combinations of various reaction condition factors for the purpose of producing oxygen-containing compounds containing ethyl alcohol as a main component with high yield and high selectivity. selected.

反応圧力は、常圧(すなわち0k9/Cltゲージ)で
も当該目的化合物を高選択率・高収率で製造できるので
あるが、空時収率を高める目的で加圧下において反応を
行うことができる。従つて反応圧力としては0k9/C
dゲージ〜350kg/CILゲージ好ましくは0k9
/dゲージから250kg/dゲージの圧力下で行う。
反応温度は150℃〜450℃、好ましくは180℃〜
350℃である。
Although the target compound can be produced with high selectivity and high yield even at normal pressure (ie, 0k9/Clt gauge), the reaction can be carried out under pressure in order to increase the space-time yield. Therefore, the reaction pressure is 0k9/C
d gauge ~ 350kg/CIL gauge preferably 0k9
The test is carried out under a pressure of 250 kg/d gauge to 250 kg/d gauge.
The reaction temperature is 150°C to 450°C, preferably 180°C to
The temperature is 350°C.

反応温度が高い場合には、炭化水素の副生量が増加する
ため原料の送入速度を早くする必要がある。従つて、空
間速度(原料ガス送入量/触媒容量)は標準状態(イ)
℃、1気圧)換算で10h−1〜1σh−1の範囲より
、反応圧力、反応温度、原料ガス組成との関係より適宜
選択される。当該原料ガスの組成は、主として一酸化炭
素と水素を含有しているガスであつて、窒素、アルゴン
、ヘリウム、メタン等のガス、あるいは反応条件下にお
いて、気体の状態であれば炭化水素、二酸化炭素、生成
した含酸素化合物や水を含有していてもよい。
When the reaction temperature is high, the amount of hydrocarbon by-product increases, so it is necessary to increase the feed rate of the raw material. Therefore, the space velocity (raw material gas feed amount/catalyst capacity) is in the standard state (a)
It is appropriately selected from the range of 10h-1 to 1σh-1 (calculated at 1 atm) in relation to the reaction pressure, reaction temperature, and raw material gas composition. The composition of the raw material gas is a gas mainly containing carbon monoxide and hydrogen, and gases such as nitrogen, argon, helium, methane, etc., or hydrocarbons and dioxide if in a gaseous state under the reaction conditions. It may contain carbon, generated oxygen-containing compounds, and water.

一酸化炭素と水素の混合比率はCO/H2(容積比)で
0.1〜10.好ましくは0.25〜5であり、原料ガ
ス中の一酸化炭素と水素の合計割合は20〜6喀積%、
好ましくは60〜10喀積%である。以下実施例によつ
て本発明をさらに細に説明するが、本発明はこれにより
何ら限定されるものではない。
The mixing ratio of carbon monoxide and hydrogen is CO/H2 (volume ratio) of 0.1 to 10. Preferably it is 0.25 to 5, and the total proportion of carbon monoxide and hydrogen in the raw material gas is 20 to 6 volume%,
Preferably it is 60-10% by volume. EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto.

実施例1 塩化ロジウム(RhCl3・31120)1.20y1
三塩化バナジウム(VOCl3)0.26y1塩化鉄(
FeCl2・4H20)0.09fをメタノール30m
1に溶解させ、これにシリカゲル25m1(DAVIS
ON#57)を加え含浸した後、ロータリーエバポレー
ターで溶媒を除去した。
Example 1 Rhodium chloride (RhCl3.31120) 1.20y1
Vanadium trichloride (VOCl3) 0.26y1 iron chloride (
FeCl2・4H20) 0.09f in methanol 30m
1 and 25 ml of silica gel (DAVIS
ON#57) was added and impregnated, and then the solvent was removed using a rotary evaporator.

この担持触媒をパイレックスガラス製反応管に充填し、
窒素希釈水素(H2:N2=40:40m1/毎分)を
流し5ながら室温から徐々に昇温し、400℃で5時間
水素還元して触媒を調製した。実施例2RhC13・3
H201.20y1■0C130.26y1塩化イリジ
ウム(IrCl4・](1,0)0.48qをメタノー
ル30m1に溶解させ、これに実施例1に記載のシリカ
ゲル25m1を加え含浸した後、実施例1と同様の操作
で処理して触媒を調製した。
This supported catalyst was packed into a Pyrex glass reaction tube,
The temperature was gradually raised from room temperature while flowing nitrogen-diluted hydrogen (H2:N2 = 40:40 ml/min) for 5 hours, and hydrogen reduction was carried out at 400°C for 5 hours to prepare a catalyst. Example 2 RhC13.3
H201.20y1■0C130.26y1 0.48q of iridium chloride (IrCl4.](1,0) was dissolved in 30ml of methanol, and 25ml of the silica gel described in Example 1 was added and impregnated. The catalyst was prepared by processing.

実施例3 IrCj4●H2OO.32ダを水20mL1エチルア
ルコール10mLの混合溶液に溶解し、これに実施例1
に記載のシリカゲル25m1を加え含浸した後、ロータ
リーエバポレーターで溶媒を除去した。
Example 3 IrCj4●H2OO. Example 1 was dissolved in a mixed solution of 20 mL of water and 10 mL of ethyl alcohol.
After adding and impregnating 25 ml of silica gel described in , the solvent was removed using a rotary evaporator.

これをパイレックスガラス製反応管に充填し、空気(2
00m1/毎分)を流しながら150゜Cで3紛、25
0℃で1満間処理した。この担持触媒をRhCl3・3
FI201.20y1■0C130.79y..FeC
1。・4H200.272qがメタノール30m1に溶
解した溶液に含浸した後、実施例1と同様の操作て処理
して触媒を調製した。比較例1 RhC13・3F1201.20y..V0C130.
26ダをメタノール30m1に溶解させ、これに実施例
1に記載のシリカゲル25m1を加え含浸した後、実施
例1と同様の操作て処理して触媒を調製した。
This was filled into a Pyrex glass reaction tube, and air (2
00m1/min) at 150°C, 3 powders, 25
It was treated at 0°C for 1 full hour. This supported catalyst is RhCl3.3
FI201.20y1■0C130.79y. .. FeC
1. - A catalyst was prepared by impregnating it with a solution in which 4H200.272q was dissolved in 30 ml of methanol, and then treating it in the same manner as in Example 1. Comparative Example 1 RhC13・3F1201.20y. .. V0C130.
26 Da was dissolved in 30 ml of methanol, and 25 ml of the silica gel described in Example 1 was added thereto for impregnation, followed by treatment in the same manner as in Example 1 to prepare a catalyst.

比較例2 RhC13・3F1201.20y..FeC12●4
H200.07yをメタノール30mLに溶解させ、こ
れに実施例1に記載のシリカゲル25m1を加え含浸し
た後、実施例1と同様の操作て処理して触媒を調製した
Comparative Example 2 RhC13・3F1201.20y. .. FeC12●4
H200.07y was dissolved in 30 mL of methanol, 25 ml of the silica gel described in Example 1 was added thereto for impregnation, and then treated in the same manner as in Example 1 to prepare a catalyst.

比較例3 RhC13・訃1201.20f1..IrC14・H
2Ol.6lfをメタノール30m1に溶解させ、これ
に実施例1に記載のシリカゲル257n1を加え含浸し
た後、実施例1と同様の操作て処理して触媒を調製した
Comparative example 3 RhC13・mortar 1201.20f1. .. IrC14・H
2Ol. 6lf was dissolved in 30 ml of methanol, 257n1 of the silica gel described in Example 1 was added thereto for impregnation, and the same procedure as in Example 1 was carried out to prepare a catalyst.

活性試験および結果 外径8T!r!nの熱電対保護管を有する内径18W$
Lのチタン製反応管に上記触媒10mtを実施例1に記
載のシリカゲル30m1で希釈して充填する。
Activity test and results Outer diameter 8T! r! Inner diameter 18W$ with n thermocouple protection tube
10 mt of the above catalyst was diluted with 30 ml of the silica gel described in Example 1 and filled into a L titanium reaction tube.

Claims (1)

【特許請求の範囲】[Claims] 1 ロジウム触媒の存在下で一酸化炭素と水素を反応さ
せることによりエチルアルコールを主成分とする含酸素
化合物を製造する方法に於て、助触媒成分として(A)
バナジウムと(B)鉄およびイリジウムの少なくとも1
種とを併用することを特徴とする製造法。
1. In a method for producing an oxygen-containing compound containing ethyl alcohol as a main component by reacting carbon monoxide and hydrogen in the presence of a rhodium catalyst, (A) is used as a co-catalyst component.
Vanadium and (B) at least one of iron and iridium
A manufacturing method characterized by the combined use of seeds.
JP58141087A 1983-08-03 1983-08-03 Method for producing oxygen-containing compounds containing ethyl alcohol as the main component Expired JPS6049618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141087A JPS6049618B2 (en) 1983-08-03 1983-08-03 Method for producing oxygen-containing compounds containing ethyl alcohol as the main component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141087A JPS6049618B2 (en) 1983-08-03 1983-08-03 Method for producing oxygen-containing compounds containing ethyl alcohol as the main component

Publications (2)

Publication Number Publication Date
JPS6032735A JPS6032735A (en) 1985-02-19
JPS6049618B2 true JPS6049618B2 (en) 1985-11-02

Family

ID=15283897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141087A Expired JPS6049618B2 (en) 1983-08-03 1983-08-03 Method for producing oxygen-containing compounds containing ethyl alcohol as the main component

Country Status (1)

Country Link
JP (1) JPS6049618B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2628535A1 (en) 2009-11-02 2013-08-21 Dow Global Technologies LLC Supported rhodium synthesis gas conversion catalyst compositions

Also Published As

Publication number Publication date
JPS6032735A (en) 1985-02-19

Similar Documents

Publication Publication Date Title
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS6049618B2 (en) Method for producing oxygen-containing compounds containing ethyl alcohol as the main component
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPS6049615B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6218530B2 (en)
JPS6233215B2 (en)
JPS61178935A (en) Production of ethanol
JPS6114137B2 (en)
JPS6341373B2 (en)
JPS6119611B2 (en)
JPS6121931B2 (en)
JPS6238343B2 (en)
JPS6049616B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS63162638A (en) Production of ethanol
JPS61178936A (en) Production of ethanol
JPS6183134A (en) Production of unsaturated hydrocarbon
JPS63414B2 (en)
JPS6259232A (en) Production of ethanol
JPS6218531B2 (en)
JPS6119610B2 (en)
JPS6259231A (en) Production of ethanol
JPS6238338B2 (en)
JPS6049612B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPS61171446A (en) Production of oxygen-containing compound
JPS59227832A (en) Production of oxygen-containing compound having two carbon atoms