JPS61178936A - Production of ethanol - Google Patents

Production of ethanol

Info

Publication number
JPS61178936A
JPS61178936A JP60017728A JP1772885A JPS61178936A JP S61178936 A JPS61178936 A JP S61178936A JP 60017728 A JP60017728 A JP 60017728A JP 1772885 A JP1772885 A JP 1772885A JP S61178936 A JPS61178936 A JP S61178936A
Authority
JP
Japan
Prior art keywords
carrier
catalyst
rhodium
iridium
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60017728A
Other languages
Japanese (ja)
Other versions
JPS6238337B2 (en
Inventor
Toshihiro Saito
寿広 斉藤
Nobuyuki Taniguchi
信之 谷口
Kazuharu Mitarai
御手洗 計治
Satoshi Arimitsu
有光 聰
Katsumi Yanagi
柳 勝美
Kazuo Takada
和夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60017728A priority Critical patent/JPS61178936A/en
Publication of JPS61178936A publication Critical patent/JPS61178936A/en
Publication of JPS6238337B2 publication Critical patent/JPS6238337B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled substance from carbon monoxide and hydrogen in high yield at a low cost, by using a catalyst supporting rhodium, scandium, etc., on a carrier and a catalyst supporting rhodium, iridium and/or iron, etc., on a carrier in combination. CONSTITUTION:Carbon monoxide is reacted with hydrogen in the presence of (A) a catalyst supporting rhodium, scandium, iridium and/or lithium on a carrier and (B) a catalyst supporting rhodium, and (i) iridium and/or (ii) iron or molybdenum on a carrier in combination to give the titled substance. The catalyst is prepared by dissolving a metal compound in a solvent, e.g. water methanol, adding a carrier to the resultant solution, impregnating the carrier with the solution, distilling away the solvent, drying the impregnated carrier, and if necessary heating the resultant carrier to support the metal compound on the carrier. The carrier has 10-1,000m<2>/g specific surface area and >=10Angstrom pore diameter, and particularly silica based carrier is preferred.

Description

【発明の詳細な説明】 本発明はエタノールの製造法に関する。更に詳しくは、
(荀ロジウム,スカンジウム,イリジウムおよび/又は
リチウムな担体担持してなる触媒と(b)ロジウムと(
イ)イリジウムおよび/又は(ロ)鉄又はモリブデンを
担体担持してなる触媒の存在下、一酸化炭素と水素とを
反応させエタノールを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ethanol. For more details,
(b) Rhodium, scandium, iridium and/or lithium catalyst supported on a carrier; (b) rhodium and (
(b) A method for producing ethanol by reacting carbon monoxide and hydrogen in the presence of a catalyst comprising iridium and/or (b) iron or molybdenum supported on a carrier.

〔従来の技術および発明が解決しようとする問題点〕エ
タノ−ルウアセトアルデヒド等の炭素数2の含酸素化合
物は従来ナフサを原料とする石油化学的方法によりて製
造されてきた。しかし、近年の原油の高騰により、製造
価格の著しい上昇が起り、原料転換の必要性が生じてい
る。
[Prior Art and Problems to be Solved by the Invention] Oxygen-containing compounds having two carbon atoms, such as ethanol acetaldehyde, have conventionally been produced by a petrochemical method using naphtha as a raw material. However, due to the recent rise in the price of crude oil, manufacturing prices have risen significantly, creating the need to switch raw materials.

一方、豊富で且つ安価に入手可能な一酸化炭素及び水素
の混合ガスより炭素数2の含酸素化合物を製造する方法
が種々検討されている。
On the other hand, various methods of producing an oxygen-containing compound having 2 carbon atoms from a mixed gas of carbon monoxide and hydrogen, which is available in abundance and at low cost, have been studied.

即ち、一酸化炭素と水素の混合ガスを、ロジウムを主成
分とし、マンガン,チタン,ジルコンなどの金属もしく
は金属酸化物などより成る触媒の存在下に反応させて、
炭素数2の含酸素化合物を選択的に製造する方法は公知
(例えば、特開昭51−8 0 8 0 6号,同52
ー14706号,同56ー147750号等)である。
That is, a mixed gas of carbon monoxide and hydrogen is reacted in the presence of a catalyst containing rhodium as a main component and a metal or metal oxide such as manganese, titanium, zircon, etc.
Methods for selectively producing oxygen-containing compounds having 2 carbon atoms are known (e.g., JP-A-51-80806, JP-A-51-80806;
-14706, 56-147750, etc.).

しかしながら、かかる方法は副生ずる炭化水素、例えば
メタル等の量が多く、含酸素化合物の選択率が低いもの
や、含酸素化合物の選択率が高い場ヤには、その生成量
は極めて低いものであった。
However, this method produces a large amount of by-product hydrocarbons, such as metals, and the amount produced is extremely low when the selectivity of oxygen-containing compounds is low or when the selectivity of oxygen-containing compounds is high. there were.

更に高価な貴金属であるロジウムあたりの目的化合物の
生成量がまだ少く、経済的にもプロセス的にも完成され
た技術が提供されていないのが実情である。
Furthermore, the actual situation is that the amount of target compounds produced per rhodium, which is an expensive noble metal, is still small, and a technology that has been completed economically and process-wise has not been provided.

更に炭素数2の含酸素化合物を高収量で高選択的に製造
することを目的としたロジウムに鉄(特開昭51−80
’807号)、リチウム(同56−8334号)、スカ
ンジウム(同57−62255号)等が提案されている
が、いずれの方法もアセトアルデヒド、酢醸又はメタノ
ールを主生成物とするものであり、エタノールの収率1
選択性などは著しく低い欠点を有している。
Furthermore, rhodium and iron (Japanese Patent Laid-Open No. 51-80
'807), lithium (No. 56-8334), scandium (No. 57-62255), etc., but all methods use acetaldehyde, vinegar, or methanol as the main products, Ethanol yield 1
It has the disadvantage of extremely low selectivity.

以上述べた如く、−酸化炭素及び水素を含有する気体よ
りエタノールを主成分とする含酸素化合物を効率よく、
経済性よく製造する方法は提供されていない。
As mentioned above, - an oxygen-containing compound mainly composed of ethanol can be efficiently produced from a gas containing carbon oxide and hydrogen.
No economical manufacturing method has been provided.

本発明者らは一酸化炭素及び水素を含有する気体より、
含酸素化合物を製造する際に、上記炭素数2の含酸素化
合物の選択性を改良しつつ、該反応より生成される炭素
数2の含酸素化合物中の分布をエタノールに移動させ、
かつ炭化水素の生成を最小とすることを可能にした触媒
系を開示するもめであり、多数の助触媒成分の組合せ試
験につき鋭意検討を重ねた結果、(a)ロジウム、スカ
ンジウム、イリジウムおよび/又はリチウムを担体担持
してなる触媒と、(b)ロジウムと(イ)イリジウムお
よび/又は(ロ)鉄又はモリブデンを担持してなる触媒
とを組合せることにより予期し得ない効果が発現し、エ
タノールが好ましい収量と高選択性を有することを見い
出し、本発明を完成するに至った。
The present inventors discovered that from a gas containing carbon monoxide and hydrogen,
When producing an oxygen-containing compound, while improving the selectivity of the oxygen-containing compound having two carbon atoms, the distribution in the oxygen-containing compound having two carbon atoms produced by the reaction is transferred to ethanol,
The aim is to disclose a catalyst system that makes it possible to minimize the production of hydrocarbons, and as a result of extensive study on combination tests of a large number of co-catalyst components, (a) rhodium, scandium, iridium and/or By combining a catalyst comprising lithium supported on a carrier and a catalyst comprising (b) rhodium and (a) iridium and/or (b) iron or molybdenum, an unexpected effect is expressed, and ethanol The present inventors have discovered that this has a preferable yield and high selectivity, and have completed the present invention.

〔発明の概要〕[Summary of the invention]

本発明は前記した如く(a)ロジウム、スカンジウム、
イリジウムおよび/又はリチウムな担体担持してなる触
媒と、(b)ロジウムと(イ)イリジウムおよび/又は
(ロ)鉄又はモリブデンな担体担持してなる触媒との存
在下、−酸化炭素及び水素を反応させエタノールを製造
するものである。
As described above, the present invention provides (a) rhodium, scandium,
-carbon oxide and hydrogen in the presence of a catalyst supported on an iridium and/or lithium support, and (b) rhodium and (a) a catalyst supported on an iridium and/or (b) iron or molybdenum support. The reaction produces ethanol.

以下、本発明を順次詳述する。The present invention will be described in detail below.

本発明において用いられる触媒は前述の如く、(&)ロ
ジウム、スカンジウム、イリジウムおよび/又はリチウ
ムな担体担持してなる触媒と、(b)ロジウムと(イ)
イリジウムおよび/又は(ロ)鉄又はモリブデンを担体
担持してなる触媒とからなる二者の触媒を主たる構成成
分とする。両者の触媒は各々別途に調製したものを使用
することが出来、使用に際しては混合あるいは、前記(
、)の触媒の一つを上層に、(b)の触媒の一つを下層
に充填して使用することができる。
As mentioned above, the catalyst used in the present invention includes (&) a catalyst supported on a carrier of rhodium, scandium, iridium and/or lithium, (b) rhodium and (a)
The two main components are a catalyst consisting of iridium and/or a catalyst formed by supporting iron or molybdenum on a carrier. Both catalysts can be used separately prepared, and when used, they may be mixed or mixed together (
,) can be packed in the upper layer and one of the catalysts in (b) can be packed in the lower layer.

触媒の調製に際しては通常、貴金属触媒において行われ
ている如く、担体上に上記の成分を分散させて用いる。
When preparing a catalyst, the above-mentioned components are usually dispersed on a carrier, as is done for noble metal catalysts.

本発明方法において用いられる触媒は貴金属を使用する
場合に用いられる常法に従って調製することができる。
The catalyst used in the method of the present invention can be prepared according to conventional methods when using noble metals.

例えば含浸法、浸漬法。For example, impregnation method, dipping method.

イオン交換法、共沈法、混線法等によって調製できる。It can be prepared by ion exchange method, coprecipitation method, crosstalk method, etc.

触媒を構成する成分であるロジウム及びイリジウムにお
いて触媒調製のために使用できる原料化合物としては塩
化物、臭化物等のハロゲン化物、硝酸塩、炭酸塩等の無
機塩、酢酸塩、ショウ酸塩、アセチルアセトナート塩、
エチレンジアミン酢酸塩等の有機酸塩又はキレート化合
物、カルボニル化合41ff、アンミン錯体、金属アル
コキシド化合物、アルキル金属化合物等通常貴金属触媒
を調製する際に用いられる化合物を使用することができ
る。
For rhodium and iridium, which are components of the catalyst, raw material compounds that can be used to prepare the catalyst include halides such as chloride and bromide, inorganic salts such as nitrates and carbonates, acetates, shorate, and acetylacetonate. salt,
Compounds commonly used in preparing noble metal catalysts can be used, such as organic acid salts or chelate compounds such as ethylenediamine acetate, carbonyl compounds 41ff, ammine complexes, metal alkoxide compounds, and alkyl metal compounds.

助触媒として使用されるリチウム、スカンジウムに使用
できる原料化合物としては゛、ハロゲン化物、ハpゲン
酸塩、硝酸塩、炭酸塩等の無機酸塩水酸化物、ギ酸塩、
酢酸塩、蓚酸塩等の有機酸塩等を使用することができる
Raw material compounds that can be used for lithium and scandium used as promoters include inorganic acid salts such as halides, hapnates, nitrates, carbonates, hydroxides, formates,
Organic acid salts such as acetate and oxalate can be used.

鉄として使用できる原料化合物としてはハロゲン化物、
ハロゲン酸塩、硝酸塩等の無機酸塩、水声化物、ギ酸塩
、酢酸塩、蓚酸塩等の有機酸塩。
Raw material compounds that can be used as iron include halides,
Inorganic acid salts such as halogenates and nitrates; organic acid salts such as hydroxides, formates, acetates, and oxalates.

カルボニル化合物、金属アルコキシド化合物、アルキル
金属化合物等を使用することができる。
Carbonyl compounds, metal alkoxide compounds, alkyl metal compounds, etc. can be used.

またモリブデンとして使用される原料化合物としてはハ
ロゲン化物、ハロゲン酸塩、カルボニル化合物、金属ア
ルフキシト化合物、アセチルアセトナート塩等を使用す
ることが出来る。
Further, as the raw material compound used as molybdenum, halides, halogen acid salts, carbonyl compounds, metal alkoxide compounds, acetylacetonate salts, etc. can be used.

しかし、これらの触媒構成成分を担体上へ担持すること
を容易にするため、エタノール、水又は他の適当な溶媒
に可溶性の高い化合物が好ましくは用いられる。
However, in order to facilitate the loading of these catalyst components onto a support, compounds that are highly soluble in ethanol, water or other suitable solvents are preferably used.

以下に含浸法を例にとり触媒の調製法を説明する。The method for preparing the catalyst will be explained below using the impregnation method as an example.

上記の金属化合物を水、メタノール、エタノール。Add the above metal compounds to water, methanol, and ethanol.

アセトン、テトラヒドロ7ラン、ジオキサン、ノルマル
ヘキサン、ベンゼン、トルエン等の単独または混合溶媒
に溶解し、その溶液に担体を加え浸漬し、溶媒を留去し
、乾燥し、必要とあれば加熱。
Dissolve in a single or mixed solvent such as acetone, tetrahydro7ran, dioxane, n-hexane, benzene, toluene, etc., add a carrier to the solution, immerse, evaporate the solvent, dry, and heat if necessary.

ガス処理等の処理を行い、担体に金属化合物を担持する
Processing such as gas treatment is performed to support the metal compound on the carrier.

(a)又は(b)触媒の担持の手法としては原料化合物
を同一溶媒に同時に溶解した混合溶液を作り、担体に同
時に担持する方法、各成分を逐次的に担持する方法、あ
るいは各成分を必要に応じて還元、熱処理等の処理を行
いながら逐次的9段階的に担持する方法などの各手法を
用いることができる。
(a) or (b) The method for supporting the catalyst is to prepare a mixed solution in which the raw material compounds are dissolved in the same solvent and support them simultaneously on the carrier, to support each component sequentially, or to support each component as required. Various methods can be used, such as a method of sequentially supporting the material in nine stages while performing treatments such as reduction and heat treatment depending on the situation.

その他の調製法、例えば担体のイオン交換能を利用した
イオン交換によって金属を担持する方法、共沈法によっ
て触媒を調製する方法なども本発明方法に用いられる触
媒の調製手法として採用できるO 上述の手法によりて調製された(荀および(b)の触剃
は通常還元処理を行うことにより活性化し次いて反応に
供せられる。還元を行うには水素を含有する気体により
昇温下で行うことが簡便であって好ましい。この際還元
温度として、ロジウムの還元される温度、即ち100℃
程度の温度条件下でも還元処理ができるが、好ましくは
2006C〜600℃の温度下で還元処理を行う。この
際触媒の各成分の分散を十分に行わせる目的で低温より
徐々に、あるいは段階的に昇温しながら水素還元を行っ
てもよい。また還元剤を用いて、化学的に還元を行うこ
ともできる。たとえば−醸化炭素と水を用いたり、ヒド
ラジン、水素化ホウ素化合物。
Other preparation methods, such as a method of supporting a metal by ion exchange utilizing the ion exchange ability of a carrier, a method of preparing a catalyst by a coprecipitation method, etc., can also be adopted as a method of preparing the catalyst used in the method of the present invention. (b) prepared by the method is usually activated by reduction treatment and then subjected to reaction. The reduction is carried out at elevated temperature with a hydrogen-containing gas. is preferred because it is simple.At this time, the reduction temperature is the temperature at which rhodium is reduced, that is, 100°C.
Although the reduction treatment can be carried out under a temperature condition of about 200°C to 600°C, the reduction treatment is preferably performed at a temperature of 2006°C to 600°C. At this time, hydrogen reduction may be performed while raising the temperature gradually or stepwise from a low temperature in order to sufficiently disperse each component of the catalyst. Further, reduction can also be carried out chemically using a reducing agent. For example - using brewed carbon and water, hydrazine, borohydride compounds.

水素化アルミニウム化合物などの還元剤を用いた還元処
理を行ってもよい。
Reduction treatment using a reducing agent such as an aluminum hydride compound may also be performed.

本発明において用いられる担体は、好ましくは比表面積
1a 〜1.o a am’/9. m孔径1 aR以
上を有するものであれば通常担体として知られているも
のを使用することができる。具体的な担体としては、シ
リカ、各種の珪酸塩、アルミナ、活性炭、各種金属の酸
化物(例えば醸化ジルコニウム、酸化チタン、マグネシ
アなど)、モレキエーラーシープ、ケイソウ土などがあ
げられるが、シリカ系の担体が好ましい。
The carrier used in the present invention preferably has a specific surface area of 1a to 1. o a am'/9. Any carrier commonly known as a carrier can be used as long as it has a pore diameter of 1 aR or more. Specific carriers include silica, various silicates, alumina, activated carbon, oxides of various metals (e.g., fermented zirconium, titanium oxide, magnesia, etc.), molecular sheep, diatomaceous earth, etc. A carrier system is preferred.

上記(&)の触媒における各構成成分の比率は以下の様
である。
The ratio of each component in the catalyst (&) above is as follows.

ロジウムと担体に対する比率は、担体の比表面積を考慮
して重量比でCt、O口01〜l15、好ましくは10
01〜13である。スカンジウムの比率はスカンジウム
/ロジウム(原子比)で1001〜10、好ましくは1
005〜3の範囲である。イリジウムの比率はイリジウ
ム/ロジウム(原子比)で1001〜6.好ましくは[
1005〜3の範囲である。リチウムの比率はリチウム
/ロジウム(原子比)で[L0001〜5、好ましくは
1001〜2の範囲である。更に上記(b)の触媒にお
ける各構成成分の比率は以下の様である。ロジウムと担
体に対する比率は、担体の比表面積を考慮して重量比で
10001〜α5、好ましくは1001〜0.3である
。イリジウムの比率はイリジウム/ロジウム(原子比)
で1001〜6、好ましくは    ′(LOO5〜5
の範囲である。鉄とロジウムの比率は鉄/ロジウム(原
子比)で10001〜5、好ましくは1001〜2の範
囲である。モリブデツとロジウムの比率はモリブデン/
ロジウム(原子比)で10001〜5、好ましくは10
01〜2の範囲である。
The ratio of rhodium to the carrier is Ct, O1 to l15, preferably 10 by weight, taking into account the specific surface area of the carrier.
01-13. The ratio of scandium is scandium/rhodium (atomic ratio) of 1001 to 10, preferably 1.
It is in the range of 005-3. The ratio of iridium is iridium/rhodium (atomic ratio) of 1001 to 6. Preferably[
It is in the range of 1005-3. The ratio of lithium is lithium/rhodium (atomic ratio) [L0001 to 5, preferably 1001 to 2]. Further, the ratio of each component in the catalyst (b) above is as follows. The ratio of rhodium to the carrier is 10,001 to α5, preferably 1,001 to 0.3 by weight, taking into account the specific surface area of the carrier. The ratio of iridium is iridium/rhodium (atomic ratio)
1001-6, preferably '(LOO5-5
is within the range of The ratio of iron to rhodium (iron/rhodium (atomic ratio)) is in the range of 10,001 to 5, preferably 1,001 to 2. The ratio of molybdenum and rhodium is molybdenum/
Rhodium (atomic ratio): 10,001 to 5, preferably 10
It is in the range of 01-2.

本発明はたとえば固定床の流通式反応装置に適用するこ
とができる。すなわち、反応器内に上記(′b)の触媒
のうち一つの上に、上記(−の触媒のうちの一つを充填
するか、(+!の触媒のうちの一つと(b)の触媒のう
ちの一つを混合して充填し、原料ガスを送入して反応を
行わせる。生成物は分離し、未反応の原料ガスは必要に
応じて精製したのちに循環再使用することも可能である
The present invention can be applied, for example, to a fixed bed flow reactor. That is, one of the catalysts (-) above is filled in the reactor on top of one of the catalysts ('b), or one of the catalysts (+!) and the catalyst (b) are filled in the reactor. One of them is mixed and filled, and the raw material gas is fed in to perform the reaction.The product is separated, and the unreacted raw material gas can be purified as necessary and then recycled and reused. It is possible.

また、本発明は流動床式の反応装置にも適用できる。す
なわち、原料ガスと上記(−の触媒のうちの一つと(b
)の触媒のうちの一つを混合、流動化した触媒を同伴さ
せて反応を行わせることもできる。
Further, the present invention can also be applied to a fluidized bed type reactor. That is, the raw material gas and one of the catalysts (-) and (b
) The reaction can also be carried out by mixing and fluidizing one of the catalysts.

更に、本発明は溶媒中に触媒を分散させ、原料ガスを送
入し反応を行うことからなる液相不均一反応にも適用で
きる。
Furthermore, the present invention can also be applied to a liquid phase heterogeneous reaction in which a catalyst is dispersed in a solvent and a raw material gas is introduced to carry out the reaction.

本発明方法を実施するに際して採用される条件はエタノ
ールを主成分とする含酸素化合物を高収率。
The conditions adopted when carrying out the method of the present invention are such that a high yield of oxygen-containing compounds containing ethanol as a main component is achieved.

高選択率で、かつ炭化水素の生成を最小にしながら製造
することを目的として種々の反応条件の因子を有機的に
組合せて選択される。
Various reaction conditions are organically combined and selected for the purpose of producing with high selectivity and minimizing the production of hydrocarbons.

反応圧力は、常圧(すなわちOkg/crIゲージ)で
も当該目的化合物を高選択率・高収率で製造できるので
あるが、空時収率を高める目的で加圧下において反応を
行うことができる。従って反応圧力としてはOkg/c
Iiゲージ〜550に9/cr/lゲージ好ましくは0
Jc9/dゲージから250 Jq/Cr/1)f−ジ
の圧力下で行う。反応温度は150℃〜450℃、好ま
しくは180℃〜350℃である。反応温度が高い場合
には、炭化水素の副生量が増加するため原料の送入速度
を早くしたり、水素、−酸化炭素の組成比を変える必要
がある。従って、空間速度(原料ガス送入量/触媒容j
1)は標準状態(0℃、1気圧)換算で10 h−1〜
10丁h−1の範囲より、反応圧力2反応温度、原料ガ
ス組成との関係より適宜選択される。
Although the target compound can be produced with high selectivity and high yield even at normal pressure (ie Okg/crI gauge), the reaction can be carried out under pressure in order to increase the space-time yield. Therefore, the reaction pressure is Okg/c
Ii gauge ~ 550 to 9/cr/l gauge preferably 0
It is carried out under a pressure of 250 Jq/Cr/1)f-di from Jc9/d gauge. The reaction temperature is 150°C to 450°C, preferably 180°C to 350°C. When the reaction temperature is high, the amount of hydrocarbon by-product increases, so it is necessary to increase the feed rate of raw materials or change the composition ratio of hydrogen and carbon oxide. Therefore, space velocity (raw material gas feed amount/catalyst volume j
1) is 10 h-1 in standard conditions (0°C, 1 atm)
It is appropriately selected from the range of 10 h-1 in relation to the reaction pressure, reaction temperature, and raw material gas composition.

当該原料ガスの組成は、主として一酸化炭素と水素を含
有しているガスであって、窒素、アルゴン、ヘリウム、
メタン等のガス、あるいは反応条件下において、気体の
状態であれば炭化水素、二酸化炭素、生成した含酸素化
合物や水を含有していてもよい。水素と一酸化炭素の混
合比率は、水素/−一酸化炭素容積比)で(L1〜10
、好ましくは125〜5であり、原料ガス中の一酸化炭
素と水素の合計割合は20〜100容積%、好ましくは
60〜100容積%である。
The composition of the raw material gas is a gas mainly containing carbon monoxide and hydrogen, and nitrogen, argon, helium,
It may contain a gas such as methane, or hydrocarbons, carbon dioxide, generated oxygen-containing compounds, and water as long as they are in a gaseous state under the reaction conditions. The mixing ratio of hydrogen and carbon monoxide is (hydrogen/-carbon monoxide volume ratio) (L1~10
, preferably 125-5, and the total proportion of carbon monoxide and hydrogen in the raw material gas is 20-100% by volume, preferably 60-100% by volume.

以下実施例によって、本発明をさらに詳細に説明するが
、これらの例は、本発明の理解を容易にするためKあえ
て同一反応条件で示すものであり、本発明はこれにより
何ら限定されるものでないことは言うまでもない。
The present invention will be explained in more detail with reference to Examples below, but these Examples are intentionally shown under the same reaction conditions in order to facilitate understanding of the present invention, and the present invention is not limited thereby. Needless to say, it is not.

実施例1 塩化ロジウム(Rha−・5140)  1.209.
塩化スカンジウム(S00−・640)α059り、塩
化リチウA (LiOl−140) (L O559を
水11.5ajに溶解姉せ、これにシリカゲル(DAT
13011157) 25 agを−えた後、室温下で
1時間、60℃で18時間乾燥した。この担持触媒をパ
イレックスガラス製反応管に充填し、水素180aj/
毎分下、400℃で5時間還元してRh−8o−Li触
媒を調製した。
Example 1 Rhodium chloride (Rha-5140) 1.209.
Scandium chloride (S00-640) α059 and lithium chloride A (LiOl-140) (L O559) were dissolved in 11.5ajj of water, and silica gel (DAT
13011157) After obtaining 25 ag, it was dried at room temperature for 1 hour and at 60°C for 18 hours. This supported catalyst was packed into a Pyrex glass reaction tube, and 180aj/j of hydrogen was charged.
Rh-8o-Li catalyst was prepared by reduction at 400° C. for 5 hours at 400° C. for 5 hours.

また、塩化ロジウム1.209.塩化鉄(FeO−・6
鴇0)α3709を水11.5dに溶解させ、これに上
記に記載のシリカゲル25dを加えた後、上記と同様の
操作で乾燥、還元処理してRh−Pa触媒を調製した。
Also, rhodium chloride 1.209. Iron chloride (FeO-・6
0) α3709 was dissolved in 11.5 d of water, and 25 d of the silica gel described above was added thereto, followed by drying and reduction treatment in the same manner as above to prepare a Rh-Pa catalyst.

活性試験及び結果 外径8鴎の熱電対保護管を有する内孫1Bms+のチタ
ン製反応管に上記のRh−Fe触媒2.5 tnlを充
填し、ついで上記のRh−fJo−Li触媒10−を上
記に記載のシリカゲル30ajで希釈して充填した。反
応管内を窒素で置換し、常圧下、窒素希釈水素ガス(鴇
:穐=200/200d/毎分)で200℃、1時間再
選元した後、水素/−一酸化炭素2.5/1 (容積比
)の混合ガスを210 Ml/毎時送入し、反応圧力3
0kg/cd、反応温度285℃において反応を行った
Activity Test and Results 2.5 tnl of the above Rh-Fe catalyst was filled into a 1Bms+ titanium reaction tube having a thermocouple protection tube with an outer diameter of 8 mm, and then 10 - of the above Rh-fJo-Li catalyst was charged. It was diluted and filled with 30aj of the silica gels described above. The inside of the reaction tube was replaced with nitrogen, and after being reselected at 200°C for 1 hour under normal pressure with nitrogen-diluted hydrogen gas (200/200 d/min), hydrogen/-carbon monoxide 2.5/1 ( A mixed gas of 210 Ml/hour (volume ratio) was introduced, and the reaction pressure was 3.
The reaction was carried out at 0 kg/cd and a reaction temperature of 285°C.

反応流出物のうち、液状生成物は水に吸収させて捕集し
、また流出ガス組成はガスクロ法により角折し、その結
果を第1表に示す。
Of the reaction effluent, the liquid product was absorbed and collected in water, and the effluent gas composition was analyzed by gas chromatography, and the results are shown in Table 1.

実施例2 実施例1と同様にして、同様の組成比でRh−fJo−
Li触媒を調製した。また、塩化ロジウム160g、塩
化モリブデン(MOOI、) (L 6259をエタノ
ール30ajに溶解させ、これに前記に記載のシリカゲ
ル25dを加えた後、ロータリーエバポレーターを使用
して減圧下で乾燥した後、実施例1と同様の操作で還元
処理してRh−Mo触媒を調製した。
Example 2 Rh-fJo-
A Li catalyst was prepared. In addition, 160 g of rhodium chloride and molybdenum chloride (MOOI) (L 6259) were dissolved in 30 aj of ethanol, 25 d of the silica gel described above was added thereto, and after drying under reduced pressure using a rotary evaporator, Example A Rh-Mo catalyst was prepared by reduction treatment in the same manner as in 1.

実施例1と同様の反応装置に上記のRh−Mo触媒λ5
IILlを充填し、ついで上記のRh−8cmLi触媒
10IILtを前記に記載のシリカゲル30dで希釈し
て充填した後、実施例1と同様にして反応を行った。結
果を第1表に示す。
The above Rh-Mo catalyst λ5 was placed in the same reactor as in Example 1.
IIL1 was filled, and then the above Rh-8cmLi catalyst 10IILt was diluted with the above-mentioned silica gel 30d and the reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

実施例5 実施例1と同様にして同様の組成比でRh−Eia−L
i触媒を調製した。
Example 5 Rh-Eia-L was prepared in the same manner as in Example 1 with the same composition ratio.
i catalyst was prepared.

また、塩化ロジウム1.2(1;l、塩化イリジウム(
工r014・H,O) 118039 、塩化鉄(lL
s7(lをエタノール30dに溶解させ、これに前記に
記載のフリカゲル25−を加えた後、ロータリーエバポ
レーターを使用して減圧下で乾燥した後、実施例1と同
様の操作で還元処理してRh−エトFs触媒を調製した
In addition, rhodium chloride 1.2 (1; l, iridium chloride (
Engineering r014・H,O) 118039, iron chloride (lL
After dissolving s7 (l) in 30 d of ethanol and adding Furikagel 25- described above, drying under reduced pressure using a rotary evaporator, reduction treatment was performed in the same manner as in Example 1 to obtain Rh. -EthoFs catalyst was prepared.

実施例1と同様の反応装置に上記のRh−工r−IPe
触媒λ5dを充填し、ついで上記のRh−8o−Li触
媒10+x/を前記に記載のシリカゲル30m/で希釈
して充填した後、実施例1と同様にして反応を行った。
The above Rh-IPe was added to the same reactor as in Example 1.
A reaction was carried out in the same manner as in Example 1 after filling the catalyst λ5d and then filling the above Rh-8o-Li catalyst 10+x/ diluted with 30 m/ of the above-mentioned silica gel.

結果を第1表に示す。The results are shown in Table 1.

実施例4 実施例1と同様にして、同様の組成比でRh−8a−L
i触媒を調製した。
Example 4 Rh-8a-L was prepared in the same manner as in Example 1 with the same composition ratio.
i catalyst was prepared.

また、塩化ロジウム1.209 、塩化イリジウムII
L8059.塩化モリブデン1lL4989をエタノー
ル30−に溶解させ、これに前記に記載のシリカゲル2
5−を加えた後、ロータリーエバポレーターを使用して
減圧下で乾燥した後、実施例1と同様の操作で還元処理
してRh−ニーMO触媒を調製した。
Also, rhodium chloride 1.209, iridium chloride II
L8059. 1 liter of molybdenum chloride 4989 was dissolved in ethanol 30-, and silica gel 2 described above was added to it.
After adding 5-, the mixture was dried under reduced pressure using a rotary evaporator, and then subjected to reduction treatment in the same manner as in Example 1 to prepare a Rh-nee MO catalyst.

実施例1と同様の反応装置に上記のRh−エトM。The above Rh-Etho M was placed in the same reactor as in Example 1.

触媒2.5−を充填し、ついで上記のRh−8c−Li
触媒10−を前記に記載のシリカゲル30dで希釈して
充填した後、実施例1と同様にして反応を行った。結果
を第1表に示す。
The catalyst 2.5- was charged, and then the above Rh-8c-Li
After diluting catalyst 10- with silica gel 30d described above and filling it, a reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

実施例5 塩化ロジウムt209.塩化スカンジウム1α0599
.塩化リチウムα0559.塩化イリジウムα0489
を水11.5dに溶解させ、これに実施例1に記載のシ
リカゲル25dを加えた後、実施例1と同様の操作で処
理してRh−8o−Li−工r触媒を調製した。
Example 5 Rhodium chloride t209. Scandium chloride 1α0599
.. Lithium chloride α0559. Iridium chloride α0489
was dissolved in 11.5 d of water, 25 d of silica gel described in Example 1 was added thereto, and treated in the same manner as in Example 1 to prepare a Rh-8o-Li-E catalyst.

また実施例3と同様にして同様の組成比でRh−工r−
IF e触媒を調製した。
Further, in the same manner as in Example 3, with the same composition ratio, Rh-
An IF e catalyst was prepared.

実施例1と同様の反応装置に上記のRh−工r々・触媒
2.5 mlを充填し、ついで上記のRh−3o−Li
−工r触媒10IRtを前記に記載のシリカゲル5oa
tで希釈して充填した後、実施例1と同様にして反応を
行りた。結果を第1表に示す。
A reactor similar to that in Example 1 was charged with 2.5 ml of the above Rh-catalyst, and then the above Rh-3o-Li
- engineering catalyst 10IRt with silica gel 5oa as described above
After diluting with t and filling, the reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

比較例1 実施例1と同様にして、同様の組成比でRh−3aL1
触媒を調製し、その10ILtを前記に記載のシリカゲ
ル50−で希釈して充填した以外は、実施例1と同様に
して反応を行った。結果を第1表に示す。
Comparative Example 1 Rh-3aL1 was prepared in the same manner as in Example 1 with the same composition ratio.
A reaction was carried out in the same manner as in Example 1, except that a catalyst was prepared and 10ILt thereof was diluted with 50-ml of silica gel described above and filled. The results are shown in Table 1.

比較例2 実施例5と同様にして、同様の組成比でRh−3o−L
i−工r触媒を調製し、その10−を前記に記載のシリ
カゲル5aatで希釈して充填した以外は、実施例1と
同様にして反応を行った。結果を第1表に示す。
Comparative Example 2 Rh-3o-L was prepared in the same manner as in Example 5 with the same composition ratio.
The reaction was carried out in the same manner as in Example 1, except that an i-engine catalyst was prepared, and the 10-diluted catalyst was diluted with 5aat of silica gel described above and filled. The results are shown in Table 1.

Claims (1)

【特許請求の範囲】[Claims] ロジウム、スカンジウム、イリジウムおよび/又はリチ
ウムを担体担持してなる触媒と、ロジウムと(イ)イリ
ジウムおよび/又は(ロ)鉄又はモリブデンを担体担持
してなる触媒との存在下、一酸化炭素と水素とを反応さ
せることからなるエタノールの製造法。
Carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium, scandium, iridium and/or lithium supported on a carrier, and a catalyst comprising rhodium and (a) iridium and/or (b) iron or molybdenum supported on a support. A method for producing ethanol, which comprises reacting with.
JP60017728A 1985-02-02 1985-02-02 Production of ethanol Granted JPS61178936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60017728A JPS61178936A (en) 1985-02-02 1985-02-02 Production of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017728A JPS61178936A (en) 1985-02-02 1985-02-02 Production of ethanol

Publications (2)

Publication Number Publication Date
JPS61178936A true JPS61178936A (en) 1986-08-11
JPS6238337B2 JPS6238337B2 (en) 1987-08-17

Family

ID=11951802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017728A Granted JPS61178936A (en) 1985-02-02 1985-02-02 Production of ethanol

Country Status (1)

Country Link
JP (1) JPS61178936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088402C (en) * 1998-02-12 2002-07-31 中国科学院大连化学物理研究所 Dicarbonic oxygen-contained compound catalyst such as alcohols, acetic acid, acetaldehyde etc. made from synthetic gas and process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088402C (en) * 1998-02-12 2002-07-31 中国科学院大连化学物理研究所 Dicarbonic oxygen-contained compound catalyst such as alcohols, acetic acid, acetaldehyde etc. made from synthetic gas and process thereof

Also Published As

Publication number Publication date
JPS6238337B2 (en) 1987-08-17

Similar Documents

Publication Publication Date Title
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS61178936A (en) Production of ethanol
JPS6238336B2 (en)
JPS6238343B2 (en)
JPS6259229A (en) Production of ethanol
JPS6218530B2 (en)
JPS6238338B2 (en)
JPS6259227A (en) Production of ethanol
JPS6238342B2 (en)
JPS6238341B2 (en)
JPS61178938A (en) Production of ethanol
JPS63162638A (en) Production of ethanol
JPS6049615B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6233215B2 (en)
JPS6259231A (en) Production of ethanol
JPS6259232A (en) Production of ethanol
JPS6259230A (en) Production of ethanol
JPS6238340B2 (en)
JPS61191635A (en) Production of ethanol
JPS6049618B2 (en) Method for producing oxygen-containing compounds containing ethyl alcohol as the main component
JPS63162639A (en) Production of ethanol
JPS6119611B2 (en)
JPS6049616B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6218531B2 (en)
JPS6121931B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term