JPS63162639A - Production of ethanol - Google Patents

Production of ethanol

Info

Publication number
JPS63162639A
JPS63162639A JP61307854A JP30785486A JPS63162639A JP S63162639 A JPS63162639 A JP S63162639A JP 61307854 A JP61307854 A JP 61307854A JP 30785486 A JP30785486 A JP 30785486A JP S63162639 A JPS63162639 A JP S63162639A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
copper
prepared
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61307854A
Other languages
Japanese (ja)
Other versions
JPS643857B2 (en
Inventor
Satoshi Arimitsu
有光 聰
Koichi Shikakura
鹿倉 光一
Toshihiro Saito
寿広 斉藤
Kazuaki Tanaka
和明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61307854A priority Critical patent/JPS63162639A/en
Publication of JPS63162639A publication Critical patent/JPS63162639A/en
Publication of JPS643857B2 publication Critical patent/JPS643857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain ethanol readily in high selectivity and in high yield, by reacting CO with H2 by the use of a specific compounded catalyst. CONSTITUTION:CO is reacted with H2 in a blending ratio of 0.1-10 (volume ratio) in the presence of a catalyst obtained by supporting rhodium, lithium, copper, indium and/or at least one of scandium, magnesium, yttrium, ytterbium, lutecium, vanadium and chromium on a carrier such as silica gel, etc., and a catalyst comprising copper or copper, zinc and/or chromium at 150-450 deg.C under 0-350kg/cm<2> gauge pressure at 10-10<6>h<-1> space velocity calculated as standard state (0 deg.C, 1atm.) to give ethanol. The two catalysts used are individually and separately prepared, ordinarily the above-mentioned components are dispersed on the carrier as carried out in a noble metal catalyst and the catalysts are prepared by impregnation method, immersion method, ion exchange method, coprecipitation method, kneading method, etc.

Description

【発明の詳細な説明】 本発明はエタノールを製造する方法に関する。[Detailed description of the invention] The present invention relates to a method for producing ethanol.

更に詳しくは、(a)ロジウム、リチウム、銅、イリジ
ウムおよび/又はスカンジウム、マグネシウム、イツト
リウム、イッテルビウム、ルテシウム、バナジウム、ク
ロム(以下、その他の添加元素と略す)のうちの少なく
とも一種の元素を担体担持してなる触媒と(b)(1)
銅又は(2)銅、亜鉛および/又はクロムからなる触媒
の存在下、一酸化炭素と水素とを反応させることからな
るエタノールを製造する方法。
More specifically, (a) at least one element selected from rhodium, lithium, copper, iridium and/or scandium, magnesium, yttrium, ytterbium, lutetium, vanadium, and chromium (hereinafter abbreviated as other additive elements) is supported on a carrier. (b) (1)
A method for producing ethanol comprising reacting carbon monoxide with hydrogen in the presence of copper or (2) a catalyst comprising copper, zinc and/or chromium.

(従来の技術及び発明が解決しようとする問題点〕エタ
ノール、アセトアルデヒド等の炭素数2の含酸素化合物
は従来ナフサを原料とする石油化学的方法によって製造
されてきた。しかし、近年の原油の急激な価格変動や供
給不安、およびその資源量の有限性を考慮すれば代替炭
素資源の開発の必要性が生じている。
(Problems to be solved by the prior art and the invention) Oxygenated compounds having two carbon atoms, such as ethanol and acetaldehyde, have traditionally been produced by petrochemical methods using naphtha as a raw material.However, in recent years, the demand for crude oil has increased rapidly. Considering price fluctuations, supply instability, and the limited amount of carbon resources, there is a need to develop alternative carbon resources.

一方、豊富で且つ安価に入手可能な一酸化炭素及び水素
の混合ガスより炭素数2の含酸素化合物を製造する方法
が種々検討されている。即ち、一酸化炭素と水素の混合
ガスを、ロジウムを主成分とし、マンガン、チタン、ジ
ルコン、鉄などの金属もしくは金属酸化物より成る触媒
の存在下に反応させて、炭素数2の含酸素化合物を選択
的に製造する方法は公知(例えば特開昭51−8080
6号、同51−14706号、同56−147730号
等)である。
On the other hand, various methods of producing an oxygen-containing compound having 2 carbon atoms from a mixed gas of carbon monoxide and hydrogen, which is available in abundance and at low cost, have been studied. That is, by reacting a mixed gas of carbon monoxide and hydrogen in the presence of a catalyst containing rhodium as a main component and consisting of a metal or metal oxide such as manganese, titanium, zircon, or iron, an oxygen-containing compound having two carbon atoms is produced. The method of selectively producing
No. 6, No. 51-14706, No. 56-147730, etc.).

しかしながら、かかる方法も副生する炭化水素、例えば
メタン等の量が多く、含酸素化合物の選択率が低いもの
や含酸素化合物の選択率が高い場合には、その生成量は
極めて低いものであった。
However, even with this method, the amount of by-product hydrocarbons, such as methane, is large, and when the selectivity of oxygen-containing compounds is low or the selectivity of oxygen-containing compounds is high, the amount produced is extremely low. Ta.

更に高価な貴金属であるロジウムあたりの目的化合物の
生成量がまだまだ少く、経済的にもプロセス的にも完成
された技術が提供されていないのが実情である。
The reality is that the amount of the target compound produced based on rhodium, which is an expensive noble metal, is still small, and a technology that has been completed economically and process-wise has not been provided.

更に炭素数2の含酸素化合物を高収量で高選択的に製造
することを目的としたロジウムにリチウム(特開昭56
−8334号)、鉄(特開昭51−80807号)、マ
グネシウム(特開昭54−138504号)、バナジウ
ム(特開昭57−62232号)、イツトリウム、イッ
テルビウム(特開昭57−62233号)、クロム(特
開昭55−143918号)、ロジウムとリチウムおよ
びマグネシウム又はバナジうム等(特開昭57−109
734号)等が提案されているが、いずれの方法もアセ
トアルデヒド、酢酸又はメタノールを主生成物とするも
のであり、エタノールの収率、選択性などは著しく低い
欠点ををしている。
Furthermore, lithium (Japanese Unexamined Patent Application Publication No. 1983-1995
-8334), iron (JP 51-80807), magnesium (JP 54-138504), vanadium (JP 57-62232), yttrium, ytterbium (JP 57-62233) , chromium (Japanese Unexamined Patent Publication No. 55-143918), rhodium and lithium and magnesium or vanadium, etc. (Japanese Unexamined Patent Publication No. 57-109)
No. 734), etc. have been proposed, but all of these methods use acetaldehyde, acetic acid, or methanol as the main products, and have the disadvantage that the yield and selectivity of ethanol are extremely low.

最近、上述したアセトアルデヒドや酢酸の製造用触媒と
して知られているロジウム系触媒と鉄及び/又はモリブ
デンとロジウム、パラジウム、イリジウムなどを含む触
媒を組合わせることによりエタノールを選択的に合成す
る方法(特開昭61−178939、特開昭61−17
8940、特開昭61−178941、特開昭61−1
78942号)が見い出されているが、エタノールの選
択率は実用化プロセスとして満足できる結果ではない。
Recently, a method for selectively synthesizing ethanol (especially 1988-178939, JP-A 61-17
8940, JP-A-61-178941, JP-A-61-1
78942), but the selectivity of ethanol is not a satisfactory result for a practical process.

また、綱、ロジウム、アルカリ金属などを含む多元素触
媒を用いる合成法(米国特許 4.537.909)が提案されているが、エタノール
選択率は低く、メタノールやプロパツールの割合が高い
、その他、ロジウム、バナジウム、銅を含む触媒を用い
るエタノールを製造する方法(昭6O−32734)が
示されているが、エタノールの選択率および生成活性は
かなり低い結果であった。
In addition, a synthesis method using a multi-element catalyst containing metals, rhodium, alkali metals, etc. has been proposed (US Pat. No. 4,537,909), but the ethanol selectivity is low, the ratio of methanol and propatool is high, and other , a method for producing ethanol using a catalyst containing rhodium, vanadium, and copper (Sho 6O-32734) has been shown, but the selectivity and production activity of ethanol were quite low.

以上述べた如く、一酸化炭素及び水素を含有する気体よ
りエタノールを主成分とする含酸素化合物を効率よ(経
済性よく製造する方法は提供されていない。
As described above, a method for efficiently (economically) producing an oxygen-containing compound mainly composed of ethanol from a gas containing carbon monoxide and hydrogen has not been provided.

本発明者らは一酸化炭素及び水素を含有する気体より、
含酸素化合物を製造する際に、上記炭素数2の含酸素化
合物の選択を改良しつつ、該反応より生成される炭素数
2の含酸素化合物中の分布をエタノールに移動させ、か
つ炭化水素の生成を最小とすることを可能にした触媒系
を開示するものであり、多数の助触媒成分の組合せ試験
につき、!!!検討を重ねた結果、(a)ロジウム、リ
チウム、銅、イリジウムおよび/又はスカンジウム、マ
グネシウム、イツトリウム、イッテルビウム、ルテシウ
ム、バナジウム、クロムのうちの少なくとも一種の元素
を担体担持してなる触媒と、(1)銅又は(2)銅、亜
鉛及び/又はクロムらなる触媒とを組合わせることによ
り予期し得ない効果が発現し、エタノールが好ましい収
量と高選択性で得られることを見い出し、本発明を完成
するに至った。
The present inventors discovered that from a gas containing carbon monoxide and hydrogen,
When producing an oxygen-containing compound, while improving the selection of the above-mentioned oxygen-containing compound having two carbon atoms, the distribution in the oxygen-containing compound having two carbon atoms produced by the reaction is shifted to ethanol, and the hydrocarbon It discloses a catalytic system that makes it possible to minimize the formation of a large number of promoter component combinations. ! ! As a result of repeated studies, we found that (a) a catalyst comprising at least one element selected from rhodium, lithium, copper, iridium and/or scandium, magnesium, yttrium, ytterbium, lutetium, vanadium, and chromium supported on a carrier; ) Copper or (2) Copper, zinc and/or chromium catalyst in combination, an unexpected effect is expressed and ethanol can be obtained in a favorable yield and high selectivity, and the present invention has been completed. I ended up doing it.

〔発明の概要〕[Summary of the invention]

本発明は前記した如く、(a)ロジウム、リチウム、銅
、イリジウムおよび/又はスカンジウム、マグネシウム
、イツトリウム、イッテルビウム、ルテシウム、バナジ
ウム、クロムのうちの少なくとも一種の元素を担体担持
してなる触媒と、<b>(1)銅又は(2)銅、亜鉛及
び/又はクロムらなる触媒との存在下、一酸化炭素及び
水素を反応させエタノールを製造するものである。
As described above, the present invention comprises (a) a catalyst comprising at least one element selected from rhodium, lithium, copper, iridium and/or scandium, magnesium, yttrium, ytterbium, lutetium, vanadium, and chromium supported on a carrier; b> Ethanol is produced by reacting carbon monoxide and hydrogen in the presence of a catalyst consisting of (1) copper or (2) copper, zinc and/or chromium.

以下、本発明を順次詳述する。The present invention will be explained in detail below.

本発明において用いられる触媒は前述の如く、(a)ロ
ジウム、リチウム、銅、イリジウムおよび/又はスカン
ジウム、マグネシウム、イツトリウム、イッテルビウム
、ルテシウム、バナジウム、クロムのうちの少なくとも
一種の元素を担体担持してなる触媒と、(b)(1)w
4又は(2)銅、亜鉛及び/又はクロムらなる触媒とか
らなる三者の触媒を主たる構成成分とする0両者の触媒
は各々別途調製したものを使用することができ、使用に
際しては混合あるいは(a)の触媒の一つを上層に、(
b)の触媒の一つを下層に充填して使用することができ
る。(a)の触媒の調製に際しては通常、貴金属触媒に
おいて行われる如く担体上に上記の成分を分散させてい
る。
As mentioned above, the catalyst used in the present invention has (a) at least one element selected from the group consisting of rhodium, lithium, copper, iridium and/or scandium, magnesium, yttrium, ytterbium, lutetium, vanadium, and chromium supported on a carrier. a catalyst and (b)(1)w
4 or (2) A catalyst consisting of copper, zinc and/or chromium as the main components.0 Both catalysts can be used separately prepared, and when used, they may be mixed or mixed. One of the catalysts in (a) is placed in the upper layer (
One of the catalysts in b) can be used by filling the lower layer. In preparing the catalyst (a), the above-mentioned components are usually dispersed on a carrier as is done for noble metal catalysts.

本発明において用いられ(a)の触媒は貴金属を使用す
る場合に用いられる常法に従って、調製することができ
る0例えば含浸法、浸漬法、イオン交換法、共沈法、混
練法等によって調製できる。
The catalyst (a) used in the present invention can be prepared according to a conventional method used when using noble metals. For example, it can be prepared by an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, a kneading method, etc. .

触媒を構成する成分であるロジウムにおいて触媒調製の
ために使用できる原料化合物としては、塩化物、臭化物
等のハロゲン化物、硝酸塩、炭酸塩等の無機塩、酢酸塩
、シュウ酸塩、アセチルアセ合物を使用することができ
る。助触媒として使用されるイリジウム、リチウム、鋼
、スカンジウムマグネシウム、イツトリウム、イッテル
ビウム、ルテシウム、バナジウム、クロムに使用できる
原料化合物としてはハロゲン化物、硝酸塩、塩素酸塩等
の無機酸塩、水酸化物、ギ酸塩、硝酸塩等の有機酸塩、
金属アルコキシド化合物、アルキル金属化合物等より適
宜使用することができる。
Raw materials for rhodium, which is a component of the catalyst, include halides such as chlorides and bromides, inorganic salts such as nitrates and carbonates, acetates, oxalates, and acetylacetic compounds. can be used. Raw material compounds that can be used for iridium, lithium, steel, scandium magnesium, yttrium, ytterbium, lutetium, vanadium, and chromium used as promoters include halides, inorganic acid salts such as nitrates and chlorates, hydroxides, and formic acid. salts, organic acid salts such as nitrates,
Metal alkoxide compounds, alkyl metal compounds, etc. can be used as appropriate.

(b)の触媒は(a)の触媒の調製法と同様に担体上に
上記の成分を分散担持して使用できるし、金属成分と担
体成分を沈澱法、混錬法等で調製したのち使用すること
もできる。lR1亜鉛およびクロムとして使用できる原
料化合物としては、ハロゲン化物、ハロゲン酸塩、硝酸
塩、水酸化物、ギ酸塩、酢酸塩、シュウ酸塩等の有機酸
塩等よう適宜使用することができる。これらの触媒構成
成分を担体上へ担持することを容易にするためには、エ
タノール、水又は他の適当を溶媒に可teaの高い化合
物が好ましくは用いられる。
The catalyst (b) can be used by dispersing and supporting the above components on a carrier in the same way as the preparation method of the catalyst (a), or it can be used after preparing the metal component and the carrier component by a precipitation method, kneading method, etc. You can also. As raw material compounds that can be used as lR1 zinc and chromium, organic acid salts such as halides, halogenates, nitrates, hydroxides, formates, acetates, and oxalates can be used as appropriate. In order to facilitate the loading of these catalyst components onto a carrier, a compound with a high tea content in ethanol, water or other suitable solvent is preferably used.

以下に含浸法に例をとり触媒の調製法を説明する。上記
の金属化合物を水、メタノール、エタノ−、アセトン、
テトラヒドロフラン、ジオキサン、ノルマルヘキサン、
ベンゼン、トルエン等の単独または混合溶媒に溶解し、
その溶液に担体を加え浸漬し、溶媒を留去、乾燥し、必
要とあれば加熱、ガス処理等の処理を行い、担体に金属
化合物を担持する。
The method for preparing the catalyst will be explained below by taking the impregnation method as an example. The above metal compounds can be mixed with water, methanol, ethanol, acetone,
Tetrahydrofuran, dioxane, normal hexane,
Dissolved in a single or mixed solvent such as benzene or toluene,
A carrier is added to the solution and immersed, the solvent is distilled off, the carrier is dried, and if necessary, treatments such as heating and gas treatment are performed to support the metal compound on the carrier.

<a>又は(b)触媒の担持の手法としては、原料化合
物を同一溶媒に同時に溶解した混合溶液を作り、担体に
同時に担持する方法、各成分を遂次的に担体に担持する
方法、あるいは各成分を必要に応じて還元、熱処理等の
処理を行いながら遂次的、段階的に担持する方法などの
各手法を用いることができる。
<a> or (b) As a method of supporting the catalyst, a method of preparing a mixed solution in which the raw material compounds are simultaneously dissolved in the same solvent and supporting the same on the carrier at the same time, a method of sequentially supporting each component on the carrier, or Various methods can be used, such as a method of supporting each component sequentially or stepwise while performing treatments such as reduction and heat treatment as necessary.

その他の調製法、例えば担体のイオン交損能を利用した
イオン交換によって金属を担持する方法、共沈法、混錬
法によって触媒を調製する方法なども本発明方法に用い
られる触媒の調製手法として採用できる。
Other preparation methods, such as a method of supporting a metal by ion exchange using the ion exchange ability of a carrier, a method of preparing a catalyst by a coprecipitation method, a method of kneading, etc., can also be used as a preparation method for the catalyst used in the method of the present invention. Can be adopted.

上述の手法によって調製された(a)および(b)の触
媒は通常還元処理を行うことにより活性化し次いで反応
に供せられる。還元を行うには水素を含存する気体によ
り昇温下で行うことが箇便であって好ましい。
The catalysts (a) and (b) prepared by the above-mentioned method are usually activated by reduction treatment and then subjected to reaction. In order to carry out the reduction, it is convenient and preferable to carry out the reduction using a hydrogen-containing gas at an elevated temperature.

(a)の触媒の還元温度として、ロジウムの還元温度と
して、ロジウムの還元される温度、即ち100℃程度の
温度条件下でも還元処理ができるが、好ましくは200
℃〜600℃の温度下で還元処理を行う、この際触媒の
各成分の分散を充分に行わせる目的で低温より徐々に、
あるいは段階的に昇温しながら水素還元を行ってもよい
、また還元剤を用いて、化学的に還元をjテうこともで
きる。たとえば、一酸化炭素と水を用いたり、ヒドラジ
ン、水素化ホウ素化合物、水素化アルミニウム化合物な
どの還元剤を用いた還元処理を行ってもよい。
As the reduction temperature of the catalyst in (a), the reduction temperature of rhodium is the temperature at which rhodium is reduced, that is, the reduction treatment can be carried out under a temperature condition of about 100°C, but preferably 200°C.
The reduction treatment is carried out at a temperature of ℃ to 600℃. At this time, in order to sufficiently disperse each component of the catalyst, the reduction treatment is carried out gradually from a low temperature.
Alternatively, the hydrogen reduction may be carried out while raising the temperature in stages, or the reduction may be carried out chemically using a reducing agent. For example, reduction treatment may be performed using carbon monoxide and water, or using a reducing agent such as hydrazine, a boron hydride compound, or an aluminum hydride compound.

また(b)の触媒は(a)の触媒と同様な方法で還元処
理を行うことができる。
Further, the catalyst (b) can be reduced in the same manner as the catalyst (a).

本発明において用いられる担体は好ましくは比表面積1
’!−1000r+(/g、細孔径10A以上を有する
ものであれば通常担体として知られているものを使用す
ることができる。具体的な担体としては、シリカ、各種
の珪酸塩、アルミナ、活性炭、各種金属の酸化物(例え
ば酸化ジルコニウム、酸化チタン、マグネシアなど)、
モレキエラーシーブ、ケイソウ土などがあげられるが、
シリカ系の担体が好ましい。
The carrier used in the present invention preferably has a specific surface area of 1
'! -1000r+(/g, pore size of 10A or more) that is commonly known as a carrier can be used.Specific carriers include silica, various silicates, alumina, activated carbon, and various other carriers. Metal oxides (e.g. zirconium oxide, titanium oxide, magnesia, etc.),
Molecule sieve, diatomaceous earth, etc. can be mentioned.
A silica-based carrier is preferred.

上記(a)の触媒における各構成成分の比率は以下の様
である。
The ratio of each component in the catalyst (a) above is as follows.

ロジウムと担体に対する比率は、担体の比表面積を考慮
して重量比で0.0001〜0,5、好ましくはo、o
ot〜0.3である。リチウムとロジウムの一2′、+
+“− 比率はリチウム/ロジウム(原子比)でo、jOiW〜
0.1の範囲である。その他の添加元素とロジウムの比
率はその他の添加元X/ロジウム(原子比)で0.00
1〜IO1好ましくは0.005〜3の範囲である。更
に上記(b)の触媒における各構成成分の比率は以下の
様である。tRと担体に対する比率と、重量比で0.0
01〜50、好ましくは0.01〜20である。mと亜
鉛の比率は亜鉛/w4(原子比)で0.01〜50、好
ましくは0.1〜10の範囲である。銅とクロムの比率
はクロム/銅(原子非圧)で0.O1〜50、好ましく
は0.1〜10の範囲である。
The ratio of rhodium to the carrier is 0.0001 to 0.5 by weight, preferably o, o, considering the specific surface area of the carrier.
ot~0.3. Lithium and rhodium -2', +
+“- The ratio is lithium/rhodium (atomic ratio) o, jOiW ~
It is in the range of 0.1. The ratio of other additive elements to rhodium is other additive elements X/rhodium (atomic ratio): 0.00
It is in the range of 1 to IO1, preferably 0.005 to 3. Further, the ratio of each component in the catalyst (b) above is as follows. The ratio of tR to carrier and the weight ratio is 0.0
01-50, preferably 0.01-20. The ratio of m to zinc (zinc/w4 (atomic ratio)) is in the range of 0.01 to 50, preferably 0.1 to 10. The ratio of copper to chromium is chromium/copper (atomic non-pressure): 0. It ranges from O1 to 50, preferably from 0.1 to 10.

本発明は、たとえば固定床の流通式反応装置に通用する
ことができる。すなわち反応器内に上記(b)の触媒の
うちの一つの上に、(a)の触媒のうちの一つを充填す
るか、(a)の触媒のうちの一つと(b)の触媒のうち
の一つを混合して充填し、原料ガスを送入して反応を行
わせる。
The present invention can be applied to, for example, a fixed bed flow reactor. That is, one of the catalysts of (a) is packed on top of one of the catalysts of (b) in the reactor, or one of the catalysts of (a) and the catalyst of (b) are charged. One of them is mixed and filled, and the raw material gas is introduced to carry out the reaction.

生成物は分離し、未反応の原料ガスは必要に応じて精製
したのち循環再使用することも可能である。
It is also possible to separate the product and recycle and reuse the unreacted raw material gas after purifying it if necessary.

また、本発明は流動床式の反応装置にも適用できる。す
なわち原料ガスと上記(a)の触媒のうちの一つと(b
)の触媒のうちの一つを混合、流動化した触媒を同伴さ
せて反応を行わせることもできる。更には本発明は溶媒
中に触媒を分散させ、原料ガスを送入し反応を行うこと
からなる液相不均一反応にも通用できる。
Further, the present invention can also be applied to a fluidized bed type reactor. That is, the raw material gas, one of the catalysts in (a) above, and (b)
) The reaction can also be carried out by mixing and fluidizing one of the catalysts. Furthermore, the present invention can also be applied to a liquid phase heterogeneous reaction in which a catalyst is dispersed in a solvent and a raw material gas is introduced to carry out the reaction.

本発明方法を実施するに際して採用される条件はエタノ
ールを主成分とする含酸素化合物を高収率、高選択率で
、かつ炭化水素の生成を最小にしながら製造することを
目的として種々の反応条件の因子を有機的に組合せて選
択される。
The conditions adopted when carrying out the method of the present invention are various reaction conditions for the purpose of producing oxygen-containing compounds containing ethanol as the main component with high yield and high selectivity while minimizing the production of hydrocarbons. are selected by organically combining these factors.

反応圧力は、常圧(すなわちOkg/−ゲージ)でも当
該目的化合物を高選択率・高収率で製造できるのである
が、空時収率を高める目的で加圧下において反応を行う
ことができる。従って反応圧力としてはOkt/−ゲー
ジ〜350 kg/cdゲージ、好ましくは0眩/−ゲ
ージ−250眩/dゲージの圧力下で行う0反応温度は
150℃〜450℃、好ましくは180℃〜350℃で
ある。触媒(a)と触媒(b)の反応温度は同一であっ
てもよいが、高いエタノール選択率および生成活性を得
るために異なる反応温度に設定することが好ましい0反
応塩度が高い場合には、炭化水素の副生量が増加するた
め原料の送入速度を早くしたり、水素、一酸化炭素の組
成比を変える必要がある。従つて、空間速度(原料ガス
送入量/触媒容積)は、標準状fin(0℃、1気圧)
換算でi o h−’〜10’h−1の範囲より、反応
圧力、反応温度、原料ガス組成との関係より適宜選択さ
れる。
Although the target compound can be produced with high selectivity and high yield even under normal pressure (i.e., 0 kg/-gauge), the reaction can be carried out under pressure in order to increase the space-time yield. Therefore, the reaction temperature is 150° C. to 450° C., preferably 180° C. to 350° C. The reaction temperature is 150° C. to 450° C., preferably 180° C. to 350° C. It is ℃. The reaction temperatures of catalyst (a) and catalyst (b) may be the same, but it is preferable to set them to different reaction temperatures in order to obtain high ethanol selectivity and production activity. Since the amount of hydrocarbon by-products increases, it is necessary to increase the feed rate of raw materials or change the composition ratio of hydrogen and carbon monoxide. Therefore, the space velocity (raw material gas feed amount/catalyst volume) is the standard fin (0°C, 1 atm)
It is appropriately selected from the range of i oh-' to 10' h-1 in terms of the relationship with the reaction pressure, reaction temperature, and raw material gas composition.

当該原料ガスの組成は、主として一酸化炭素と水素を含
有しているガスであって、窒素、アルゴン、ヘリウム、
メタン等のガス、あるいは反応条件下において、気体の
状態であれば炭化水素、二酸化炭素、生成した含酸素化
合物や水を含有していてもよい、水素と一酸化炭素の混
合比率は水素/−一酸化炭素容積比)でo、t−to、
好ましくは0.25〜5であり、原料ガス中の一酸化炭
素と水素の合計割合は20−100容器%、好ましくは
60−100容積%である。
The composition of the raw material gas is a gas mainly containing carbon monoxide and hydrogen, and nitrogen, argon, helium,
Gases such as methane, or hydrocarbons, carbon dioxide, generated oxygen-containing compounds, and water may be contained in the gaseous state under the reaction conditions.The mixing ratio of hydrogen and carbon monoxide is hydrogen/- carbon monoxide volume ratio) o, t-to,
Preferably it is 0.25-5, and the total proportion of carbon monoxide and hydrogen in the raw material gas is 20-100% by volume, preferably 60-100% by volume.

以下実施例によって本発明を更に詳細に説明するが、こ
れらの例は本発明の理解を容易にするために示すもので
あり、本発明はこれによりなんら限定されるものではな
いことは言うまでもない。
The present invention will be explained in more detail with reference to Examples below, but these Examples are shown to facilitate understanding of the present invention, and it goes without saying that the present invention is not limited thereto.

実施例1 塩化oX)ラム(Rh Cl s−3HsO)0.48
0 g、塩化リチウム(LICI・HtO)0.022
g、塩化第二銅(CuC1家・ 2HtO)0.006
g(0,037mmo 1)および塩化スカンジウム(
SeC1s’ 6HxO)0.024gを熔解させたエ
タノール液中に、予め硝酸洗浄を施して700℃で2時
間空気中で焼成したシリカゲル(Davlson# 5
 L  Davlson社&り 3.7g (10m1
)を加え浸漬した0次いでロータリーエバポ−ターを用
いてエタノールを留去し、更に真空乾燥した。その後、
パイレックス反応管に充填し・水素(50ml/分)下
、450℃で4時間活性化処理をおこない、Rh−Li
−Cu−3c/Sin、触媒を調製した。
Example 1 Rum (Rh Cl s-3HsO) 0.48
0 g, lithium chloride (LICI・HtO) 0.022
g, cupric chloride (CuC1/2HtO) 0.006
g (0,037 mmo 1) and scandium chloride (
Silica gel (Davlson #5
L Davlson &amp; 3.7g (10m1
) was added and immersed, then ethanol was distilled off using a rotary evaporator, and the mixture was further vacuum-dried. after that,
Fill a Pyrex reaction tube and perform activation treatment at 450°C for 4 hours under hydrogen (50 ml/min).
-Cu-3c/Sin, a catalyst was prepared.

また、硝酸IR(Cu (NOx)富・3 HsO)1
.763g、硝酸亜鉛(Z n (NOs)t・6 H
tO)1.085gを溶解させた水溶液中に焼成脱気し
たシリカゲル(Davison#57) 3.7gを加
え浸漬した。上記と同様の方法で乾燥した後、空気中、
350℃で3時間焼成した。その後、常圧で水素および
窒素の混合ガス(H*:2ml/分、N8:50m1/
分)の通気下、350℃で3時間活性化処理を行い、C
u −Z u / S I Oz触媒を調製した。
In addition, nitric acid IR (Cu (NOx) rich 3 HsO) 1
.. 763g, zinc nitrate (Z n (NOs)t・6H
3.7 g of calcined and degassed silica gel (Davison #57) was added and immersed in an aqueous solution in which 1.085 g of tO) was dissolved. After drying in the same manner as above, in the air,
It was baked at 350°C for 3 hours. After that, a mixed gas of hydrogen and nitrogen (H*: 2 ml/min, N8: 50 ml/min.
Activation treatment was performed at 350°C for 3 hours under aeration of
A u-Zu/SIOz catalyst was prepared.

活性試験及び結果 外径4mmの熱電対保護管を存する内径14mmのチタ
ン製反応管二本を直列に連結し、上層反応管に上記のR
h−Li−Cu−3c/5iOz触媒2mlを充填し、
下層反応管に上記のCu−Zn/5lot触媒3 m 
lを充填した。常圧水素ガス流通下(100ml/分)
、200℃で一時間再還元した後、水素/一酸化炭素一
1.5(容積比)の混合ガスを5ONl/時送入し、反
応圧力30kg/cd、Rh  L l −Cu −S
 c / S I Oを触媒及びCu−Zn/5lot
触媒の反応温度を265℃、275℃において反応を行
った0反応生成物のうち、液状生成物は水に吸収させて
補集し、気体性成物は直接ガス採取し、ガスクロ法によ
り分析し、生成物の分布を求めた。尚、生成物分布の算
出に際して炭酸ガスは経済的に減少する傾向を示したの
で、その生成量を除外した。結果を表1に示した。
Activity test and results Two titanium reaction tubes with an inner diameter of 14 mm each having a thermocouple protection tube with an outer diameter of 4 mm were connected in series, and the upper reaction tube was heated with the above R.
Filled with 2 ml of h-Li-Cu-3c/5iOz catalyst,
3 m of the above Cu-Zn/5 lot catalyst was placed in the lower reaction tube.
Filled with l. Under normal pressure hydrogen gas flow (100ml/min)
, after re-reduction at 200°C for 1 hour, a mixed gas of hydrogen/carbon monoxide -1.5 (volume ratio) was fed at 5 ONl/hour, reaction pressure was 30 kg/cd, Rh L l -Cu -S
c/SIO as catalyst and Cu-Zn/5lot
Among the reaction products obtained by carrying out the reaction at a catalyst reaction temperature of 265°C and 275°C, liquid products were collected by absorption in water, and gaseous products were directly collected and analyzed by gas chromatography. , the product distribution was determined. In addition, when calculating the product distribution, since carbon dioxide gas showed a tendency to decrease economically, its production amount was excluded. The results are shown in Table 1.

実施例2 塩化ロジウム0.480g、塩化リチウム0.022g
、塩化第二i0.006g、塩化スカンジウム0.02
4g、塩化イリジウム(I rcl−・HxO)0.0
64gを溶解させたエタノール溶液に前記Rh  L 
i  Cu −S e / S I Oを触媒の調製法
に記載のシリカゲル10m1を加え、浸漬した後、実施
例1と同様の方法によりRh−Ll−Cu−3c  I
r/S!Ot触媒を調製した。
Example 2 Rhodium chloride 0.480g, lithium chloride 0.022g
, fernic chloride 0.006g, scandium chloride 0.02
4g, iridium chloride (I rcl- HxO) 0.0
The Rh L
After adding 10 ml of silica gel described in the catalyst preparation method and immersing the i Cu-S e / S I O, Rh-Ll-Cu-3c I was prepared in the same manner as in Example 1.
r/S! An Ot catalyst was prepared.

また、硝酸銅1.763g、硝酸亜鉛1.085g、硝
酸クロム(Cr (NOx) t・9HtO)1.46
0gを含む水溶液に前記Cu−Zn/5iot触媒の調
製法に記載のシリカゲル10m1を加え浸漬した後、実
施例1と同様の方法によりCu−Zn−Cr/S 10
g触媒を調製した。
In addition, copper nitrate 1.763g, zinc nitrate 1.085g, chromium nitrate (Cr (NOx) t・9HtO) 1.46
After adding and immersing 10 ml of silica gel described in the preparation method of the Cu-Zn/5iot catalyst into an aqueous solution containing 0 g of Cu-Zn-Cr/S 10 in the same manner as in Example 1.
g catalyst was prepared.

実施意1と同様の反応装置に上記のRh−Li−Cu−
3e −I r/S I Ot触媒2mlを上層に充填
し、Cu−Zn−Cr/S IOHOH触媒3モlNl
こ充填した後、実施例1と同様の条件で反応を行った。
The above Rh-Li-Cu-
3e -I r/S I Ot catalyst 2 ml was packed in the upper layer, Cu-Zn-Cr/S IOHOH catalyst 3 mol Nl
After filling, a reaction was carried out under the same conditions as in Example 1.

結果を表1に示した。The results are shown in Table 1.

実施例3 塩化ロジウム0.480g、塩化リチウム0.022g
、塩化第二銅0.006g、塩化マグネシウム(MnC
i!・6HtO)0.019gを含むエタノール溶液に
実施例1のRh−L 1−Cu−3c/ S i Ox
触媒の調製法に記載のシリカゲル10m1を加え、浸漬
した後、実施例1と同様の方法によりRh  L 1−
 Cu  M g / S I Oを触媒を調製した。
Example 3 Rhodium chloride 0.480g, lithium chloride 0.022g
, cupric chloride 0.006g, magnesium chloride (MnC
i!・Rh-L 1-Cu-3c/S i Ox of Example 1 in an ethanol solution containing 0.019 g of 6HtO)
After adding and immersing 10 ml of silica gel described in the catalyst preparation method, Rh L 1-
A catalyst was prepared using CuMg/SIO.

また、硝酸銅1.763gを含む水溶液中に実施例1の
Cu−Zn  /Slow触媒の調製法に記載のシリカ
ゲル10m1を加え浸漬した後、実施例1と同様の方法
によりCu/SiO□触媒を調製した。
In addition, 10 ml of silica gel described in the method for preparing a Cu-Zn/Slow catalyst in Example 1 was added to an aqueous solution containing 1.763 g of copper nitrate, and the mixture was immersed. Prepared.

実施例1と同様の反応装置に上記のRh−Li−Cu−
Mg/5lot触媒2mlを上層に充填し、上記のCu
 / S I Ox触媒4 m lを下層に充填した後
、Cu / S I Oを触媒の反応温度を280℃に
変化させた以外は実施例1と同様の条件で反応を行った
。結果を表1に示した。
The above Rh-Li-Cu-
Fill the upper layer with 2ml of Mg/5lot catalyst, and
After filling the lower layer with 4 ml of the Cu/SI Ox catalyst, a reaction was carried out under the same conditions as in Example 1 except that the reaction temperature of the Cu/SI Ox catalyst was changed to 280°C. The results are shown in Table 1.

実施例4 塩化ロジウム0.480g、塩化リチウム0.022g
、塩化第二w4o、oo6g、塩化マグネシウム0.0
19g、塩化イリジウム0.064gを含むエタノール
溶液に実施例1のRh−L i −Cu−3c/Sin
、触媒の調製法に記載のシリカゲル10m1を加え浸漬
した後、実施例1と同様の方法によりRh−Li−Cu
−Mg−夏r / S i Ox触媒を調製した。
Example 4 Rhodium chloride 0.480g, lithium chloride 0.022g
, chloride w4o, oo6g, magnesium chloride 0.0
Rh-Li-Cu-3c/Sin of Example 1 was added to an ethanol solution containing 19g of iridium chloride and 0.064g of iridium chloride.
After adding and immersing 10 ml of silica gel described in the catalyst preparation method, Rh-Li-Cu was added in the same manner as in Example 1.
-Mg-Xiar/SiOx catalyst was prepared.

実施例1と同様の反応装置に上記のRh−Li−Cu 
 M g −1r / S I Og触媒2mlを上層
に充填し、実施例1で調製したC u  Z n / 
S I Oを触媒3mlを下層に充填した後、実施例1
と同様の条件下で反応を行った。結果を表1に示した。
The above Rh-Li-Cu was placed in the same reactor as in Example 1.
The upper layer was filled with 2 ml of the M g -1r / S I Og catalyst, and the Cu Z n /
After filling the lower layer with 3 ml of SIO catalyst, Example 1
The reaction was carried out under the same conditions. The results are shown in Table 1.

実施例5 塩化ロジウム0.480g、塩化リチウム0.022g
、塩化第二銅0.006g、塩化イッテルビウム(Yb
C1,・6HIO)0.035 gを含むエタノール溶
液に実施例1のRh−L 1−Cu−3c/310!触
媒の調製法に記載のシリカゲル10m1を加え浸漬した
後、実施例1と同様の方法によりRh −L l −C
u −Y b / S I Oz触媒を調製した。
Example 5 Rhodium chloride 0.480g, lithium chloride 0.022g
, cupric chloride 0.006g, ytterbium chloride (Yb
Rh-L 1-Cu-3c/310 of Example 1 in an ethanol solution containing 0.035 g of Rh-L 1-Cu-3c/310! After adding 10 ml of silica gel described in the catalyst preparation method and immersing it, Rh-L l -C was prepared in the same manner as in Example 1.
A u-Yb/SIOz catalyst was prepared.

また、硝酸銅1.763g−硝酸クロム2.189gを
含む水溶液中に実施例I Cu −Z n  / S 
i Oz触媒の調製法に記載のシリカゲル10m1を加
え浸漬した後、実施例1と同様の方法によりCu−Cr
−3IO*触媒を調製した。
In addition, Example I Cu-Zn/S was added to an aqueous solution containing 1.763 g of copper nitrate and 2.189 g of chromium nitrate.
After adding and immersing 10 ml of silica gel described in the method for preparing iOz catalyst, Cu-Cr was added in the same manner as in Example 1.
-3IO* catalyst was prepared.

実施例1と同様の反応装置に上記のRh−L i−Cu
−Y b/ S l O*触媒2mlを充填し、上記の
Cu  Cr / S t Oを触媒3 m lを充填
した後、実施例1と同様の条件で反応を行った。結果を
表1に示した。
The above Rh-Li-Cu was added to the same reaction apparatus as in Example 1.
After filling 2 ml of -Y b/S l O* catalyst and filling 3 ml of the above-mentioned Cu Cr / S t O catalyst, a reaction was carried out under the same conditions as in Example 1. The results are shown in Table 1.

実施例6 塩化ロジウム0.480g、塩化リチウム0.022g
、塩化第二1if0.006 g、塩化インドリウム(
YCI、・68*O)0.028 gを含むエタノール
溶液に実施例1のRh−L 1−Cu−5c1510、
触媒の調製法に記載のシリカゲルlOm+を加え浸漬し
た後、実施例1と同様の方法によりRh−Ll−Cu−
Yb−1r/5iOs触媒を調製した。
Example 6 Rhodium chloride 0.480g, lithium chloride 0.022g
, chloride 1if0.006 g, indolium chloride (
Rh-L 1-Cu-5c1510 of Example 1 was added to an ethanol solution containing 0.028 g of YCI, 68*O).
After adding and immersing silica gel lOm+ described in the catalyst preparation method, Rh-Ll-Cu-
A Yb-1r/5iOs catalyst was prepared.

実施例1と同様の反応装置に上記のRh−LICu  
Y b  I r / S I O寞触媒2mlを上層
に充填し、実施例1で調製したCu−Zn/5loz触
媒3mlを下層に充填した後、実施例1と同様の条件下
で反応を行った。結果を表1に示した。
The above Rh-LICu was placed in the same reaction apparatus as in Example 1.
After filling the upper layer with 2 ml of the Y b I r / SIO catalyst and filling the lower layer with 3 ml of the Cu-Zn/5loz catalyst prepared in Example 1, the reaction was carried out under the same conditions as in Example 1. . The results are shown in Table 1.

実施例7 塩化ロジウム0.4130 g、塩化リチウム0.02
2g1塩化第二mO,006g、塩化ルテシウム(Lu
CIs’ 6H*Q)0.036 gを含む水溶液中に
実施例1のRh−L 1−Cu−3c/S lot触媒
の調製法に記載のシリカゲル10m1を加え浸漬した後
、実施例1と同様の方法によりRh〜L l −Cu 
−L u / S I Os触媒を調製した。
Example 7 Rhodium chloride 0.4130 g, lithium chloride 0.02
2g1 chloride mO,006g, lutetium chloride (Lu
After adding 10 ml of silica gel described in the method for preparing Rh-L 1-Cu-3c/S lot catalyst in Example 1 to an aqueous solution containing 0.036 g of CIs' 6H*Q) and immersing it, the same procedure as in Example 1 was carried out. Rh~L l -Cu by the method of
-L u /SI Os catalyst was prepared.

実施例1と同様の反応装置に上記のRh−Ll−Cu 
 L u / S I Oi触媒2mlを上層に充填し
、実施例1で調製したCu−Zn/5lot触媒3ml
を下層に充填した後、実施例1と同様の条件下で反応を
行った。結果を表1に示した。
The above Rh-Ll-Cu was added to the same reaction apparatus as in Example 1.
The upper layer was filled with 2 ml of L u /S I Oi catalyst, and 3 ml of Cu-Zn/5 lot catalyst prepared in Example 1.
After filling the lower layer, a reaction was carried out under the same conditions as in Example 1. The results are shown in Table 1.

実施例8 塩化ロジウム0.480g、塩化リチウム0.022g
、塩化第二!jio、006 g、塩化ルテシウム0.
036g、塩化イリジウム0.064gを含む水溶液中
に実施例1のRh−Li−Cu−3c/Sム0□触媒の
調製に記載のシリカゲル10m1を加え浸漬した後、実
施例1と同様の方法によりRh−Li−Cu−Lu−1
r/5iOt触媒を調製した。
Example 8 Rhodium chloride 0.480g, lithium chloride 0.022g
, second chloride! jio, 006 g, lutetium chloride 0.
After adding and immersing 10 ml of silica gel described in the preparation of Rh-Li-Cu-3c/Smu0□ catalyst in Example 1 into an aqueous solution containing 0.064 g of iridium chloride, the same method as in Example 1 was carried out. Rh-Li-Cu-Lu-1
An r/5iOt catalyst was prepared.

実施例1と同様の反応装置に上記のRh−L t−Cu
−Lu−r r/SiOx触媒2ml触媒2シl填し、
実施例2で調製したCu−Zn−Cr/S l am触
媒3 m lを下層に充填した後、実施例Iと同様の条
件下で反応を行った。結果をlLl実施例9 塩化ロジウム0.480g、塩化リチウム0.022g
、塩化第二銅0.006g、塩化バナジウム(VC1s
) 0.014 gを含む水溶液中に実施例1のRh−
Ll−Cu−3c/Slow触媒の調製に記載のシリカ
ゲルlomlを加え浸漬した後、実施例1と同様の方法
によりRh−Ll−Cu−V/SIO寓触媒を調製した
The above Rh-L t-Cu was added to the same reaction apparatus as in Example 1.
-Lu-r r/SiOx catalyst 2ml catalyst 2 sills charged,
After filling the lower layer with 3 ml of the Cu-Zn-Cr/Slam catalyst prepared in Example 2, a reaction was carried out under the same conditions as in Example I. Results Example 9 Rhodium chloride 0.480g, lithium chloride 0.022g
, cupric chloride 0.006g, vanadium chloride (VC1s
) Rh- of Example 1 in an aqueous solution containing 0.014 g
After adding and immersing the silica gel loml described in the preparation of Ll-Cu-3c/Slow catalyst, a Rh-Ll-Cu-V/SIO catalyst was prepared in the same manner as in Example 1.

実施例1と同様の反応装置に上記のRh−Li−Cu 
−V / S I Ox触媒2mlを上層に充填し、実
施例3で調製したC u / S I O金触媒4 m
 lを下層に充填した後、実施例1と同様の条件下で反
応を行った。結果を表1に示した。
The above Rh-Li-Cu was placed in the same reactor as in Example 1.
- 2 ml of V/S I Ox catalyst was packed in the upper layer and 4 m of Cu/S I O gold catalyst prepared in Example 3
After filling the lower layer with 1, the reaction was carried out under the same conditions as in Example 1. The results are shown in Table 1.

実施例10 塩化ロジウム0.480g、塩化リチウム0.022g
、塩化第二銅0.006g、塩化クロム(Cr Cl 
s ・6H,O)0.024 g、塩化イリジウム0.
064gを含む水溶液中に実施例1のRh−Ll−Cu
−3c / S i O*触媒の調製に記載のシリカゲ
ル10m1を加え浸漬した後、実施例1と同様の方法に
よりRh−Li−Cu−Cr−1r/5lot触媒を調
製した。
Example 10 Rhodium chloride 0.480g, lithium chloride 0.022g
, cupric chloride 0.006g, chromium chloride (Cr Cl
s ・6H,O) 0.024 g, iridium chloride 0.
Rh-Ll-Cu of Example 1 in an aqueous solution containing 064 g
After adding and immersing 10 ml of silica gel described in Preparation of -3c/S i O* Catalyst, a Rh-Li-Cu-Cr-1r/5lot catalyst was prepared in the same manner as in Example 1.

実施例1と同様の反応装置に上記のRh−L 1−Cu
−1r/S lot触媒触媒2奎l層に充填し、実施例
5で!lII製したC u −Cr / S I Oを
触媒’l m lを下層に充填した後、実施例1と同様
の条件下で反応を行った。結果を表1に示した。
The above Rh-L 1-Cu was added to the same reactor as in Example 1.
-1r/S lot catalyst 2 ml layer of catalyst was packed, and in Example 5! A reaction was carried out under the same conditions as in Example 1 after filling the lower layer with a catalyst of Cu-Cr/SIO prepared by III. The results are shown in Table 1.

比較例1 実施例1で調製したRh−L 1−Cu−5c1510
、触媒を外径4mm0熱電対保護管を有する内径14m
mのチタン製反応管に2ml充填した0反応管内を窒素
で置換し、常圧下、水素ガスで200℃、1時間回連元
した後、一酸化炭素/水素−1,5(容積比)の混合ガ
スを5ON1/特送入し、反応圧力30kg/cd、反
応温度265℃において反応を行った1反応生成物の分
析法は実施例1と同様に行った。その結果を表1に示し
た。
Comparative Example 1 Rh-L 1-Cu-5c1510 prepared in Example 1
, the catalyst has an outer diameter of 4 mm and an inner diameter of 14 m with a thermocouple protection tube.
The inside of the 0 reaction tube filled with 2 ml in a titanium reaction tube of 1.0 m was replaced with nitrogen, and after being heated with hydrogen gas at 200°C for 1 hour under normal pressure, carbon monoxide/hydrogen-1,5 (volume ratio) The reaction product was analyzed in the same manner as in Example 1 by introducing a mixed gas of 5ON1/special and carrying out the reaction at a reaction pressure of 30 kg/cd and a reaction temperature of 265°C. The results are shown in Table 1.

比較例2 比較例1のRh−Ll−Cu−3C/Slow触媒の代
わりに実施例3で調製したRh−L l −Cu −M
 g / S I Oを触媒2mlを使用いた以外は比
較例1と同様の条件下で反応を行った。
Comparative Example 2 Rh-Ll-Cu-M prepared in Example 3 instead of Rh-Ll-Cu-3C/Slow catalyst of Comparative Example 1
The reaction was carried out under the same conditions as in Comparative Example 1 except that 2 ml of the catalyst was used.

結果を表1に示した。The results are shown in Table 1.

比較913 比較例1のRh  L I  C+x−5c/S 10
g触媒の代わりに実施例5で調製したRh−Li−Cu
  Y b / S i Oを触媒2mlを使用いた以
外は比較例1と同様の条件下で反応を行った。
Comparison 913 Rh LI C+x-5c/S 10 of Comparative Example 1
Rh-Li-Cu prepared in Example 5 instead of g catalyst
The reaction was carried out under the same conditions as in Comparative Example 1 except that 2 ml of Y b /S i O was used as a catalyst.

結果を表1に示した。The results are shown in Table 1.

比較例4 比較例1のRh−Li−Cu−3c/5lot触媒の代
わりに実施例6で調製したRh−L i −Cu  Y
/SiO*触媒2ml触媒2砕l以外は比較例1と同様
の条件下で反応を行った。
Comparative Example 4 Rh-Li-Cu-3c/5lot catalyst prepared in Example 6 was replaced with Rh-Li-Cu-3c/5lot catalyst in Comparative Example 1.
/SiO* The reaction was carried out under the same conditions as in Comparative Example 1, except for using 2 ml of catalyst and 2 liters of catalyst.

結果を表1に示した。The results are shown in Table 1.

比較例5 比較例1のRh−L l −Cu−3c/S iOm触
媒の代わりに実施例7で調製したRh−Ll−Cu−L
u/Sin、触媒2mlを使用いた以外は比較例1と同
様の条件下で反応を行った。
Comparative Example 5 Rh-Ll-Cu-L prepared in Example 7 instead of Rh-Ll-Cu-3c/SiOm catalyst of Comparative Example 1
The reaction was carried out under the same conditions as in Comparative Example 1 except that u/Sin and 2 ml of the catalyst were used.

結果を表1に示した。The results are shown in Table 1.

比較例6 比較例1のRh  Ll−Cu−3c/Slow触媒の
代わりに実施例9で調製したRh−L l −Cu −
V / S I Os触媒’l m lを使用いた以外
は比較例1と同様の条件下で反応を行った。
Comparative Example 6 Rh-Ll-Cu-3c/Slow catalyst prepared in Example 9 was used instead of the Rh-Ll-Cu-3c/Slow catalyst of Comparative Example 1.
The reaction was carried out under the same conditions as in Comparative Example 1, except that the V/SI Os catalyst was used.

結果を表1に示した。The results are shown in Table 1.

比較例7 比較例1のRh −L ’i  Cu  S C/ S
 I Oを触媒の代わりに実施例10でtuaしたRh
−L、 1−Cu−Cr −1r/S I O*触媒2
 m lを使用した以外は比較例1と同様の条件下で反
応を行った。結果を表1に示した。
Comparative Example 7 Rh-L'i Cu S C/S of Comparative Example 1
Rh tuaed in Example 10 with I O instead of catalyst
-L, 1-Cu-Cr -1r/S IO*catalyst 2
The reaction was carried out under the same conditions as in Comparative Example 1 except that ml was used. The results are shown in Table 1.

選択率−炭酸ガス生成量を除く消費された一酸化炭素基
準C″10) EtOH”:エタノール+酢酸エチル中のエタノール分 AcH:アセトアルデヒド AcOH”  :酢酸+酢酸エステル中の酢酸分CHa
   ’メタン
Selectivity - Consumed carbon monoxide standard excluding carbon dioxide production C"10) EtOH": Ethanol content in ethanol + ethyl acetate AcH: Acetaldehyde AcOH": Acetic acid content CHa in acetic acid + acetate ester
'methane

Claims (1)

【特許請求の範囲】[Claims] ロジウム、リチウム、銅、イリジウムおよび/又はスカ
ンジウム、マグネシウム、イットリウム、イッテルビウ
ム、ルテシウム、バナジウム、クロムのうち少なくとも
一種の元素を担体担持してなる触媒と、(1)銅又は(
2)銅、亜鉛および/又はクロムからなる触媒の存在下
、一酸化炭素と水素とを反応させることからなるエタノ
ールを製造する方法。
A catalyst comprising at least one element selected from rhodium, lithium, copper, iridium and/or scandium, magnesium, yttrium, ytterbium, lutetium, vanadium, and chromium supported on a carrier;
2) A method for producing ethanol consisting of reacting carbon monoxide and hydrogen in the presence of a catalyst consisting of copper, zinc and/or chromium.
JP61307854A 1986-12-25 1986-12-25 Production of ethanol Granted JPS63162639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61307854A JPS63162639A (en) 1986-12-25 1986-12-25 Production of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61307854A JPS63162639A (en) 1986-12-25 1986-12-25 Production of ethanol

Publications (2)

Publication Number Publication Date
JPS63162639A true JPS63162639A (en) 1988-07-06
JPS643857B2 JPS643857B2 (en) 1989-01-23

Family

ID=17973975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61307854A Granted JPS63162639A (en) 1986-12-25 1986-12-25 Production of ethanol

Country Status (1)

Country Link
JP (1) JPS63162639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097942A1 (en) * 2012-12-20 2014-06-26 積水化学工業株式会社 Catalyst for alcohol synthesis, apparatus for producing alcohol and method for producing alcohol
JP2014124628A (en) * 2012-12-27 2014-07-07 Sekisui Chem Co Ltd Catalyst for c2 oxygen compound synthesis, apparatus and method for producing c2 oxygen compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097942A1 (en) * 2012-12-20 2014-06-26 積水化学工業株式会社 Catalyst for alcohol synthesis, apparatus for producing alcohol and method for producing alcohol
CN104870088A (en) * 2012-12-20 2015-08-26 积水化学工业株式会社 Catalyst for alcohol synthesis, apparatus for producing alcohol and method for producing alcohol
JPWO2014097942A1 (en) * 2012-12-20 2017-01-12 積水化学工業株式会社 Catalyst for alcohol synthesis, apparatus for producing alcohol, and method for producing alcohol
US9656931B2 (en) 2012-12-20 2017-05-23 Sekisui Chemical Co., Ltd. Catalyst for alcohol synthesis, apparatus for producing alcohol and method for producing alcohol
JP2014124628A (en) * 2012-12-27 2014-07-07 Sekisui Chem Co Ltd Catalyst for c2 oxygen compound synthesis, apparatus and method for producing c2 oxygen compound

Also Published As

Publication number Publication date
JPS643857B2 (en) 1989-01-23

Similar Documents

Publication Publication Date Title
JP2013121939A (en) Method of manufacturing butadiene
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS63162639A (en) Production of ethanol
JP3343982B2 (en) Acetic acid production method
JPS6238336B2 (en)
JPS6218530B2 (en)
JPS6259232A (en) Production of ethanol
JPS6238343B2 (en)
JPS6238337B2 (en)
JPS6259230A (en) Production of ethanol
JPS6238338B2 (en)
JPS63162638A (en) Production of ethanol
JPS6259229A (en) Production of ethanol
JPS6238341B2 (en)
JPS6238340B2 (en)
JPS6119611B2 (en)
JPS61178938A (en) Production of ethanol
JPS6259231A (en) Production of ethanol
JPS63412B2 (en)
JPS6049615B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6218531B2 (en)
JPS61178941A (en) Production of ethanol
JPS63162637A (en) Production of ethanol
JPH0411530B2 (en)
JPS6032732A (en) Production of oxygen-containing compound composed mainly of ethanol

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term