JP2014124628A - Catalyst for c2 oxygen compound synthesis, apparatus and method for producing c2 oxygen compound - Google Patents

Catalyst for c2 oxygen compound synthesis, apparatus and method for producing c2 oxygen compound Download PDF

Info

Publication number
JP2014124628A
JP2014124628A JP2012286220A JP2012286220A JP2014124628A JP 2014124628 A JP2014124628 A JP 2014124628A JP 2012286220 A JP2012286220 A JP 2012286220A JP 2012286220 A JP2012286220 A JP 2012286220A JP 2014124628 A JP2014124628 A JP 2014124628A
Authority
JP
Japan
Prior art keywords
catalyst
ethanol
component
oxygenate
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012286220A
Other languages
Japanese (ja)
Other versions
JP6037305B2 (en
Inventor
Tomoaki Nishino
友章 西野
Toshihito Miyama
稔人 御山
Kazuhisa Murata
和久 村田
Genyu Ryu
彦勇 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sekisui Chemical Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sekisui Chemical Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012286220A priority Critical patent/JP6037305B2/en
Publication of JP2014124628A publication Critical patent/JP2014124628A/en
Application granted granted Critical
Publication of JP6037305B2 publication Critical patent/JP6037305B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for C2 oxygen compound synthesis, with which a proportion of ethanol in a C2 oxygen compound being a product material can be increased and consequently the ethanol can be efficiently synthesized.SOLUTION: The catalyst for C2 oxygen compound synthesis enables a C2 oxygen compound to be synthesized from a gaseous mixture including hydrogen and carbon monoxide. The catalyst contains: (A) a component of one or more kinds of elements selected from a group consisting of elements belonging to the groups 7-12 of the periodic table, (B) a component of alkali metal; (C) a component of one or more kinds elements selected from a group consisting of elements belonging to the group 2 of the periodic table; and (D) a component of one or more kinds of elements selected from a group consisting of elements belonging to the groups 5-6 of the periodic table.

Description

本発明は、C2酸素化物合成用の触媒、C2酸素化物の製造装置及びC2酸素化物の製造方法に関する。   The present invention relates to a catalyst for synthesizing C2 oxygenates, an apparatus for producing C2 oxygenates, and a method for producing C2 oxygenates.

バイオエタノールは、石油代替燃料としての普及が進められている。バイオエタノールは、主にサトウキビやトウモロコシの糖化及び発酵によって製造されている。近年、食料や飼料と競合しない、廃木材や稲わら等の作物の未利用部分等の木質系及び草本系バイオマス(セルロース系バイオマスともいう)からバイオエタノールを製造する技術が開発されている。
セルロース系バイオマスを原料とし、従来のエタノール発酵法を用いてバイオエタノールを製造するためには、セルロースを糖化させる必要がある。糖化方法としては、濃硫酸糖化法、希硫酸・酵素糖化法、水熱糖化法等があるが、安価にバイオエタノールを製造するためにはいまだ多くの課題が残されている。
Bioethanol is being popularized as an alternative fuel for petroleum. Bioethanol is mainly produced by saccharification and fermentation of sugarcane and corn. In recent years, techniques for producing bioethanol from woody and herbaceous biomass (also referred to as cellulose biomass) such as waste wood and unused parts of crops such as rice straw that do not compete with food and feed have been developed.
In order to produce bioethanol using cellulose-based biomass as a raw material using a conventional ethanol fermentation method, it is necessary to saccharify cellulose. As saccharification methods, there are concentrated sulfuric acid saccharification method, dilute sulfuric acid / enzymatic saccharification method, hydrothermal saccharification method and the like, but many problems still remain to produce bioethanol at low cost.

一方、セルロース系バイオマスを水素と一酸化炭素とを含む混合ガスに変換した後、この混合ガスからエタノールを合成する方法がある。この方法により、エタノール発酵法の適用が難しいセルロース系バイオマスから、効率的にバイオエタノールを製造する試みがなされている。加えて、この方法によれば、木質系・草本系バイオマスに限らず、動物の死骸や糞等由来の動物バイオマス、生ゴミ、廃棄紙、廃繊維といった多様なバイオマスを原料に用いることができる。
さらに、水素と一酸化炭素との混合ガスは、天然ガス、石炭等の石油以外の資源からも得られるため、混合ガスから酸素化物を合成する方法は、石油依存を脱却する技術として研究されている。
水素と一酸化炭素との混合ガスからエタノール、アセトアルデヒド、酢酸等のC2酸素化物を得る方法としては、例えば、ロジウム及びアルカリ金属をシリカゲルの担体に担持させた触媒に、混合ガスを接触させる方法が知られている(例えば、特許文献1〜2)。
On the other hand, there is a method of synthesizing ethanol from this mixed gas after converting cellulosic biomass into a mixed gas containing hydrogen and carbon monoxide. By this method, the trial which manufactures bioethanol efficiently from the cellulose biomass which is difficult to apply the ethanol fermentation method is made. In addition, according to this method, not only woody and herbaceous biomass but also various biomass such as animal biomass derived from animal carcasses and feces, raw garbage, waste paper, and waste fiber can be used as a raw material.
Furthermore, since a mixed gas of hydrogen and carbon monoxide can be obtained from resources other than petroleum such as natural gas and coal, the method of synthesizing oxygenates from the mixed gas has been studied as a technology to escape from dependence on petroleum. Yes.
Examples of a method for obtaining C2 oxygenates such as ethanol, acetaldehyde, and acetic acid from a mixed gas of hydrogen and carbon monoxide include a method in which a mixed gas is brought into contact with a catalyst in which rhodium and an alkali metal are supported on a silica gel carrier. Known (for example, Patent Documents 1 and 2).

特公昭61−36730号公報Japanese Patent Publication No. 61-36730 特公昭61−36731号公報Japanese Patent Publication No. 61-36731

しかしながら、従来のC2酸素化物合成用の触媒は、エタノール以外のC2酸素化物の生成量が多く、エタノールを単離する工程に多くの時間やエネルギーが必要になるという問題があった。
そこで、本発明は、生成物であるC2酸素化物中のエタノールの比率を高めて、エタノールを効率的に合成できるC2酸素化物合成用の触媒を目的とする。
However, conventional catalysts for synthesizing C2 oxygenates have a problem that a large amount of C2 oxygenates other than ethanol are produced, and much time and energy are required for the step of isolating ethanol.
Therefore, the present invention is directed to a catalyst for synthesizing C2 oxygenates that can efficiently synthesize ethanol by increasing the ratio of ethanol in the product C2 oxygenates.

本発明のC2酸素化物合成用の触媒は、水素と一酸化炭素とを含む混合ガスからC2酸素化物を合成するC2酸素化物合成用の触媒において、(A)成分:周期表の第7〜12族に属する元素からなる群から選択される1種以上と、(B)成分:アルカリ金属と、(C)成分:周期表の第2族に属する元素からなる群から選択される1種以上と、(D)成分:周期表の第5〜6族に属する元素からなる群から選択される1種以上と、を含有することを特徴とする。
前記(A)成分として、少なくともロジウムとマンガンとを含有し、前記(C)成分として、少なくともマグネシウムを含有することが好ましい。
The catalyst for synthesizing C2 oxygenates according to the present invention is a catalyst for synthesizing C2 oxygenates from a mixed gas containing hydrogen and carbon monoxide, and is a catalyst for synthesizing C2 oxygenates. One or more selected from the group consisting of elements belonging to the group; and (B) component: alkali metal; and (C) component: one or more selected from the group consisting of elements belonging to Group 2 of the periodic table; (D) component: 1 or more types selected from the group which consists of an element which belongs to the 5th-6th group of a periodic table, It is characterized by the above-mentioned.
The component (A) preferably contains at least rhodium and manganese, and the component (C) preferably contains at least magnesium.

本発明のC2酸素化物の製造装置は、前記の本発明のC2酸素化物合成用の触媒が充填された反応管と、前記混合ガスを前記反応管内に供給する供給手段と、前記反応管から生成物を排出する排出手段とを備えることを特徴とする。   An apparatus for producing a C2 oxygenate of the present invention comprises a reaction tube filled with the catalyst for synthesizing the C2 oxygenate of the present invention, a supply means for supplying the mixed gas into the reaction tube, and generated from the reaction tube And a discharge means for discharging the object.

本発明のC2酸素化物の製造方法は、前記の本発明のC2酸素化物合成用の触媒に、水素と一酸化炭素とを含む混合ガスを接触させてC2酸素化物を得ることを特徴とする。   The method for producing a C2 oxygenate according to the present invention is characterized in that a mixed gas containing hydrogen and carbon monoxide is brought into contact with the catalyst for synthesizing a C2 oxygenate according to the present invention to obtain a C2 oxygenate.

本発明のC2酸素化物合成用の触媒によれば、生成物であるC2酸素化物中のエタノールの比率を高めて、エタノールを効率的に合成できる。   According to the catalyst for synthesizing C2 oxygenates of the present invention, ethanol can be efficiently synthesized by increasing the ratio of ethanol in the product C2 oxygenate.

本稿において酸素化物は、メタノール、エタノール、プロパノール等のアルコール、酢酸等のカルボン酸、アセトアルデヒド等のアルデヒド、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル等のエステル等、炭素原子と水素原子と酸素原子からなる分子を意味する。酸素化物の内、炭素数が2である化合物(例えば、酢酸、エタノール、アセトアルデヒド等)をC2酸素化物という。   In this article, oxygenates include alcohols such as methanol, ethanol, and propanol, carboxylic acids such as acetic acid, aldehydes such as acetaldehyde, esters such as methyl formate, ethyl formate, methyl acetate, and ethyl acetate, carbon atoms, hydrogen atoms, and oxygen atoms. Means a molecule consisting of Among oxygenates, compounds having 2 carbon atoms (for example, acetic acid, ethanol, acetaldehyde, etc.) are referred to as C2 oxygenates.

本発明の一実施形態にかかるC2酸素化物の製造装置の模式図である。It is a schematic diagram of the manufacturing apparatus of the C2 oxygenate concerning one Embodiment of this invention.

(C2酸素化物合成用の触媒)
本発明のC2酸素化物合成用の触媒(以下、単に触媒ということがある)は、(A)成分:周期表の第7〜12族に属する元素からなる群から選択される1種以上と、(B)成分:アルカリ金属と、(C)成分:周期表の第2族に属する元素からなる群から選択される1種以上と、(D)成分:周期表の第5〜6族に属する元素からなる群から選択される1種以上と、を含有する。触媒は、(A)〜(D)成分(以下、(A)〜(D)成分を総じて触媒金属ということがある)を含有することで、エタノールの選択率を高めて、生成物であるC2酸素化物中のエタノールの比率を高められる。
(Catalyst for C2 oxygenate synthesis)
The catalyst for synthesizing C2 oxygenates of the present invention (hereinafter sometimes simply referred to as catalyst) is (A) component: one or more selected from the group consisting of elements belonging to Groups 7 to 12 of the periodic table; (B) component: alkali metal, (C) component: one or more selected from the group consisting of elements belonging to Group 2 of the periodic table, and (D) component: belonging to Groups 5-6 of the periodic table One or more selected from the group consisting of elements. The catalyst contains the components (A) to (D) (hereinafter, the components (A) to (D) may be collectively referred to as catalyst metals), thereby increasing the selectivity of ethanol and the product C2 The ratio of ethanol in oxygenates can be increased.

本稿において「選択率」とは、混合ガス中の消費されたCOのモル数のうち、特定の酸素化物へ変換されたCのモル数が占める百分率である。例えば、下記(α)式によれば、C2酸素化物であるエタノールの選択率は100モル%である。一方、下記(β)式によれば、C2酸素化物であるエタノールの選択率は50モル%であり、C2酸素化物であるアセトアルデヒドの選択率も50モル%である。
4H+2CO→CHCHOH+HO ・・・(α)
7H+4CO→COH+CHCHO+2HO ・・・(β)
In this article, “selectivity” is the percentage of the number of moles of CO consumed in the gas mixture that is occupied by the number of moles of C converted to a specific oxygenate. For example, according to the following formula (α), the selectivity for ethanol as the C2 oxygenate is 100 mol%. On the other hand, according to the following formula (β), the selectivity for ethanol as a C2 oxygenate is 50 mol%, and the selectivity for acetaldehyde as a C2 oxygenate is also 50 mol%.
4H 2 + 2CO → CH 3 CH 2 OH + H 2 O (α)
7H 2 + 4CO → C 2 H 5 OH + CH 3 CHO + 2H 2 O (β)

(A)成分は、周期表の第7〜12族に属する元素からなる群から選択される1種以上である。触媒は、(A)成分を含有することで、一酸化炭素をC2酸素化物に変換できる。
(A)成分としては、マンガン(Mn)、ルテニウム(Ru)、ロジウム(Rh)、亜鉛(Zn)が好ましく、マンガン、ロジウムがより好ましく、マンガンとロジウムとの組み合わせがさらに好ましい。これらの(A)成分を用いることで、エタノールの選択率をより高められる。
The component (A) is at least one selected from the group consisting of elements belonging to Groups 7 to 12 of the periodic table. By containing the component (A), the catalyst can convert carbon monoxide into C2 oxygenate.
As the component (A), manganese (Mn), ruthenium (Ru), rhodium (Rh), and zinc (Zn) are preferable, manganese and rhodium are more preferable, and a combination of manganese and rhodium is more preferable. By using these components (A), the selectivity of ethanol can be further increased.

(B)成分は、アルカリ金属である。(B)成分としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)等が挙げられ、中でも、副生物を低減し、CO転化率を高め、C2酸素化物をより効率的に合成できる観点から、リチウムが好ましい。なお、「CO転化率」とは、「混合ガス中のCOのモル数のうち、消費されたCOのモル数が占める百分率」を意味する。   (B) A component is an alkali metal. Examples of the component (B) include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc. Among them, reducing by-products and increasing CO conversion rate, From the viewpoint of more efficiently synthesizing the C2 oxygenate, lithium is preferable. The “CO conversion rate” means “percentage occupied by the number of moles of consumed CO in the number of moles of CO in the mixed gas”.

(C)成分は、周期表の第2族に属する元素からなる群から選択される1種以上である。触媒は、(C)成分を含有することで、エタノールの選択率のさらなる向上を図れる。(C)成分の中でも、エタノールの選択率をより高める観点から、マグネシウム(Mg)が好ましい。   The component (C) is at least one selected from the group consisting of elements belonging to Group 2 of the periodic table. By containing the component (C), the catalyst can further improve the selectivity of ethanol. Among the components (C), magnesium (Mg) is preferable from the viewpoint of further increasing the selectivity of ethanol.

(D)成分は、周期表の第5〜6族に属する元素からなる群から選択される1種以上である。触媒は、(D)成分を含有することで、エタノールの選択率を高められる。(D)成分としては、エタノールの選択率のさらなる向上を図る観点から、バナジウム(V)、タングステン(W)が好ましく、バナジウムがより好ましい。
加えて、(A)成分として少なくともロジウムを含有する場合、(D)成分としてバナジウムを用いることが好ましい。ロジウムとバナジウムとは、イオン価数の高さから相互作用が強く、これらの接合界面付近で生じるCO挿入及び解離反応が促進される。このため、C2酸素化物の合成反応において、一酸化炭素は、アルデヒドや酢酸に止まらずにエタノールまで進みやすいためと考えられる。
(D) A component is 1 or more types selected from the group which consists of an element which belongs to the 5th-6th group of a periodic table. A catalyst can raise the selectivity of ethanol by containing (D) component. As the component (D), vanadium (V) and tungsten (W) are preferable and vanadium is more preferable from the viewpoint of further improving the selectivity of ethanol.
In addition, when at least rhodium is contained as the component (A), vanadium is preferably used as the component (D). Rhodium and vanadium have a strong interaction due to their high ionic valence, and promote CO insertion and dissociation reactions that occur in the vicinity of these junction interfaces. For this reason, in the synthesis reaction of C2 oxygenates, it is considered that carbon monoxide easily proceeds to ethanol without stopping to aldehyde or acetic acid.

本発明の触媒は、下記(I)式で表される組成、即ち、(A)成分として、ロジウムとマンガンとを併有する組成が好ましい。
rRh・mMn・bB・cC・dD ・・・(I)
[(I)式中、Bは(B)成分を表し、Cは(C)成分を表し、Dは(D)成分を表す。r、m、b、c、dは、ロジウム1モルに対するモル比を表し、
r=1、
m=0.075〜7.5、
b=0.0275〜2.75、
c=0.0143〜1.43
d=0.1〜10である。]
The catalyst of the present invention preferably has a composition represented by the following formula (I), that is, a composition having both rhodium and manganese as the component (A).
rRh / mMn / bB / cC / dD (I)
[In the formula (I), B represents the component (B), C represents the component (C), and D represents the component (D). r, m, b, c, d represents a molar ratio relative to 1 mole of rhodium;
r = 1,
m = 0.075-7.5,
b = 0.0275-2.75,
c = 0.0143-1.43
d = 0.1-10. ]

(I)式中、mが上記下限値未満では、マンガンの含有量が少なすぎて、エタノールの選択率を十分に高められないおそれがあり、上記上限値超であると他の金属の含有量が少なくなりすぎて、エタノールの選択率を十分に高められないおそれがある。
(I)式中、bが上記下限値未満では、(B)成分の含有量が少なすぎて、CO転化率を十分に高められないおそれがあり、上記上限値超であると他の金属の含有量が少なくなりすぎて、エタノールの選択率を十分に高められないおそれがある。
(I)式中、cが上記下限値未満では、(C)成分の含有量が少なすぎて、エタノールの選択率を十分に高められないおそれがあり、上記上限値超であると他の金属の含有量が少なくなりすぎて、エタノールの選択率を十分に高められないおそれがある。
(I)式中、dが上記下限値未満では、(D)成分の含有量が少なすぎて、エタノールの選択率を十分に高められないおそれがあり、上記上限値超であると他の金属の含有量が少なくなりすぎて、エタノールの選択率を十分に高められないおそれがある。
In formula (I), if m is less than the above lower limit value, the manganese content is too small and the ethanol selectivity may not be sufficiently increased, and if it exceeds the above upper limit content of other metals. However, the ethanol selectivity may not be sufficiently increased.
In the formula (I), when b is less than the lower limit, the content of the component (B) is too small and the CO conversion rate may not be sufficiently increased. There is a possibility that the content is too small and the selectivity of ethanol cannot be sufficiently increased.
In formula (I), if c is less than the above lower limit, the content of component (C) is too small, and the ethanol selectivity may not be sufficiently increased. Therefore, the ethanol selectivity may not be sufficiently increased.
In formula (I), if d is less than the above lower limit value, the content of component (D) is too small and the ethanol selectivity may not be sufficiently increased. Therefore, the ethanol selectivity may not be sufficiently increased.

触媒は、触媒金属の集合物であってもよいし、触媒金属が担体に担持された担持触媒であってもよく、中でも、担持触媒が好ましい。担持触媒とすることで、触媒金属と混合ガスとの接触効率を高めてエタノールの選択率のさらなる向上を図れる。  The catalyst may be an aggregate of catalytic metals, or a supported catalyst in which the catalytic metal is supported on a carrier, and among these, a supported catalyst is preferable. By using the supported catalyst, the contact efficiency between the catalyst metal and the mixed gas can be increased, and the selectivity of ethanol can be further improved.

担体としては、従来、触媒に用いられている担体を用いることができ、例えば、多孔質担体が好ましい。
多孔質担体の材質は、特に限定されず、例えば、シリカ、ジルコニア、チタニア、マグネシア、アルミナ、活性炭、ゼオライト等が挙げられ、中でも、比表面積や細孔直径が異なる種々の製品が市場で調達できることから、シリカが好ましい。
As the carrier, a carrier conventionally used for a catalyst can be used. For example, a porous carrier is preferable.
The material of the porous carrier is not particularly limited, and examples thereof include silica, zirconia, titania, magnesia, alumina, activated carbon, zeolite, etc. Among them, various products having different specific surface areas and pore diameters can be procured on the market. Therefore, silica is preferable.

多孔質担体の大きさは、特に限定されないが、例えば、シリカの多孔質担体であれば、粒子径0.5〜5000μmのものが好ましい。多孔質担体の粒子径は、篩分けにより調節される。
加えて、多孔質担体は、粒子径分布ができるだけ狭いものが好ましい。
The size of the porous carrier is not particularly limited. For example, a porous carrier made of silica preferably has a particle size of 0.5 to 5000 μm. The particle size of the porous carrier is adjusted by sieving.
In addition, the porous carrier preferably has a narrowest particle size distribution.

多孔質担体における細孔容積の合計(全細孔容積)は、特に限定されないが、例えば、0.01〜1.0mL/gが好ましく、0.1〜0.8mL/gがより好ましく、0.3〜0.7mL/gがさらに好ましい。全細孔容積が上記下限値未満では、多孔質担体の比表面積が不十分となり、触媒金属の担持量が不十分となって、CO転化率が低下するおそれがある。全細孔容積が上記上限値超では、原料である混合ガスの拡散速度が速くなりすぎて、触媒金属と混合ガスとの接触時間が不十分となって、エタノールの選択率が低くなるおそれがある。
全細孔容積は、水滴定法により測定される値である。水滴定法とは、多孔質担体の表面に水分子を吸着させ、分子の凝縮から細孔分布を測定する方法である。
The total pore volume (total pore volume) in the porous carrier is not particularly limited, but is preferably 0.01 to 1.0 mL / g, more preferably 0.1 to 0.8 mL / g, 0 More preferably, it is 3 to 0.7 mL / g. If the total pore volume is less than the above lower limit, the specific surface area of the porous carrier becomes insufficient, the amount of catalyst metal supported becomes insufficient, and the CO conversion rate may be lowered. If the total pore volume exceeds the above upper limit value, the diffusion rate of the mixed gas as the raw material becomes too fast, the contact time between the catalyst metal and the mixed gas becomes insufficient, and the ethanol selectivity may be lowered. is there.
The total pore volume is a value measured by a water titration method. The water titration method is a method in which water molecules are adsorbed on the surface of a porous carrier and the pore distribution is measured from the condensation of the molecules.

多孔質担体の平均細孔直径は、特に限定されないが、例えば、2〜20nmが好ましく、5nm超14nm未満がより好ましく、5nm超10nm以下がさらに好ましい。平均細孔直径が上記下限値未満では、触媒金属の担持量が少なくなって、CO転化率が低下するおそれがある。平均細孔直径が上記上限値超では、混合ガスの拡散速度が速くなりすぎて、触媒金属と混合ガスとの接触時間が不十分となって、エタノールの選択率が低くなるおそれがある。
加えて、平均細孔直径が上記上限値以下であれば、多孔質担体の比表面積が十分に大きくなって触媒への伝熱効率が高まり、C2酸素化物をより効率的に合成できる。
平均細孔直径は、以下の手法で測定される値である。平均細孔直径が0.1nm以上10nm未満の場合、全細孔容積とBET比表面積とから算出される。平均細孔直径が10nm以上の場合、水銀圧入法ポロシメーターにより測定される。
ここで、BET比表面積は、窒素を吸着ガスとし、その吸着量とその時の圧力から算出される値である。
水銀圧入法は、水銀を加圧して多孔質担体の細孔に圧入させ、その圧力と圧入された水銀量から平均細孔直径を算出するものである。
The average pore diameter of the porous carrier is not particularly limited, but is preferably, for example, 2 to 20 nm, more preferably more than 5 nm and less than 14 nm, further preferably more than 5 nm and not more than 10 nm. If the average pore diameter is less than the above lower limit, the amount of catalyst metal supported is reduced, and the CO conversion rate may be reduced. If the average pore diameter exceeds the above upper limit value, the diffusion rate of the mixed gas becomes too fast, the contact time between the catalyst metal and the mixed gas becomes insufficient, and the ethanol selectivity may be lowered.
In addition, if the average pore diameter is not more than the above upper limit, the specific surface area of the porous carrier is sufficiently large, the heat transfer efficiency to the catalyst is increased, and the C2 oxygenate can be synthesized more efficiently.
The average pore diameter is a value measured by the following method. When the average pore diameter is 0.1 nm or more and less than 10 nm, it is calculated from the total pore volume and the BET specific surface area. When the average pore diameter is 10 nm or more, it is measured by a mercury porosimetry porosimeter.
Here, the BET specific surface area is a value calculated from the amount of adsorption and the pressure at that time, using nitrogen as the adsorption gas.
In the mercury intrusion method, mercury is pressurized and pressed into the pores of the porous carrier, and the average pore diameter is calculated from the pressure and the amount of mercury inserted.

多孔質担体の比表面積は、特に限定されないが、例えば、1〜1000m/gが好ましく、300〜800m/gがより好ましく、400〜700m/gがさらに好ましい。比表面積が上記下限値以上であれば、触媒金属の担持量が十分となって、CO転化率をより高められる。加えて、比表面積が上記下限値以上であれば、C2酸素化物の収量をより高められる。これは、比表面積の大きな多孔質担体を用いることで、触媒への伝熱効率が高まり、C2酸素化物の合成反応がより促進されるためと考えられる。
比表面積が上記上限値以下であれば、混合ガスの拡散速度がより適切になって、エタノールの選択率をより高められる。
比表面積は、窒素を吸着ガスとし、BET式ガス吸着法により測定されるBET比表面積である。
Although the specific surface area of a porous support | carrier is not specifically limited, For example, 1-1000 m < 2 > / g is preferable, 300-800 m < 2 > / g is more preferable, 400-700 m < 2 > / g is more preferable. If the specific surface area is not less than the above lower limit, the amount of catalyst metal supported is sufficient, and the CO conversion can be further increased. In addition, if the specific surface area is not less than the lower limit, the yield of C2 oxygenates can be further increased. This is presumably because the use of a porous support having a large specific surface area increases the efficiency of heat transfer to the catalyst and further promotes the synthesis reaction of C2 oxygenates.
If the specific surface area is not more than the above upper limit value, the diffusion rate of the mixed gas becomes more appropriate, and the ethanol selectivity can be further increased.
The specific surface area is a BET specific surface area measured by a BET gas adsorption method using nitrogen as an adsorption gas.

担持触媒における触媒金属の担持状態は、特に限定されず、例えば、粉体状の金属が多孔質担体に担持された状態であってもよいし、金属元素の形態で多孔質担体に担持された状態であってもよく、中でも、金属元素の形態で多孔質担体に担持された状態が好ましい。金属元素の形態で多孔質担体に担持された状態であれば、混合ガスとの接触面積が大きくなり、CO転化率をより高められる。  The supported state of the catalyst metal in the supported catalyst is not particularly limited. For example, a powdered metal may be supported on the porous support, or may be supported on the porous support in the form of a metal element. The state may be sufficient, and among these, the state of being supported on the porous carrier in the form of a metal element is preferable. If it is in a state of being supported on the porous carrier in the form of a metal element, the contact area with the mixed gas is increased, and the CO conversion rate can be further increased.

担持触媒中の触媒金属の担持量は、触媒金属の種類や多孔質担体の種類等を勘案して決定され、例えば、多孔質担体がシリカであれば、多孔質担体100質量部に対して0.05〜30質量部が好ましく、1〜10質量部がより好ましい。上記下限値未満では、触媒金属の量が少なすぎて、CO転化率が低下するおそれがあり、上記上限値超では、触媒金属を均一かつ高分散状態にできず、エタノールの選択率が低下したり、CO転化率が低下するおそれがある。  The amount of the catalyst metal supported in the supported catalyst is determined in consideration of the type of the catalyst metal, the type of the porous carrier, and the like. For example, if the porous carrier is silica, it is 0 with respect to 100 parts by mass of the porous carrier. 0.05 to 30 parts by mass is preferable, and 1 to 10 parts by mass is more preferable. If the amount is less than the above lower limit value, the amount of the catalyst metal is too small and the CO conversion rate may decrease, and if the value exceeds the upper limit value, the catalyst metal cannot be uniformly and highly dispersed, and the ethanol selectivity decreases. Or the CO conversion may be reduced.

本発明の触媒は、従来公知の金属触媒の製造方法に準じて製造される。触媒の製造方法としては、例えば、含浸法、浸漬法、イオン交換法、共沈法、混練法等が挙げられ、中でも含浸法が好ましい。含浸法を用いることで、得られる触媒は、(A)〜(D)成分がより均一に分散され、混合ガスとの接触効率がより高められ、C2酸素化物をより効率的に合成できる。
触媒製造に用いられる(A)〜(D)成分の原料化合物としては、酸化物、塩化物、硝酸塩、炭酸塩等の無機塩、シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩又はキレート化合物、カルボニル化合物、シクロペンタジエニル化合物、アンミン錯体、アルコキシド化合物、アルキル化合物等、(A)〜(D)成分の化合物として、各種触媒を製造する際に用いられるものが挙げられる。
The catalyst of this invention is manufactured according to the manufacturing method of a conventionally well-known metal catalyst. Examples of the method for producing the catalyst include an impregnation method, an immersion method, an ion exchange method, a coprecipitation method, a kneading method, and the like. Among these, the impregnation method is preferable. By using the impregnation method, in the obtained catalyst, the components (A) to (D) are more uniformly dispersed, the contact efficiency with the mixed gas is further increased, and the C2 oxygenate can be synthesized more efficiently.
The raw material compounds of the components (A) to (D) used for the catalyst production include oxides, chlorides, nitrates, carbonates and other inorganic salts, oxalates, acetylacetonate salts, dimethylglyoxime salts, ethylenediamineacetic acid Organic compounds such as salts or chelate compounds, carbonyl compounds, cyclopentadienyl compounds, ammine complexes, alkoxide compounds, alkyl compounds, etc., used when producing various catalysts as compounds of components (A) to (D) Is mentioned.

含浸法について説明する。まず、(A)〜(D)成分の原料化合物を水、メタノール、エタノール、テトラヒドロフラン、ジオキサン、ヘキサン、ベンゼン、トルエン等の溶媒に溶解し、得られた溶液(含浸液)に担体を浸漬する等して、含浸液を担体に含浸させる。担体として多孔質体を用いる場合には、含浸液を担体の細孔内に十分浸透させた後、溶媒を蒸発させて触媒とする。
含浸液を担体に含浸させる方法としては、全ての原料化合物を溶解した溶液を担体に含浸させる方法(同時法)、各原料化合物を別個に溶解した溶液を調製し、逐次的に担体に各溶液を含浸させる方法(逐次法)等が挙げられ、中でも、逐次法が好ましい。逐次法で得られた触媒は、C2酸素化物をより効率的に合成でき、エタノールの選択率のさらなる向上を図れる。
The impregnation method will be described. First, the raw material compounds of the components (A) to (D) are dissolved in a solvent such as water, methanol, ethanol, tetrahydrofuran, dioxane, hexane, benzene, toluene, and the carrier is immersed in the obtained solution (impregnation liquid). Then, the carrier is impregnated with the impregnation liquid. When a porous material is used as the carrier, the impregnating solution is sufficiently permeated into the pores of the carrier, and then the solvent is evaporated to form a catalyst.
As a method of impregnating the carrier with the impregnating solution, a method in which a solution in which all raw material compounds are dissolved is impregnated in the carrier (simultaneous method), a solution in which each raw material compound is separately dissolved is prepared, and each solution is sequentially added to the carrier. And the like (sequential method) and the like. Among these, the sequential method is preferable. The catalyst obtained by the sequential method can synthesize C2 oxygenates more efficiently, and can further improve the selectivity of ethanol.

逐次法の一例について説明する。まず、(C)成分を含む溶液(一次含浸液)を担体に含浸させ(一次含浸工程)、これを乾燥して(C)成分を担体に担持させた一次担持体を得(一次担持工程)、次いで(A)〜(B)、(D)成分を含む溶液(二次含浸液)を一次担持体に含浸させ(二次含浸工程)、これを乾燥する(二次担持工程)方法が挙げられる。このように、(C)成分を担体に担持させ、次いで、(C)成分以外の触媒金属を担体に担持させることで、触媒は(A)〜(B)、(D)成分がより高分散なものとなり、C2酸素化物をより効率的に合成でき、エタノールの選択率のさらなる向上を図れる。   An example of the sequential method will be described. First, the support containing the component (C) (primary impregnation liquid) is impregnated in the support (primary impregnation step), and dried to obtain a primary support in which the component (C) is supported on the support (primary support step). Then, a method (secondary impregnation step) in which a solution containing the components (A) to (B) and (D) (secondary impregnation liquid) is impregnated in the primary support (secondary impregnation step) is dried (secondary support step). It is done. In this way, by supporting the component (C) on the carrier and then supporting the catalyst metal other than the component (C) on the carrier, the catalyst is more highly dispersed in the components (A) to (B) and (D). Therefore, C2 oxygenates can be synthesized more efficiently, and the selectivity of ethanol can be further improved.

一次担持工程は、例えば、一次含浸液が含浸された担体を乾燥し(一次乾燥操作)、これを任意の温度で加熱して焼成する(一次焼成操作)方法が挙げられる。
一次乾燥操作における乾燥方法は特に限定されず、例えば、一次含浸液が含浸された担体を任意の温度で加熱する方法が挙げられる。一次乾燥操作における加熱温度は、一次含浸液の溶媒を蒸発できる温度であればよく、溶媒が水であれば、80〜120℃とされる。一次焼成操作における加熱温度は、例えば、300〜600℃とされる。一次焼成操作を行うことで、(C)成分の原料化合物に含まれていた成分の内、触媒反応に寄与しない成分を十分に揮散し、触媒活性をより高められる。
Examples of the primary supporting step include a method of drying the carrier impregnated with the primary impregnating liquid (primary drying operation), and heating and baking it at an arbitrary temperature (primary baking operation).
The drying method in the primary drying operation is not particularly limited, and examples thereof include a method of heating the carrier impregnated with the primary impregnation liquid at an arbitrary temperature. The heating temperature in primary drying operation should just be the temperature which can evaporate the solvent of a primary impregnation liquid, and will be 80-120 degreeC, if a solvent is water. The heating temperature in the primary firing operation is, for example, 300 to 600 ° C. By performing the primary firing operation, components that do not contribute to the catalytic reaction among the components contained in the raw material compound of component (C) are sufficiently volatilized, and the catalytic activity can be further enhanced.

二次担持工程は、例えば、二次含浸液が含浸された一次担持体を乾燥し(二次乾燥操作)、さらに任意の温度で加熱して焼成する(二次焼成操作)方法が挙げられる。
二次乾燥操作における乾燥方法は特に限定されず、例えば、二次含浸液が含浸された一次担持体を任意の温度で加熱する方法が挙げられる。二次乾燥操作における加熱温度は、二次含浸液の溶媒を蒸発できる温度であればよく、溶媒が水であれば、80〜120℃とされる。二次焼成操作における加熱温度は、例えば、300〜600℃とされる。二次焼成操作を行うことで、触媒金属の原料化合物に含まれていた成分の内、触媒反応に寄与しない成分を十分に揮散し、触媒活性をより高められる。
Examples of the secondary supporting step include a method of drying the primary support impregnated with the secondary impregnating liquid (secondary drying operation), and further heating and baking at an arbitrary temperature (secondary baking operation).
The drying method in the secondary drying operation is not particularly limited, and examples thereof include a method of heating the primary carrier impregnated with the secondary impregnation liquid at an arbitrary temperature. The heating temperature in secondary drying operation should just be the temperature which can evaporate the solvent of a secondary impregnation liquid, and will be 80-120 degreeC, if a solvent is water. The heating temperature in the secondary firing operation is, for example, 300 to 600 ° C. By performing the secondary firing operation, components that do not contribute to the catalytic reaction among the components contained in the raw material compound of the catalytic metal are sufficiently volatilized, and the catalytic activity can be further enhanced.

上述の方法によって製造された触媒は、通常、還元処理が施されて活性化され、C2酸素化物の合成に用いられる。還元処理としては、水素を含む気体に、触媒を接触させる方法が簡便で好ましい。この際、処理温度は、ロジウムが還元される程度の温度、即ち100℃程度であればよいが、好ましくは200〜600℃とされる。加えて、(A)〜(D)成分を十分に分散させる目的で、低温から徐々にあるいは段階的に昇温しながら水素還元を行ってもよい。また、例えば、一酸化炭素と水との存在下、又はヒドラジン、水素化ホウ素化合物もしくは水素化アルミニウム化合物等の還元剤の存在下で、触媒に還元処理を施してもよい。
還元処理における加熱時間は、例えば、1〜10時間が好ましく、2〜5時間がより好ましい。上記下限値未満では、(A)〜(D)成分の還元が不十分となり、C2酸素化物の製造効率が低下するおそれがある。上記上限値超では、(A)〜(D)成分における金属粒子が凝集し、C2酸素化物の合成効率が低下したり、還元処理におけるエネルギーが過剰になり経済的な不利益が生じたりするおそれがある。
The catalyst produced by the above-described method is usually subjected to reduction treatment to be activated and used for the synthesis of C2 oxygenate. As the reduction treatment, a method of bringing a catalyst into contact with a gas containing hydrogen is simple and preferable. At this time, the treatment temperature may be a temperature at which rhodium is reduced, that is, about 100 ° C., but is preferably 200 to 600 ° C. In addition, for the purpose of sufficiently dispersing the components (A) to (D), hydrogen reduction may be performed while gradually or gradually increasing the temperature from a low temperature. For example, the catalyst may be subjected to a reduction treatment in the presence of carbon monoxide and water, or in the presence of a reducing agent such as hydrazine, a borohydride compound, or an aluminum hydride compound.
For example, the heating time in the reduction treatment is preferably 1 to 10 hours, and more preferably 2 to 5 hours. If it is less than the said lower limit, the reduction | restoration of (A)-(D) component becomes inadequate, and there exists a possibility that the manufacturing efficiency of C2 oxygenate may fall. Above the upper limit, the metal particles in the components (A) to (D) are aggregated, and the synthesis efficiency of the C2 oxygenate may be reduced, or the energy in the reduction treatment may be excessive, resulting in an economic disadvantage. There is.

(C2酸素化物の製造装置)
本発明のC2酸素化物の製造装置(以下、単に製造装置ということがある)は、本発明の触媒が充填された反応管と、混合ガスを反応管内に供給する供給手段と、反応管から生成物を排出する排出手段とを備えるものである。
(C2 oxygenated product production equipment)
An apparatus for producing a C2 oxygenate of the present invention (hereinafter sometimes referred to simply as a production apparatus) is produced from a reaction tube filled with the catalyst of the present invention, a supply means for supplying a mixed gas into the reaction tube, and the reaction tube. And a discharging means for discharging the object.

本発明の製造装置の一例について、図1を用いて説明する。図1は、本発明の一実施形態にかかる製造装置10を示す模式図である。製造装置10は、触媒が充填されて反応床2が形成された反応管1と、反応管1に接続された供給管3と、反応管1に接続された排出管4と、反応管1に接続された温度制御部5と、排出管4に設けられた圧力制御部6とを備えるものである。   An example of the manufacturing apparatus of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing a manufacturing apparatus 10 according to an embodiment of the present invention. The production apparatus 10 includes a reaction tube 1 filled with a catalyst to form a reaction bed 2, a supply tube 3 connected to the reaction tube 1, a discharge tube 4 connected to the reaction tube 1, and a reaction tube 1. The temperature control part 5 connected and the pressure control part 6 provided in the discharge pipe 4 are provided.

反応管1は、混合ガス及び合成されたC2酸素化物に対して不活性な材料が好ましく、100〜500℃程度の加熱、又は10MPa程度の加圧に耐え得る形状のものが好ましい。反応管1としては、例えば、ステンレス製の略円筒形の部材が挙げられる。
供給管3は、混合ガスを反応管1内に供給する供給手段であり、例えば、ステンレス製等の配管が挙げられる。
排出管4は、反応床2で合成されたC2酸素化物を含む合成ガス(生成物)を排出する排出手段であり、例えば、ステンレス製等の配管が挙げられる。
温度制御部5は、反応管1内の反応床2を任意の温度にできるものであればよく、例えば、電気炉等が挙げられる。
圧力制御部6は、反応管1内の圧力を任意の圧力にできるものであればよく、例えば、公知の圧力弁等が挙げられる。
また、製造装置10は、マスフロー等、ガスの流量を調整するガス流量制御部等の周知の機器を備えていてもよい。
The reaction tube 1 is preferably made of a material inert to the mixed gas and the synthesized C2 oxygenate, and preferably has a shape capable of withstanding heating of about 100 to 500 ° C. or pressurization of about 10 MPa. An example of the reaction tube 1 is a substantially cylindrical member made of stainless steel.
The supply pipe 3 is a supply means for supplying the mixed gas into the reaction tube 1 and includes, for example, a pipe made of stainless steel or the like.
The discharge pipe 4 is a discharge means for discharging the synthesis gas (product) containing the C2 oxygenated product synthesized in the reaction bed 2 and includes, for example, a pipe made of stainless steel or the like.
The temperature control part 5 should just be what can make the reaction bed 2 in the reaction tube 1 arbitrary temperature, for example, an electric furnace etc. are mentioned.
The pressure control part 6 should just be what can make the pressure in the reaction tube 1 arbitrary pressure, for example, a well-known pressure valve etc. are mentioned.
The manufacturing apparatus 10 may include a known device such as a gas flow rate control unit that adjusts a gas flow rate such as mass flow.

(C2酸素化物の製造方法)
本発明のC2酸素化物の製造方法は、混合ガスを触媒に接触させるものである。本発明のC2酸素化物の製造方法の一例について、図1の製造装置を用いて説明する。
まず、反応管1内を任意の温度及び任意の圧力とし、混合ガス20を供給管3から反応管1内に流入させる。
(Method for producing C2 oxygenate)
In the method for producing a C2 oxygenate according to the present invention, a mixed gas is brought into contact with a catalyst. An example of the method for producing the C2 oxygenated product of the present invention will be described using the production apparatus of FIG.
First, the inside of the reaction tube 1 is set to an arbitrary temperature and an arbitrary pressure, and the mixed gas 20 is caused to flow into the reaction tube 1 from the supply tube 3.

混合ガス20は、水素と一酸化炭素とを含むものであれば特に限定されず、例えば、天然ガス、石炭から調製されたものであってもよいし、バイオマスをガス化して得られるバイオマスガス等であってもよいし、廃プラスチック、廃紙、廃衣料等の有機性廃棄物をガス化して得られるもの(以下、リサイクルガスということがある)であってもよい。バイオマスガス、リサイクルガスは、例えば、粉砕したバイオマスや有機性廃棄物を水蒸気の存在下で加熱(例えば、800〜1000℃)する等、従来公知の方法で得られる。
混合ガス20としてバイオマスガス又はリサイクルガスを用いる場合、混合ガス20を反応管1内に供給する前に、タール分、硫黄分、窒素分、塩素分、水分等の不純物を除去する目的で、ガス精製処理を施してもよい。ガス精製処理としては、例えば、湿式法、乾式法等、当該技術分野で知られる各方式を採用できる。湿式法としては、水酸化ナトリウム法、アンモニア吸収法、石灰・石膏法、水酸化マグネシウム法等が挙げられ、乾式法としては、圧力スイング吸着(PSA)法等の活性炭吸着法、電子ビーム法等が挙げられる。
The mixed gas 20 is not particularly limited as long as it contains hydrogen and carbon monoxide. For example, the mixed gas 20 may be prepared from natural gas or coal, biomass gas obtained by gasifying biomass, or the like. It may also be one obtained by gasifying organic waste such as waste plastic, waste paper, and waste clothing (hereinafter sometimes referred to as recycle gas). Biomass gas and recycle gas are obtained by a conventionally known method, for example, heating pulverized biomass or organic waste in the presence of water vapor (for example, 800 to 1000 ° C.).
When biomass gas or recycle gas is used as the mixed gas 20, the gas is used for the purpose of removing impurities such as tar, sulfur, nitrogen, chlorine and moisture before supplying the mixed gas 20 into the reaction tube 1. A purification treatment may be applied. As the gas purification treatment, for example, various methods known in the technical field such as a wet method and a dry method can be adopted. Examples of wet methods include sodium hydroxide method, ammonia absorption method, lime / gypsum method, magnesium hydroxide method, and dry methods include activated carbon adsorption method such as pressure swing adsorption (PSA) method, electron beam method, etc. Is mentioned.

混合ガス20は、水素と一酸化炭素とを主成分とするもの、即ち混合ガス20中の水素と一酸化炭素との合計が、50体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることがさらに好ましく、100体積%であってもよい。水素と一酸化炭素との含有量が多いほど、C2酸素化物の生成量をより高められ、エタノールをより効率的に製造できる。
混合ガス20における水素/一酸化炭素で表される体積比(以下、H/CO比ということがある)は、1/5〜5/1が好ましく、1/2〜3/1がより好ましく、1/1〜2.5/1がさらに好ましい。上記範囲内であれば、C2酸素化物をより効率的に製造できる。
なお、混合ガス20は、水素及び一酸化炭素の他に、メタン、エタン、エチレン、窒素、二酸化炭素、水等を含んでいてもよい。
The mixed gas 20 is mainly composed of hydrogen and carbon monoxide, that is, the total of hydrogen and carbon monoxide in the mixed gas 20 is preferably 50% by volume or more, and 80% by volume or more. More preferably, it is more preferable that it is 90 volume% or more, and 100 volume% may be sufficient. The greater the content of hydrogen and carbon monoxide, the higher the amount of C2 oxygenate produced and the more efficiently ethanol can be produced.
The volume ratio represented by hydrogen / carbon monoxide in the mixed gas 20 (hereinafter sometimes referred to as H 2 / CO ratio) is preferably 1/5 to 5/1, and more preferably 1/2 to 3/1. 1/1 to 2.5 / 1 is more preferable. If it is in the said range, C2 oxygenate can be manufactured more efficiently.
The mixed gas 20 may contain methane, ethane, ethylene, nitrogen, carbon dioxide, water, etc. in addition to hydrogen and carbon monoxide.

混合ガス20と触媒とを接触させる際の温度(反応温度)、即ち反応管1内の温度は、例えば、150〜450℃が好ましく、200〜400℃がより好ましく、250〜350℃がさらに好ましい。上記下限値以上であれば、触媒反応の速度を十分に高め、エタノールをより効率的に製造できる。上記上限値以下であれば、エタノールの合成反応を主反応とし、エタノールの選択率のさらなる向上を図れる。   The temperature (reaction temperature) at which the mixed gas 20 is brought into contact with the catalyst, that is, the temperature in the reaction tube 1 is, for example, preferably 150 to 450 ° C, more preferably 200 to 400 ° C, and further preferably 250 to 350 ° C. . If it is more than the said lower limit, the speed | rate of a catalytic reaction can fully be raised and ethanol can be manufactured more efficiently. If it is below the above upper limit, the ethanol synthesis reaction is the main reaction, and the ethanol selectivity can be further improved.

混合ガス20と触媒とを接触させる際の圧力(反応圧力)、即ち反応管1内の圧力は、例えば、0.5〜10MPaが好ましく、1〜7.5MPaがより好ましく、2〜5MPaがさらに好ましい。上記下限値以上であれば、触媒反応の速度を十分に高め、C2酸素化物をより効率的に製造できる。上記上限値以下であれば、エタノールの合成反応を主反応とし、エタノールの選択率のさらなる向上を図れる。   The pressure (reaction pressure) at the time of bringing the mixed gas 20 and the catalyst into contact, that is, the pressure in the reaction tube 1, for example, is preferably 0.5 to 10 MPa, more preferably 1 to 7.5 MPa, and further preferably 2 to 5 MPa. preferable. If it is more than the said lower limit, the speed | rate of a catalytic reaction can fully be raised and C2 oxygenate can be manufactured more efficiently. If it is below the above upper limit, the ethanol synthesis reaction is the main reaction, and the ethanol selectivity can be further improved.

流入した混合ガス20は、反応床2の触媒と接触しながら流通し、その一部がC2酸素化物となる。
混合ガス20は、反応床2を流通する間、例えば、下記(1)〜(5)式で表される触媒反応によりC2酸素化物を生成する。
3H+2CO→CHCHO+HO ・・・(1)
4H+2CO→CHCHOH+HO ・・・(2)
+CHCHO→CHCHOH ・・・(3)
2H+2CO→CHCOOH・・・(4)
2H+CHCOOH→CHCHOH+HO ・・・(5)
The inflowing mixed gas 20 flows while in contact with the catalyst in the reaction bed 2, and a part thereof becomes C2 oxygenated product.
While the mixed gas 20 flows through the reaction bed 2, for example, a C2 oxygenate is generated by a catalytic reaction represented by the following formulas (1) to (5).
3H 2 + 2CO → CH 3 CHO + H 2 O (1)
4H 2 + 2CO → CH 3 CH 2 OH + H 2 O (2)
H 2 + CH 3 CHO → CH 3 CH 2 OH (3)
2H 2 + 2CO → CH 3 COOH (4)
2H 2 + CH 3 COOH → CH 3 CH 2 OH + H 2 O (5)

そして、このC2酸素化物を含む合成ガス22は、排出管4から排出される。合成ガス22は、エタノールを含むものであれば特に限定されないが、エタノール以外に、酢酸、アセトアルデヒド等のC2酸素化物やその他の酸素化物を含んでいてもよい。   Then, the synthesis gas 22 containing this C2 oxygenate is discharged from the discharge pipe 4. The synthesis gas 22 is not particularly limited as long as it contains ethanol, but may contain C2 oxygenates such as acetic acid and acetaldehyde and other oxygenates in addition to ethanol.

混合ガス20の供給速度は、例えば、反応床2における混合ガスの空間速度(単位時間当たりのガスの供給量を触媒量(体積換算)で除した値)が標準状態換算で、好ましくは10〜100000L/L−触媒/h、より好ましくは1000〜50000L/L−触媒/h、さらに好ましくは3000〜20000L/L−触媒/hとされる。空間速度は、反応圧力、反応温度、及び原料である混合ガスの組成を勘案して、適宜調整される。   As for the supply speed of the mixed gas 20, for example, the space velocity of the mixed gas in the reaction bed 2 (the value obtained by dividing the supply amount of gas per unit time by the catalyst amount (volume conversion)) is preferably 10 to 10 100000 L / L-catalyst / h, more preferably 1000 to 50000 L / L-catalyst / h, still more preferably 3000 to 20000 L / L-catalyst / h. The space velocity is appropriately adjusted in consideration of the reaction pressure, the reaction temperature, and the composition of the mixed gas that is a raw material.

必要に応じ、排出管4から排出された合成ガス22を気液分離器等で処理し、エタノールと、未反応の混合ガス20やエタノール以外の酸素化物とを分離してもよい。   If necessary, the synthesis gas 22 discharged from the discharge pipe 4 may be treated with a gas-liquid separator or the like to separate ethanol from unreacted mixed gas 20 or oxygenated products other than ethanol.

本実施形態では、固定床の反応床2に混合ガスを接触させているが、例えば、触媒を流動床又は移動床等、固定床以外の形態とし、これに混合ガスを接触させてもよい。   In the present embodiment, the mixed gas is brought into contact with the reaction bed 2 of the fixed bed. However, for example, the catalyst may be in a form other than the fixed bed, such as a fluidized bed or a moving bed, and the mixed gas may be brought into contact therewith.

本発明では、得られた酸素化物を蒸留等によって、必要成分毎に分離してもよい。
また、本発明では、エタノール以外の生成物(例えば、酢酸、アセトアルデヒド等、エタノールを除くC2酸素化物や酢酸エチル、酢酸メチル、ギ酸メチル等のエステル類)を水素化してアルコールに変換する工程(アルコール化工程)を設けてもよい。アルコール化工程としては、例えば、アセトアルデヒド、酢酸等を含む酸素化物を水素化触媒に接触させてエタノールに変換する方法が挙げられる。
ここで、水素化触媒としては、当該技術分野で知られる触媒が使用でき、銅、銅−亜鉛、銅−クロム、銅−亜鉛−クロム、鉄、ロジウム−鉄、ロジウム−モリブデン、パラジウム、パラジウム−鉄、パラジウム−モリブデン、イリジウム−鉄、ロジウム−イリジウム−鉄、イリジウム−モリブデン、レニウム−亜鉛、白金、ニッケル、コバルト、ルテニウム、酸化ロジウム、酸化パラジウム、酸化白金、酸化ルテニウム等が挙げられる。これらの水素化触媒は、本発明の触媒に用いられる担体と同様の担体に担持させた担持触媒であってもよく、担持触媒としては、銅、銅−亜鉛、銅−クロム又は銅−亜鉛−クロムをシリカ系担体に担持させた銅系触媒が好適である。担持触媒である水素化触媒の製造方法としては、本発明の触媒と同様に同時法又は逐次法が挙げられる。
In the present invention, the obtained oxygenates may be separated for each necessary component by distillation or the like.
In the present invention, a product other than ethanol (for example, acetic acid, acetaldehyde, etc., C2 oxygenates other than ethanol or esters such as ethyl acetate, methyl acetate, methyl formate) is hydrogenated and converted to alcohol (alcohol Process) may be provided. Examples of the alcoholation step include a method in which an oxygenate containing acetaldehyde, acetic acid and the like is brought into contact with a hydrogenation catalyst and converted to ethanol.
Here, as the hydrogenation catalyst, a catalyst known in the art can be used, and copper, copper-zinc, copper-chromium, copper-zinc-chromium, iron, rhodium-iron, rhodium-molybdenum, palladium, palladium- Examples thereof include iron, palladium-molybdenum, iridium-iron, rhodium-iridium-iron, iridium-molybdenum, rhenium-zinc, platinum, nickel, cobalt, ruthenium, rhodium oxide, palladium oxide, platinum oxide, and ruthenium oxide. These hydrogenation catalysts may be supported catalysts supported on the same support as the support used in the catalyst of the present invention, and as the supported catalyst, copper, copper-zinc, copper-chromium or copper-zinc- A copper-based catalyst in which chromium is supported on a silica-based carrier is preferable. As a method for producing a hydrogenation catalyst which is a supported catalyst, a simultaneous method or a sequential method may be used as in the catalyst of the present invention.

上述したように、本発明の触媒を用いることで、C2酸素化物中のエタノール量を高めて、混合ガスからエタノールを効率的に合成できる。   As described above, by using the catalyst of the present invention, it is possible to efficiently synthesize ethanol from a mixed gas by increasing the amount of ethanol in the C2 oxygenate.

以下に、実施例を示して本発明を説明するが、本発明は実施例によって限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples.

(実施例1〜4)
塩化マグネシウム六水和物(MgCl・6HO)0.0148gを含む水溶液(一次含浸液)1.23gを、多孔質担体(材質:シリカ、粒子径:1.18〜2.36mm、平均細孔直径:5.7nm、全細孔容積:0.61mL/g、比表面積:430m/g)2.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに600℃にて4.5時間焼成して一次担持体とした(一次焼成操作,以上、一次担持工程)。塩化ロジウム三水和物(RhCl・3HO)0.1535gと、塩化マンガン二水和物(MnCl・2HO)0.0865gと、塩化リチウム一水和物(LiCl・HO)0.0097gと、塩化バナジウム(VCl)0.0115gとを含む水溶液(二次含浸液)1.48gを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに400℃にて4.5時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。一次含浸液と二次含浸液との合計において、触媒金属のモル比は、ロジウム:マグネシウム=1:0.125、ロジウム:マンガン=1:0.75、ロジウム:リチウム=1:0.275、ロジウム:バナジウム=1:1である。
(Examples 1-4)
1.23 g of an aqueous solution (primary impregnating solution) containing 0.0148 g of magnesium chloride hexahydrate (MgCl 2 .6H 2 O) was added to a porous carrier (material: silica, particle size: 1.18 to 2.36 mm, average) Pore diameter: 5.7 nm, total pore volume: 0.61 mL / g, specific surface area: 430 m 2 / g) was dropped into 2.0 g and impregnated (primary impregnation step). This was dried at 110 ° C. for 3 hours (primary drying operation), and further fired at 600 ° C. for 4.5 hours to obtain a primary support (primary firing operation, primary support step). Rhodium chloride trihydrate (RhCl 3 .3H 2 O) 0.1535 g, manganese chloride dihydrate (MnCl 2 .2H 2 O) 0.0865 g, lithium chloride monohydrate (LiCl · H 2 O) ) 1.48 g of an aqueous solution (secondary impregnating solution) containing 0.0097 g and 0.0115 g of vanadium chloride (VCl 3 ) is dropped on the primary carrier to be impregnated (secondary impregnation step). The catalyst was obtained by drying for a period of time (secondary drying operation) and further calcining at 400 ° C. for 4.5 hours (secondary calcining operation, secondary support step). In the total of the primary impregnating liquid and the secondary impregnating liquid, the molar ratio of the catalyst metal is rhodium: magnesium = 1: 0.125, rhodium: manganese = 1: 0.75, rhodium: lithium = 1: 0.275, Rhodium: vanadium = 1: 1.

得られた各例の触媒0.5gを直径0.5インチ(1.27cm)、長さ10インチ(25.4cm)のステンレス製の円筒型の反応管に充填して反応床とし、図1のC2酸素化物の製造装置と同様の製造装置を得た。
反応床に、常圧で水素ガスを30mL/分で流通させながら、320℃で2.5時間加熱し、触媒に還元処理を施した。
反応床を250℃とし、次いで、反応床を表1中の反応温度とし、混合ガス(H/CO比=2/1)を空間速度=14400L/L−触媒/h、2MPaで反応床に流通させて、C2酸素化物を製造した。
混合ガスを反応床に3時間流通させ、得られた合成ガスを回収し、ガスクロマトグラフィーにより分析した。
得られたデータから各生成物の選択率(モル%)と、C2酸素化物中のエタノール比率(モル%)とを算出し、これらの結果を表1に示す。表中、C2酸素化物中のエタノールの割合は、生成物におけるエタノール、アセトアルデヒド及び酢酸の合計量中のエタノールの含有割合として算出した。
1 g of the catalyst obtained in each example was filled into a stainless steel cylindrical reaction tube having a diameter of 0.5 inch (1.27 cm) and a length of 10 inches (25.4 cm) to form a reaction bed. A production apparatus similar to the production apparatus for C2 oxygenates was obtained.
The catalyst was subjected to reduction treatment by heating at 320 ° C. for 2.5 hours while flowing hydrogen gas at 30 mL / min at normal pressure through the reaction bed.
The reaction bed was set to 250 ° C., the reaction bed was set to the reaction temperature shown in Table 1, and the mixed gas (H 2 / CO ratio = 2/1) was introduced into the reaction bed at a space velocity of 14400 L / L-catalyst / h and 2 MPa. The C2 oxygenate was produced by distribution.
The mixed gas was passed through the reaction bed for 3 hours, and the resultant synthesis gas was recovered and analyzed by gas chromatography.
The selectivity (mol%) of each product and the ethanol ratio (mol%) in the C2 oxygenate were calculated from the obtained data. The results are shown in Table 1. In the table, the ratio of ethanol in the C2 oxygenate was calculated as the content ratio of ethanol in the total amount of ethanol, acetaldehyde and acetic acid in the product.

(比較例1〜2)
触媒を以下の製造方法で得られた触媒に換えた以外は、実施例1と同様にしてC2酸素化物を製造し、各生成物の選択率(モル%)と、C2酸素化物中のエタノール比率(モル%)とを算出し、これらの結果を表1に示す。
(Comparative Examples 1-2)
A C2 oxygenate was produced in the same manner as in Example 1 except that the catalyst was replaced with the catalyst obtained by the following production method. The selectivity (mol%) of each product and the ethanol ratio in the C2 oxygenate (Mole%) was calculated, and these results are shown in Table 1.

<触媒の製造方法>
二次含浸工程において、塩化ロジウム三水和物(RhCl・3HO)0.154gと、塩化マンガン二水和物(MnCl・2HO)0.0865gと、塩化リチウム一水和物(LiCl・HO)0.0097gとを含む水溶液(二次含浸液)1.47gを含浸させた以外は、実施例1と同様にして触媒を得た。一次含浸液と二次含浸液との合計において、触媒金属のモル比は、ロジウム:マグネシウム=1:0.125、ロジウム:マンガン=1:0.75、ロジウム:リチウム=1:0.275である。
<Method for producing catalyst>
In the secondary impregnation step, 0.154 g of rhodium chloride trihydrate (RhCl 3 .3H 2 O), 0.0865 g of manganese chloride dihydrate (MnCl 2 .2H 2 O), and lithium chloride monohydrate A catalyst was obtained in the same manner as in Example 1 except that 1.47 g of an aqueous solution (secondary impregnation liquid) containing 0.0097 g of (LiCl · H 2 O) was impregnated. In the total of the primary impregnating liquid and the secondary impregnating liquid, the molar ratio of the catalyst metal is rhodium: magnesium = 1: 0.125, rhodium: manganese = 1: 0.75, rhodium: lithium = 1: 0.275. is there.

Figure 2014124628
Figure 2014124628

表1に示すように、本発明を適用した実施例1〜4においては、エタノールの選択率が35.1モル%以上であり、C2酸素化物中のエタノール比率が88.7モル%以上であった。
これに対し、バナジウムを含有しない比較例1〜2は、エタノールの選択率が20.6モル%以下、C2酸素化物中のエタノール比率が53.7モル%以下であった。
この結果から、本発明を適用することで、混合ガスからエタノールを効率的に合成できることが判った。
As shown in Table 1, in Examples 1 to 4 to which the present invention was applied, the ethanol selectivity was 35.1 mol% or more, and the ethanol ratio in the C2 oxygenate was 88.7 mol% or more. It was.
On the other hand, Comparative Examples 1 and 2 not containing vanadium had an ethanol selectivity of 20.6 mol% or less and an ethanol ratio in the C2 oxygenate of 53.7 mol% or less.
From this result, it was found that by applying the present invention, ethanol can be efficiently synthesized from a mixed gas.

1 反応管
2 反応床
3 供給管
4 排出管
5 温度制御部
6 圧力制御部
10 製造装置
20 混合ガス
22 合成ガス
DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Reaction bed 3 Supply tube 4 Discharge tube 5 Temperature control part 6 Pressure control part 10 Manufacturing apparatus 20 Mixed gas 22 Syngas

Claims (4)

水素と一酸化炭素とを含む混合ガスからC2酸素化物を合成するC2酸素化物合成用の触媒において、
(A)成分:周期表の第7〜12族に属する元素からなる群から選択される1種以上と、
(B)成分:アルカリ金属と、
(C)成分:周期表の第2族に属する元素からなる群から選択される1種以上と、
(D)成分:周期表の第5〜6族に属する元素からなる群から選択される1種以上と、
を含有することを特徴とするC2酸素化物合成用の触媒。
In a catalyst for synthesizing C2 oxygenate that synthesizes C2 oxygenate from a mixed gas containing hydrogen and carbon monoxide,
(A) component: one or more selected from the group consisting of elements belonging to Groups 7-12 of the periodic table;
(B) component: alkali metal,
(C) component: one or more selected from the group consisting of elements belonging to Group 2 of the periodic table;
(D) component: one or more selected from the group consisting of elements belonging to Groups 5 to 6 of the periodic table;
A catalyst for synthesizing C2 oxygenates.
前記(A)成分として、少なくともロジウムとマンガンとを含有し、前記(C)成分として、少なくともマグネシウムを含有することを特徴とする請求項1に記載のC2酸素化物合成用の触媒。   The catalyst for synthesizing C2 oxygenates according to claim 1, wherein the component (A) contains at least rhodium and manganese, and the component (C) contains at least magnesium. 請求項1又は2に記載のC2酸素化物合成用の触媒が充填された反応管と、前記混合ガスを前記反応管内に供給する供給手段と、前記反応管から生成物を排出する排出手段とを備えることを特徴とするC2酸素化物の製造装置。   A reaction tube filled with the catalyst for synthesizing C2 oxygenates according to claim 1, a supply unit that supplies the mixed gas into the reaction tube, and a discharge unit that discharges a product from the reaction tube. An apparatus for producing C2 oxygenates, comprising: 請求項1又は2に記載のC2酸素化物合成用の触媒に、水素と一酸化炭素とを含む混合ガスを接触させてC2酸素化物を得ることを特徴とするC2酸素化物の製造方法。
A method for producing a C2 oxygenate, wherein the catalyst for synthesizing a C2 oxygenate according to claim 1 or 2 is brought into contact with a mixed gas containing hydrogen and carbon monoxide to obtain a C2 oxygenate.
JP2012286220A 2012-12-27 2012-12-27 C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method Expired - Fee Related JP6037305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012286220A JP6037305B2 (en) 2012-12-27 2012-12-27 C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012286220A JP6037305B2 (en) 2012-12-27 2012-12-27 C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method

Publications (2)

Publication Number Publication Date
JP2014124628A true JP2014124628A (en) 2014-07-07
JP6037305B2 JP6037305B2 (en) 2016-12-07

Family

ID=51404601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286220A Expired - Fee Related JP6037305B2 (en) 2012-12-27 2012-12-27 C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method

Country Status (1)

Country Link
JP (1) JP6037305B2 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585530A (en) * 1978-12-19 1980-06-27 Inst Francais Du Petrole Manufacture of alcohols
JPS58116424A (en) * 1981-12-21 1983-07-11 ザ・スタンダ−ド・オイル・カンパニ− Synthetic gas gradation
JPS58180437A (en) * 1982-03-26 1983-10-21 アンステイテユ・フランセ・デユ・ペトロ−ル Manufacture of mixture of methanol and higher alcohol from synthetic gas
US4476247A (en) * 1981-12-21 1984-10-09 The Standard Oil Company Synthesis gas catalyst
JPS6032733A (en) * 1983-08-03 1985-02-19 Agency Of Ind Science & Technol Production of oxygen-containing compound such as ethanol
JPS60216845A (en) * 1983-05-18 1985-10-30 ジユ−ト−ヒエミ− アクチエンゲゼルシヤフト Iron oxide-chromium oxide catalyst for high temperature co-conversion
JPS6161637A (en) * 1984-09-04 1986-03-29 Mitsubishi Heavy Ind Ltd Methanol reforming catalyst
JPS63162639A (en) * 1986-12-25 1988-07-06 Agency Of Ind Science & Technol Production of ethanol
JPH09308831A (en) * 1996-05-21 1997-12-02 Asahi Chem Ind Co Ltd Catalyst for alkylation and production of hydroxyl-aromatic compound using the catalyst
JP2007061770A (en) * 2005-09-01 2007-03-15 Nippon Steel Corp Catalyst for manufacturing hydrocarbon from synthesis gas, method for manufacturing catalyst, and method for manufacturing hydrocarbon from synthesis gas using catalyst
JP2008503440A (en) * 2004-06-23 2008-02-07 ビーピー ピー・エル・シー・ Synthesis of microporous silica gel and its application to the preparation of catalyst for synthesis of C2 oxygenates from synthesis gas
WO2012050804A1 (en) * 2010-10-11 2012-04-19 Dow Global Technologies Llc The use of anderson -type heteropoly compound - based catalyst compositions in the conversion of synthesis gas to oxygenates
JP2012149089A (en) * 2009-02-12 2012-08-09 Ichikawa Office Inc Method for producing ethanol
WO2012134492A1 (en) * 2011-04-01 2012-10-04 Dow Global Technologies Llc Catalysts for the conversion of synthesis gas to alcohols
JP2013121939A (en) * 2011-12-12 2013-06-20 Ichikawa Office Inc Method of manufacturing butadiene
WO2013133362A1 (en) * 2012-03-07 2013-09-12 積水化学工業株式会社 Catalyst for synthesis of oxygenated product, apparatus for producing oxygenated product and method for producing oxygenated product

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291126A (en) * 1978-12-19 1981-09-22 Institut Francais Du Petrole Process for manufacturing alcohols and more particularly saturated linear primary alcohols from synthesis gas
JPS5585530A (en) * 1978-12-19 1980-06-27 Inst Francais Du Petrole Manufacture of alcohols
US4476247A (en) * 1981-12-21 1984-10-09 The Standard Oil Company Synthesis gas catalyst
JPS58116424A (en) * 1981-12-21 1983-07-11 ザ・スタンダ−ド・オイル・カンパニ− Synthetic gas gradation
US4659742A (en) * 1982-03-26 1987-04-21 Institut Francais Du Petrol Process for manufacturing a mixture of methanol and higher alcohols from synthesis gas
JPS58180437A (en) * 1982-03-26 1983-10-21 アンステイテユ・フランセ・デユ・ペトロ−ル Manufacture of mixture of methanol and higher alcohol from synthetic gas
JPS60216845A (en) * 1983-05-18 1985-10-30 ジユ−ト−ヒエミ− アクチエンゲゼルシヤフト Iron oxide-chromium oxide catalyst for high temperature co-conversion
JPS6032733A (en) * 1983-08-03 1985-02-19 Agency Of Ind Science & Technol Production of oxygen-containing compound such as ethanol
JPS6161637A (en) * 1984-09-04 1986-03-29 Mitsubishi Heavy Ind Ltd Methanol reforming catalyst
JPS63162639A (en) * 1986-12-25 1988-07-06 Agency Of Ind Science & Technol Production of ethanol
JPH09308831A (en) * 1996-05-21 1997-12-02 Asahi Chem Ind Co Ltd Catalyst for alkylation and production of hydroxyl-aromatic compound using the catalyst
JP2008503440A (en) * 2004-06-23 2008-02-07 ビーピー ピー・エル・シー・ Synthesis of microporous silica gel and its application to the preparation of catalyst for synthesis of C2 oxygenates from synthesis gas
JP2007061770A (en) * 2005-09-01 2007-03-15 Nippon Steel Corp Catalyst for manufacturing hydrocarbon from synthesis gas, method for manufacturing catalyst, and method for manufacturing hydrocarbon from synthesis gas using catalyst
JP2012149089A (en) * 2009-02-12 2012-08-09 Ichikawa Office Inc Method for producing ethanol
WO2012050804A1 (en) * 2010-10-11 2012-04-19 Dow Global Technologies Llc The use of anderson -type heteropoly compound - based catalyst compositions in the conversion of synthesis gas to oxygenates
WO2012134492A1 (en) * 2011-04-01 2012-10-04 Dow Global Technologies Llc Catalysts for the conversion of synthesis gas to alcohols
JP2013121939A (en) * 2011-12-12 2013-06-20 Ichikawa Office Inc Method of manufacturing butadiene
WO2013133362A1 (en) * 2012-03-07 2013-09-12 積水化学工業株式会社 Catalyst for synthesis of oxygenated product, apparatus for producing oxygenated product and method for producing oxygenated product

Also Published As

Publication number Publication date
JP6037305B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6698534B2 (en) Butadiene production method and butadiene production apparatus
JP6093780B2 (en) Catalyst for alcohol synthesis, apparatus for producing alcohol, and method for producing alcohol
JP5999569B2 (en) C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method
JP6329286B2 (en) Method for producing catalyst for oxygenate synthesis, and method for producing oxygenate
JP6408114B2 (en) Oxygenation production system and oxygenation production method
JP6183916B2 (en) Oxygen synthesis catalyst, oxygen production apparatus, and oxygen production method
JP2013049023A (en) Catalyst for synthesizing oxygenate, and device and method for producing the oxygenate
JP6037305B2 (en) C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method
JP5996423B2 (en) C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method
JP2016026864A (en) Catalyst for synthesis of ethyl acetate, device of producing ethyl acetate and method for producing ethyl acetate
JP2013049024A (en) Catalyst for synthesizing oxygenate, and device and method for producing the oxygenate
JP2013063418A (en) Catalyst for synthesizing oxygenates, and apparatus and method for manufacturing the oxygenates
JP2015163594A (en) Method of producing oxygenated product
JP2015163387A (en) Catalyst for synthesis, production method thereof, and apparatus and method for producing oxygenated product
JP2015178101A (en) Catalyst for oxygenate synthesis, method of producing catalyst for oxygenate synthesis, and apparatus and method for production of oxygenate
JP2015139770A (en) Catalyst for alcohol synthesis, method for producing the same, and apparatus and method for producing alcohol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6037305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees