JP2016026864A - Catalyst for synthesis of ethyl acetate, device of producing ethyl acetate and method for producing ethyl acetate - Google Patents

Catalyst for synthesis of ethyl acetate, device of producing ethyl acetate and method for producing ethyl acetate Download PDF

Info

Publication number
JP2016026864A
JP2016026864A JP2015036907A JP2015036907A JP2016026864A JP 2016026864 A JP2016026864 A JP 2016026864A JP 2015036907 A JP2015036907 A JP 2015036907A JP 2015036907 A JP2015036907 A JP 2015036907A JP 2016026864 A JP2016026864 A JP 2016026864A
Authority
JP
Japan
Prior art keywords
catalyst
ethyl acetate
catalyst particles
mixed gas
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015036907A
Other languages
Japanese (ja)
Inventor
稔人 御山
Toshihito Miyama
稔人 御山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015036907A priority Critical patent/JP2016026864A/en
Publication of JP2016026864A publication Critical patent/JP2016026864A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for synthesis of ethyl acetate which makes it possible to produce ethyl acetate from a mixed gas of hydrogen and carbon monoxide.SOLUTION: A catalyst for synthesis of ethyl acetate is for synthesizing ethyl acetate from a mixed gas of hydrogen and carbon monoxide. The catalyst is a mixture of catalyst particles α comprising rhodium and catalyst particles β comprising copper. A volume ratio expressed by [particle group of the mixed catalyst particles β]/[ particle group of the mixed catalyst particles α] is preferably at least 1.SELECTED DRAWING: Figure 1

Description

本発明は、酢酸エチル合成用の触媒、酢酸エチルの製造装置及び酢酸エチルの製造方法に関する。   The present invention relates to a catalyst for synthesizing ethyl acetate, an apparatus for producing ethyl acetate, and a method for producing ethyl acetate.

ラッカーなどの塗料の溶剤、又は、実験室等での抽出溶媒もしくはクロマトグラフィー法の展開溶媒として、酢酸エチルが利用されている。
酢酸エチルの製造方法としては、例えば、金属塩固体触媒を用いて気相流通下にエチレンと酢酸とを反応させる方法が提案されている(例えば、特許文献1)。また、固体酸性触媒の存在下で、エタノールと酢酸とを反応させる方法が提案されている(例えば、特許文献2)。
Ethyl acetate is used as a solvent for paints such as lacquer, as an extraction solvent in a laboratory, or as a developing solvent for chromatographic methods.
As a method for producing ethyl acetate, for example, a method in which ethylene and acetic acid are reacted in a gas-phase circulation using a metal salt solid catalyst has been proposed (for example, Patent Document 1). In addition, a method of reacting ethanol and acetic acid in the presence of a solid acidic catalyst has been proposed (for example, Patent Document 2).

特許第3330404号公報Japanese Patent No. 3330404 特許第4724341号公報Japanese Patent No. 4724341

ところで、近年、食料や飼料と競合しない、廃木材や稲わら等の作物の未利用部分等の木質系及び草本系バイオマス(セルロース系バイオマスともいう)から、例えばバイオエタノールを製造する技術が開発されている。
一方、セルロース系バイオマスを、水素と一酸化炭素とを含む混合ガスに変換した後、この混合ガスから、エタノール、アセトアルデヒド、酢酸等の酸素化物を合成する方法がある。この方法によれば、木質系・草本系バイオマスに限らず、動物の死骸や糞等由来の動物バイオマス、生ゴミ、廃棄紙、廃繊維といった多様なバイオマスを原料に用いることができる。さらに、水素と一酸化炭素との混合ガスは、天然ガス、石炭等の石油以外の資源からも得られるため、前記混合ガスからエタノール等を合成する方法は、石油依存を脱却する技術として研究されている。
酢酸エチルについても、水素と一酸化炭素との混合ガスから製造可能な技術が求められる。本発明は、上記事情に鑑み、水素と一酸化炭素との混合ガスから酢酸エチルを製造できる酢酸エチル合成用の触媒を目的とする。
By the way, in recent years, technology for producing bioethanol, for example, from woody and herbaceous biomass (also referred to as cellulosic biomass) such as waste wood and unused parts of crops such as rice straw that do not compete with food and feed has been developed. ing.
On the other hand, there is a method in which cellulosic biomass is converted into a mixed gas containing hydrogen and carbon monoxide, and then oxygenated products such as ethanol, acetaldehyde, and acetic acid are synthesized from the mixed gas. According to this method, not only woody and herbaceous biomass but also various biomass such as animal biomass derived from animal carcasses and feces, raw garbage, waste paper, and waste fiber can be used as a raw material. Furthermore, since a mixed gas of hydrogen and carbon monoxide can be obtained from resources other than petroleum such as natural gas and coal, a method of synthesizing ethanol and the like from the mixed gas has been studied as a technology to escape from dependence on petroleum. ing.
As for ethyl acetate, a technique capable of being produced from a mixed gas of hydrogen and carbon monoxide is required. In view of the above circumstances, an object of the present invention is to provide a catalyst for ethyl acetate synthesis that can produce ethyl acetate from a mixed gas of hydrogen and carbon monoxide.

本発明の酢酸エチル合成用の触媒は、水素と一酸化炭素とを含む混合ガスから酢酸エチルを合成する酢酸エチル合成用の触媒であって、ロジウムを含有する触媒粒子αと、銅を含有する触媒粒子βとの混合物であることを特徴とする。
[混合される前記触媒粒子βの粒子群]/[混合される前記触媒粒子αの粒子群]で表される体積比は、1以上であることが好ましい。
The catalyst for synthesizing ethyl acetate of the present invention is a catalyst for synthesizing ethyl acetate from a mixed gas containing hydrogen and carbon monoxide, and contains catalyst particles α containing rhodium and copper. It is a mixture with catalyst particles β.
The volume ratio represented by [particle group of catalyst particles β to be mixed] / [particle group of catalyst particles α to be mixed] is preferably 1 or more.

本発明の酢酸エチルの製造装置は、前記の本発明の酢酸エチル合成用の触媒が充填された反応管と、前記混合ガスを前記反応管内に供給する供給手段と、前記反応管から生成物を排出する排出手段とを備えることを特徴とする。   The ethyl acetate production apparatus of the present invention comprises a reaction tube filled with the catalyst for synthesizing ethyl acetate of the present invention, a supply means for supplying the mixed gas into the reaction tube, and a product from the reaction tube. And a discharging means for discharging.

本発明の酢酸エチルの製造方法は、前記の本発明の酢酸エチル合成用の触媒に、水素と一酸化炭素とを含む混合ガスを接触させて酢酸エチルを得ることを特徴とする。
温度260〜280℃、かつ、圧力2〜3MPaの条件下で、前記の酢酸エチル合成用の触媒に前記混合ガスを接触させることが好ましい。
The ethyl acetate production method of the present invention is characterized in that ethyl acetate is obtained by contacting a mixed gas containing hydrogen and carbon monoxide with the catalyst for synthesizing ethyl acetate of the present invention.
It is preferable to bring the mixed gas into contact with the catalyst for synthesizing ethyl acetate under conditions of a temperature of 260 to 280 ° C. and a pressure of 2 to 3 MPa.

本稿において酸素化物は、メタノール、エタノール、プロパノール等のアルコール、酢酸等のカルボン酸、アセトアルデヒド等のアルデヒド、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル等のエステル等、炭素原子と水素原子と酸素原子とからなる分子を意味する。酸素化物の内、炭素数が2である化合物(例えば、酢酸、エタノール、アセトアルデヒド等)をC2酸素化物という。   In this article, oxygenates include alcohols such as methanol, ethanol, and propanol, carboxylic acids such as acetic acid, aldehydes such as acetaldehyde, esters such as methyl formate, ethyl formate, methyl acetate, and ethyl acetate, carbon atoms, hydrogen atoms, and oxygen atoms. Means a molecule consisting of Among oxygenates, compounds having 2 carbon atoms (for example, acetic acid, ethanol, acetaldehyde, etc.) are referred to as C2 oxygenates.

本発明の酢酸エチル合成用の触媒によれば、水素と一酸化炭素との混合ガスから酢酸エチルを製造できる。   According to the catalyst for synthesizing ethyl acetate of the present invention, ethyl acetate can be produced from a mixed gas of hydrogen and carbon monoxide.

本発明の一実施形態にかかる酢酸エチルの製造装置の模式図である。It is a schematic diagram of the manufacturing apparatus of ethyl acetate concerning one Embodiment of this invention.

(酢酸エチル合成用の触媒)
本発明の酢酸エチル合成用の触媒(以下、合成触媒ということがある)は、ロジウムを含有する触媒粒子αと、銅を含有する触媒粒子βとの混合物である。触媒粒子αと触媒粒子βとの混合物を合成触媒として用いることで、水素と一酸化炭素とを含む混合ガス(以下、単に混合ガスということがある)から酢酸エチルを製造できる。
(Catalyst for ethyl acetate synthesis)
The catalyst for synthesizing ethyl acetate of the present invention (hereinafter sometimes referred to as a synthesis catalyst) is a mixture of catalyst particles α containing rhodium and catalyst particles β containing copper. By using a mixture of the catalyst particles α and the catalyst particles β as a synthesis catalyst, ethyl acetate can be produced from a mixed gas containing hydrogen and carbon monoxide (hereinafter sometimes simply referred to as a mixed gas).

<触媒粒子α>
触媒粒子αは、ロジウムを含有するものである。ロジウムは、水素化活性金属(触媒粒子αに用いられる水素化活性金属を水素化活性金属αということがある)である。触媒粒子αとしては、CO転化率が高く、酢酸エチルの製造効率が高いものが好ましい。このような触媒粒子αを用いることで、酢酸エチルの製造効率のさらなる向上を図れる。
<Catalyst particles α>
The catalyst particles α contain rhodium. Rhodium is a hydrogenation active metal (the hydrogenation active metal used for the catalyst particles α is sometimes referred to as a hydrogenation active metal α). As the catalyst particles α, those having high CO conversion and high ethyl acetate production efficiency are preferable. By using such catalyst particles α, the production efficiency of ethyl acetate can be further improved.

本稿において、「CO転化率」は、混合ガス中のCOのモル数の内、酸素化物の合成に消費されたCOのモル数が占める百分率である。
また、「選択率」は、混合ガス中の消費されたCOのモル数のうち、特定の酸素化物へ変換されたCのモル数が占める百分率である。例えば、下記(i)式によれば、アルコールであるエタノールの選択率は100モル%である。一方、下記(ii)式によれば、C2酸素化物であるエタノールの選択率は50モル%であり、C2酸素化物であるアセトアルデヒドの選択率も50モル%である。加えて、(i)式及び(ii)式において、C2酸素化物の選択率は100モル%である。
In this paper, “CO conversion” is the percentage of the number of moles of CO consumed in the synthesis of oxygenates in the number of moles of CO in the mixed gas.
Further, “selectivity” is the percentage of the number of moles of CO consumed in the mixed gas occupied by the number of moles of C converted to a specific oxygenate. For example, according to the following formula (i), the selectivity for ethanol as an alcohol is 100 mol%. On the other hand, according to the following formula (ii), the selectivity for ethanol as a C2 oxygenate is 50 mol%, and the selectivity for acetaldehyde as a C2 oxygenate is also 50 mol%. In addition, in the formulas (i) and (ii), the selectivity for the C2 oxygenate is 100 mol%.

4H+2CO→CHCHOH+HO ・・・(i)
7H+4CO→COH+CHCHO+2HO ・・・(ii)
4H 2 + 2CO → CH 3 CH 2 OH + H 2 O (i)
7H 2 + 4CO → C 2 H 5 OH + CH 3 CHO + 2H 2 O (ii)

触媒粒子αは、ロジウム以外の水素化活性金属αを含有してもよい。ロジウム以外の水素化活性金属αとしては、従来、混合ガスから酸素化物を合成できる金属として知られているものであればよく、例えば、リチウム、ナトリウム等のアルカリ金属;マンガン、レニウム等、周期表の第7族に属する元素;ルテニウム等、周期表の第8族に属する元素;コバルト等、周期表の第9族に属する元素;ニッケル、パラジウム等、周期表の第10族に属する元素等が挙げられる。
ロジウム以外の水素化活性金属αは、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。ロジウム以外の水素化活性金属αとしては、CO転化率をより高め、酢酸エチルの製造効率をより高める観点から、マンガン及びリチウムを組み合わせたものや、ルテニウム、レニウム及びナトリウムを組み合わせたもの等、アルカリ金属とその他の水素化活性金属αとを組み合わせたものが好ましい。
The catalyst particles α may contain a hydrogenation active metal α other than rhodium. As the hydrogenation active metal α other than rhodium, any metal conventionally known as a metal capable of synthesizing oxygenates from a mixed gas may be used. For example, alkali metals such as lithium and sodium; Elements belonging to Group 7 of the periodic table; ruthenium, elements belonging to Group 8 of the periodic table; cobalt, elements belonging to Group 9 of the periodic table; nickel, palladium, elements belonging to Group 10 of the periodic table, etc. Can be mentioned.
Hydrogenation active metals α other than rhodium may be used singly or in combination of two or more. As hydrogenation active metals α other than rhodium, from the viewpoint of further increasing the CO conversion rate and further increasing the production efficiency of ethyl acetate, a combination of manganese and lithium, a combination of ruthenium, rhenium and sodium, an alkali, etc. A combination of a metal and another hydrogenation active metal α is preferred.

触媒粒子αは、ロジウムに加え、助活性金属(触媒粒子αに用いられる助活性金属を助活性金属αということがある)を含有してもよい。
助活性金属αとしては、例えば、チタン、バナジウム、クロム、ホウ素、マグネシウム、ランタノイド及び周期表の第13族に属する元素から選択される1種以上が挙げられ、中でも、チタン、マグネシウム、バナジウムが好ましく、チタンがより好ましい。触媒粒子αは、これらの助活性金属αを含有することで、CO転化率をより高め、酢酸エチルの製造効率をより高められる。
以下、水素化活性金属αと助活性金属αとを合わせて触媒金属αということがある。
In addition to rhodium, the catalyst particles α may contain a promoter metal (the promoter metal used for the catalyst particle α may be referred to as promoter metal α).
Examples of the co-active metal α include one or more selected from titanium, vanadium, chromium, boron, magnesium, lanthanoids, and elements belonging to Group 13 of the periodic table. Among these, titanium, magnesium, and vanadium are preferable. Titanium is more preferable. When the catalyst particles α contain these co-active metals α, the CO conversion rate can be further increased and the production efficiency of ethyl acetate can be further increased.
Hereinafter, the hydrogenation active metal α and the auxiliary metal α may be collectively referred to as the catalyst metal α.

触媒粒子αとしては、例えば、ロジウムと、マンガンと、アルカリ金属とを含有するものが好ましく、ロジウムと、マンガンと、アルカリ金属と、助活性金属αとを含有するものがより好ましい。  As the catalyst particles α, for example, those containing rhodium, manganese and alkali metal are preferable, and those containing rhodium, manganese, alkali metal and promoter metal α are more preferable.

触媒粒子αは、触媒金属αの集合物であってもよいし、触媒金属αが担体に担持された担持触媒であってもよく、中でも、担持触媒が好ましい。担持触媒とすることで、触媒金属αと混合ガスとの接触効率が高まり、CO転化率をより高められる。  The catalyst particles α may be an aggregate of the catalyst metal α or a supported catalyst in which the catalyst metal α is supported on a carrier, and among these, a supported catalyst is preferable. By using the supported catalyst, the contact efficiency between the catalytic metal α and the mixed gas is increased, and the CO conversion rate can be further increased.

担体としては、従来、触媒に用いられている担体を用いることができ、例えば、多孔質担体が好ましい。
多孔質担体の材質は、特に限定されず、例えば、シリカ、ジルコニア、チタニア、マグネシア、アルミナ、活性炭、ゼオライト等が挙げられ、中でも、比表面積や細孔直径が異なる種々の製品が市場で調達できることから、シリカが好ましい。
As the carrier, a carrier conventionally used for a catalyst can be used. For example, a porous carrier is preferable.
The material of the porous carrier is not particularly limited, and examples thereof include silica, zirconia, titania, magnesia, alumina, activated carbon, zeolite, etc. Among them, various products having different specific surface areas and pore diameters can be procured on the market. Therefore, silica is preferable.

多孔質担体の大きさは、特に限定されないが、例えば、シリカの多孔質担体であれば、粒子径0.5〜5000μmのものが好ましい。多孔質担体の粒子径は、篩分けにより調節される。
加えて、多孔質担体は、粒子径分布ができるだけ狭いものが好ましい。
The size of the porous carrier is not particularly limited. For example, a porous carrier made of silica preferably has a particle size of 0.5 to 5000 μm. The particle size of the porous carrier is adjusted by sieving.
In addition, the porous carrier preferably has a narrowest particle size distribution.

多孔質担体における細孔容積の合計(全細孔容積)は、特に限定されないが、例えば、0.01〜1.0mL/gが好ましく、0.1〜0.8mL/gがより好ましく、0.3〜0.7mL/gがさらに好ましい。全細孔容積が上記下限値未満では、多孔質担体の比表面積が小さくなりすぎて、触媒金属αを担持させる際にその分散性が低下し、CO転化率が低下するおそれがある。全細孔容積が上記上限値超では、細孔直径が小さくなりすぎて、触媒金属αを担持させる際に、触媒金属αを担体内部にまで入れにくくなり、結果として担体の表面積を十分に利用できなかったり、混合ガスが拡散しにくくなり、結果として触媒金属αと混合ガスとが十分に接触できなくなったりして、CO転化率や酢酸エチルの製造効率が低くなるおそれがある。
全細孔容積は、水滴定法により測定される値である。水滴定法とは、多孔質担体の表面に水分子を吸着させ、分子の凝縮から細孔分布を測定する方法である。
The total pore volume (total pore volume) in the porous carrier is not particularly limited, but is preferably 0.01 to 1.0 mL / g, more preferably 0.1 to 0.8 mL / g, 0 More preferably, it is 3 to 0.7 mL / g. When the total pore volume is less than the above lower limit, the specific surface area of the porous carrier becomes too small, and when the catalyst metal α is supported, the dispersibility may be lowered, and the CO conversion rate may be lowered. If the total pore volume exceeds the above upper limit value, the pore diameter becomes too small and it becomes difficult to put the catalyst metal α into the support when the catalyst metal α is supported, and as a result, the surface area of the support is fully utilized. Otherwise, the mixed gas is difficult to diffuse, and as a result, the catalytic metal α and the mixed gas cannot be sufficiently contacted, and the CO conversion rate and the ethyl acetate production efficiency may be lowered.
The total pore volume is a value measured by a water titration method. The water titration method is a method in which water molecules are adsorbed on the surface of a porous carrier and the pore distribution is measured from the condensation of the molecules.

多孔質担体の平均細孔直径は、特に限定されないが、例えば、0.01〜20nmが好ましく、0.1〜8nmがより好ましい。平均細孔直径が上記下限値未満では、触媒金属αを担持させる際に、触媒金属αを担体内部にまで入れにくくなり、結果として担体の表面積を十分に利用できなかったり、混合ガスが拡散しにくくなり、結果として触媒金属αと混合ガスとが十分に接触できなくなったりして、CO転化率や酢酸エチルの製造効率が低くなるおそれがある。平均細孔直径が上記上限値超では、担体の比表面積が小さくなりすぎて、触媒金属αを担持させる際にその分散性が低下し、CO転化率が低下するおそれがある。
平均細孔直径は、以下の手法で測定される値である。平均細孔直径が0.1nm以上10nm未満の場合、全細孔容積とBET比表面積とから算出される。平均細孔直径が10nm以上の場合、水銀圧入法ポロシメーターにより測定される。
ここで、全細孔容積は、水滴定法により測定される値であり、BET比表面積は、窒素を吸着ガスとし、その吸着量とその時の圧力から算出される値である。
水銀圧入法は、水銀を加圧して多孔質担体の細孔に圧入させ、その圧力と圧入された水銀量から平均細孔直径を算出するものである。
Although the average pore diameter of the porous carrier is not particularly limited, for example, 0.01 to 20 nm is preferable, and 0.1 to 8 nm is more preferable. If the average pore diameter is less than the above lower limit, it becomes difficult to put the catalyst metal α into the support when the catalyst metal α is supported. As a result, the surface area of the support cannot be fully utilized or the mixed gas diffuses. As a result, the catalytic metal α and the mixed gas cannot be sufficiently brought into contact with each other, and the CO conversion rate and the ethyl acetate production efficiency may be lowered. If the average pore diameter exceeds the above upper limit, the specific surface area of the support becomes too small, and when the catalyst metal α is supported, the dispersibility may be lowered, and the CO conversion rate may be lowered.
The average pore diameter is a value measured by the following method. When the average pore diameter is 0.1 nm or more and less than 10 nm, it is calculated from the total pore volume and the BET specific surface area. When the average pore diameter is 10 nm or more, it is measured by a mercury porosimetry porosimeter.
Here, the total pore volume is a value measured by a water titration method, and the BET specific surface area is a value calculated from the amount of adsorption and the pressure at that time using nitrogen as an adsorption gas.
In the mercury intrusion method, mercury is pressurized and pressed into the pores of the porous carrier, and the average pore diameter is calculated from the pressure and the amount of mercury inserted.

多孔質担体の比表面積は、特に限定されないが、例えば、1〜1000m/gが好ましく、300〜800m/gがより好ましく、400〜700m/gがさらに好ましい。比表面積が上記下限値未満では、担体の比表面積が小さくなりすぎて、触媒金属αを担持させる際にその分散性が低下し、CO転化率が低下するおそれがある。比表面積が上記上限値超では、細孔直径が小さくなりすぎて、触媒金属αを担持させる際に、触媒金属αを担体内部にまで入れにくくなり、結果として担体の表面積を十分に利用できなかったり、混合ガスが拡散しにくくなり、結果として触媒金属αと混合ガスとが十分に接触できなくなったりして、CO転化率や酢酸エチルの製造効率が低くなるおそれがある。
比表面積は、窒素を吸着ガスとし、BET式ガス吸着法により測定されるBET比表面積である。
Although the specific surface area of a porous support | carrier is not specifically limited, For example, 1-1000 m < 2 > / g is preferable, 300-800 m < 2 > / g is more preferable, 400-700 m < 2 > / g is more preferable. When the specific surface area is less than the above lower limit, the specific surface area of the support becomes too small, and when the catalyst metal α is supported, the dispersibility may be lowered, and the CO conversion rate may be lowered. If the specific surface area exceeds the above upper limit, the pore diameter becomes too small, and when the catalytic metal α is supported, it becomes difficult to put the catalytic metal α into the inside of the support, and as a result, the surface area of the support cannot be fully utilized. Or the mixed gas becomes difficult to diffuse, and as a result, the catalytic metal α and the mixed gas cannot be sufficiently contacted, and the CO conversion rate and the ethyl acetate production efficiency may be lowered.
The specific surface area is a BET specific surface area measured by a BET gas adsorption method using nitrogen as an adsorption gas.

触媒粒子αが担持触媒である場合、触媒粒子αの粒子群(触媒粒子群α)の平均粒子径は、担体の種類等を勘案して決定され、例えば、0.5〜5000μmが好ましい。触媒粒子群αの平均粒子径が上記下限値未満では、圧力損失が大きくなって混合ガスが流通しにくくなるおそれがあり、上記上限値超では、合成触媒の充填密度が小さくなって、混合ガスと触媒粒子αとの接触効率が低くなるおそれがある。なお、触媒粒子αとしては、粒子径の小さな触媒粒子をバインダーの存在下で圧力をかけて二次粒子としたもの、又は、粒子径の大きな触媒粒子を粉砕する等して、適切な粒子径に調整したものでもよい。   When the catalyst particle α is a supported catalyst, the average particle diameter of the particle group (catalyst particle group α) of the catalyst particle α is determined in consideration of the type of the carrier and the like, and is preferably 0.5 to 5000 μm, for example. If the average particle diameter of the catalyst particle group α is less than the lower limit, the pressure loss may increase and the mixed gas may not easily flow. There is a possibility that the contact efficiency between the catalyst particle α and the catalyst particle α is lowered. As the catalyst particles α, the catalyst particles having a small particle diameter are made into secondary particles by applying pressure in the presence of a binder, or the catalyst particles having a large particle diameter are pulverized to obtain an appropriate particle diameter. It may be adjusted to.

担持触媒における触媒金属αの担持状態は、特に限定されず、例えば、粉体状の金属が多孔質担体に担持された状態であってもよいし、金属元素の形態で多孔質担体に担持された状態であってもよく、中でも、金属元素の形態で多孔質担体に担持された状態が好ましい。金属元素の形態で多孔質担体に担持された状態であれば、混合ガスとの接触面積が大きくなり、CO転化率をより高められる。  The supported state of the catalyst metal α in the supported catalyst is not particularly limited. For example, a powdered metal may be supported on the porous carrier, or may be supported on the porous carrier in the form of a metal element. In particular, a state of being supported on a porous carrier in the form of a metal element is preferable. If it is in a state of being supported on the porous carrier in the form of a metal element, the contact area with the mixed gas is increased, and the CO conversion rate can be further increased.

担持触媒中の水素化活性金属αの担持量は、水素化活性金属αの種類や多孔質担体の種類等を勘案して決定され、例えば、多孔質担体がシリカであれば、多孔質担体100質量部に対して0.05〜30質量部が好ましく、1〜10質量部がより好ましい。上記下限値未満では、水素化活性金属αの量が少なすぎて、CO転化率が低下するおそれがあり、上記上限値超では、水素化活性金属αを均一かつ高分散状態にできず、CO転化率が低下するおそれがある。  The supported amount of the hydrogenation active metal α in the supported catalyst is determined in consideration of the type of the hydrogenation active metal α, the type of the porous carrier, and the like. For example, if the porous carrier is silica, the porous carrier 100 0.05-30 mass parts is preferable with respect to mass parts, and 1-10 mass parts is more preferable. If the amount is less than the lower limit, the amount of the hydrogenation active metal α may be too small and the CO conversion rate may decrease. If the amount exceeds the upper limit, the hydrogenation active metal α cannot be uniformly and highly dispersed. There is a risk that the conversion rate decreases.

担持触媒中の助活性金属αの担持量は、助活性金属αの種類や水素化活性金属αの種類等を勘案して決定され、例えば、多孔質担体100質量部に対して0.01〜20質量部が好ましく、0.1〜10質量部がより好ましい。上記下限値未満では、助活性金属αの担持量が少なすぎて、助活性金属αを用いる効果が発揮されにくい。上記上限値超では、多孔質担体の表面が助活性金属αで過剰に被覆されてしまい、CO転化率や酢酸エチルの製造効率が低下するおそれがある。  The amount of the promoter metal α supported in the supported catalyst is determined in consideration of the type of promoter metal α, the type of hydrogenation active metal α, and the like. 20 mass parts is preferable and 0.1-10 mass parts is more preferable. If the amount is less than the lower limit, the amount of the auxiliary metal α supported is too small, and the effect of using the auxiliary metal α is hardly exhibited. If the value exceeds the upper limit, the surface of the porous carrier is excessively coated with the promoter metal α, and the CO conversion rate and ethyl acetate production efficiency may be reduced.

触媒金属αの担持量は、触媒金属αの組成、多孔質担体の材質等を勘案して決定され、例えば、多孔質担体100質量部に対して0.05〜30質量部が好ましく、0.1〜10質量部がより好ましい。上記下限値未満では、触媒金属αの担持量が少なすぎて、CO転化率が低下するおそれがあり、上記上限値超では、触媒金属αを均一かつ高分散状態にできず、CO転化率や酢酸エチルの製造効率が低下するおそれがある。  The amount of the catalyst metal α supported is determined in consideration of the composition of the catalyst metal α, the material of the porous carrier, and the like. For example, 0.05 to 30 parts by mass with respect to 100 parts by mass of the porous carrier is preferable. 1-10 mass parts is more preferable. If the amount is less than the above lower limit value, the amount of catalyst metal α supported is too small and the CO conversion rate may be reduced. If the amount exceeds the upper limit value, the catalyst metal α cannot be uniformly and highly dispersed. The production efficiency of ethyl acetate may be reduced.

触媒粒子αが担持触媒であり、ロジウムと、マンガンと、アルカリ金属と、助活性金属αとを含有する触媒としては、下記(I)式で表される組成が好ましい。
aA・bB・cC・dD ・・・・(I)
(I)式中、Aはロジウムを表し、Bはマンガンを表し、Cはアルカリ金属を表し、Dは助活性金属αを表し、a、b、c及びdはモル分率を表し、a+b+c+d=1である。
(I)式中のaは、0.053〜0.98が好ましい。上記下限値未満であると、ロジウムの含有量が少なすぎて、CO転化率を十分に高められないおそれがあり、上記上限値超であると、他の金属の含有量が少なくなりすぎて、CO転化率を十分に高められないおそれがある。
(I)式中のbは、0.0006〜0.67が好ましい。上記下限値未満であると、マンガンの含有量が少なすぎて、CO転化率を十分に高められないおそれがあり、上記上限値超であると、他の金属の含有量が少なくなりすぎて、CO転化率を十分に高められないおそれがある。
(I)式中のcは、0.00056〜0.51が好ましい。上記下限値未満であると、アルカリ金属の含有量が少なすぎて、CO転化率を十分に高められないおそれがあり、上記上限値超であると、他の金属の含有量が少なくなりすぎて、CO転化率を十分に高められないおそれがある。
(I)式中のdは、0.0026〜0.94が好ましい。上記下限値未満であると、助活性金属αの含有量が少なすぎて、CO転化率を十分に高められないおそれがあり、上記上限値超であると、他の金属の含有量が少なくなりすぎて、CO転化率を十分に高められないおそれがある。
The catalyst particle α is a supported catalyst, and the catalyst containing rhodium, manganese, alkali metal, and promoter metal α is preferably a composition represented by the following formula (I).
aA ・ bB ・ cC ・ dD (I)
(I) In the formula, A represents rhodium, B represents manganese, C represents an alkali metal, D represents a promoter metal α, a, b, c, and d represent mole fractions, and a + b + c + d = 1.
In formula (I), a is preferably 0.053 to 0.98. If the amount is less than the above lower limit, the rhodium content is too small and the CO conversion rate may not be sufficiently increased. If the amount exceeds the upper limit, the content of other metals is too small. There is a possibility that the CO conversion rate cannot be sufficiently increased.
In the formula (I), b is preferably 0.0006 to 0.67. If the amount is less than the above lower limit, the content of manganese is too small and the CO conversion rate may not be sufficiently increased. If the amount exceeds the upper limit, the content of other metals is too small. There is a possibility that the CO conversion rate cannot be sufficiently increased.
In the formula (I), c is preferably 0.00056 to 0.51. If it is less than the above lower limit value, the alkali metal content is too small and the CO conversion rate may not be sufficiently increased, and if it exceeds the above upper limit value, the content of other metals becomes too small. The CO conversion rate may not be sufficiently increased.
In the formula (I), d is preferably 0.0026 to 0.94. If the amount is less than the above lower limit value, the content of the co-active metal α may be too small and the CO conversion rate may not be sufficiently increased. If the amount exceeds the upper limit value, the content of other metals decreases. Therefore, the CO conversion rate may not be sufficiently increased.

合成触媒中、触媒粒子αの含有量は、触媒粒子αの能力等を勘案して決定され、例えば、9〜91質量%の範囲で適宜決定される。
合成触媒中の触媒粒子αの種類は、1種でもよいし、2種以上でもよい。
In the synthesis catalyst, the content of the catalyst particle α is determined in consideration of the ability of the catalyst particle α and the like, and is appropriately determined in the range of 9 to 91% by mass, for example.
The type of catalyst particles α in the synthesis catalyst may be one type or two or more types.

触媒粒子αは、従来公知の金属触媒の製造方法に準じて製造される。触媒粒子αの製造方法としては、例えば、含浸法、浸漬法、イオン交換法、共沈法、混練法等が挙げられ、中でも含浸法が好ましい。含浸法を用いることで、得られる触媒は、触媒金属αがより均一に分散され、混合ガスとの接触効率をより高めて、CO転化率をより高められる。
触媒製造に用いられる触媒金属αの原料化合物としては、酸化物、塩化物、硝酸塩、炭酸塩等の無機塩、シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩又はキレート化合物、カルボニル化合物、シクロペンタジエニル化合物、アンミン錯体、アルコキシド化合物、アルキル化合物等、通常、金属触媒を製造する際に用いられるものが挙げられる。
The catalyst particles α are produced according to a conventionally known method for producing a metal catalyst. Examples of the method for producing the catalyst particles α include an impregnation method, an immersion method, an ion exchange method, a coprecipitation method, a kneading method, and the like. Among these, the impregnation method is preferable. By using the impregnation method, the catalyst obtained is more uniformly dispersed in the catalyst metal α, the contact efficiency with the mixed gas is further increased, and the CO conversion rate is further increased.
The raw material compound of the catalyst metal α used for the catalyst production includes inorganic salts such as oxides, chlorides, nitrates and carbonates, organic salts such as oxalates, acetylacetonate salts, dimethylglyoxime salts, and ethylenediamineacetate salts. Or what is normally used when manufacturing a metal catalyst, such as a chelate compound, a carbonyl compound, a cyclopentadienyl compound, an ammine complex, an alkoxide compound, an alkyl compound, is mentioned.

含浸法による触媒粒子αの製造方法の一例について説明する。まず、ロジウムを含む触媒金属αの原料化合物を水、メタノール、エタノール、テトラヒドロフラン、ジオキサン、ヘキサン、ベンゼン、トルエン等の溶媒に溶解し、得られた溶液(含浸液)に担体を浸漬する等して、含浸液を担体に付着させる。担体として多孔質体を用いる場合には、含浸液を担体の細孔内に十分浸透させた後、溶媒を蒸発させて触媒とする。
含浸液を担体に含浸させる方法としては、全ての原料化合物を溶解した溶液を担体に含浸させる方法(同時法)、各原料化合物を別個に溶解した溶液を調製し、逐次的に担体に各溶液を含浸させる方法(逐次法)等が挙げられ、中でも、逐次法が好ましい。逐次法で得られた触媒は、CO転化率をより高め、酢酸エチルの製造効率をより高められる。
An example of a method for producing the catalyst particles α by the impregnation method will be described. First, a raw material compound of catalytic metal α containing rhodium is dissolved in a solvent such as water, methanol, ethanol, tetrahydrofuran, dioxane, hexane, benzene, toluene, and the carrier is immersed in the obtained solution (impregnation solution). The impregnating liquid is adhered to the carrier. When a porous material is used as the carrier, the impregnating solution is sufficiently permeated into the pores of the carrier, and then the solvent is evaporated to form a catalyst.
As a method of impregnating the carrier with the impregnating solution, a method in which a solution in which all raw material compounds are dissolved is impregnated in the carrier (simultaneous method), a solution in which each raw material compound is separately dissolved is prepared, and each solution is sequentially added to the carrier. And the like (sequential method) and the like. Among these, the sequential method is preferable. The catalyst obtained by the sequential process can further increase the CO conversion and the ethyl acetate production efficiency.

逐次法としては、例えば、助活性金属αを含む溶液(一次含浸液)を多孔質担体に含浸させ(一次含浸工程)、これを乾燥して助活性金属αを多孔質担体に担持させた一次担持体を得(一次担持工程)、次いで水素化活性金属αを含む溶液(二次含浸液)を一次担持体に含浸させ(二次含浸工程)、これを乾燥する(二次担持工程)方法が挙げられる。このように、助活性金属αを多孔質担体に担持させ、次いで水素化活性金属αを多孔質担体に担持させることで、触媒粒子αは、触媒金属αがより高度に分散されたものとなり、CO転化率をより高め、酢酸エチルの製造効率をより高められる。   As a sequential method, for example, a primary support in which a porous carrier is impregnated with a solution (primary impregnation liquid) containing an auxiliary metal α (primary impregnation step) and dried to support the auxiliary metal α on the porous carrier. A method of obtaining a support (primary support process), then impregnating the primary support with a solution containing a hydrogenation active metal α (secondary impregnation liquid) (secondary impregnation process) and drying it (secondary support process) Is mentioned. In this way, by supporting the auxiliary active metal α on the porous carrier and then supporting the hydrogenation active metal α on the porous carrier, the catalyst particles α are those in which the catalytic metal α is more highly dispersed, The CO conversion rate can be further increased, and the production efficiency of ethyl acetate can be further increased.

一次担持工程は、例えば、一次含浸液が含浸された多孔質担体を乾燥し(一次乾燥操作)、これを任意の温度で加熱して焼成する(一次焼成操作)方法が挙げられる。
一次乾燥操作における乾燥方法は特に限定されず、例えば、一次含浸液が含浸された多孔質担体を任意の温度で加熱する方法が挙げられる。一次乾燥操作における加熱温度は、一次含浸液の溶媒を蒸発できる温度であればよく、溶媒が水であれば、80〜120℃とされる。一次焼成操作における加熱温度は、例えば、300〜600℃とされる。一次焼成操作を行うことで、助活性金属αの原料化合物に含まれていた成分の内、触媒反応に寄与しない成分を十分に揮散し、触媒活性をより高められる。
Examples of the primary supporting step include a method of drying a porous carrier impregnated with the primary impregnating liquid (primary drying operation), and heating and firing it at an arbitrary temperature (primary baking operation).
The drying method in the primary drying operation is not particularly limited, and examples thereof include a method of heating the porous carrier impregnated with the primary impregnation liquid at an arbitrary temperature. The heating temperature in primary drying operation should just be the temperature which can evaporate the solvent of a primary impregnation liquid, and will be 80-120 degreeC, if a solvent is water. The heating temperature in the primary firing operation is, for example, 300 to 600 ° C. By performing the primary firing operation, components that do not contribute to the catalytic reaction among the components contained in the raw material compound of the auxiliary active metal α are sufficiently volatilized, and the catalytic activity can be further enhanced.

二次担持工程は、例えば、二次含浸液が含浸された一次担持体を乾燥し(二次乾燥操作)、さらに任意の温度で加熱して焼成する(二次焼成操作)方法が挙げられる。
二次乾燥操作における乾燥方法は特に限定されず、例えば、二次含浸液が含浸された一次担持体を任意の温度で加熱する方法が挙げられる。二次乾燥操作における加熱温度は、二次含浸液の溶媒を蒸発できる温度であればよく、溶媒が水であれば、80〜120℃とされる。二次焼成操作における加熱温度は、例えば、300〜600℃とされる。二次焼成操作を行うことで、水素化活性金属αの原料化合物に含まれていた成分の内、触媒反応に寄与しない成分を十分に揮散し、触媒活性をより高められる。
Examples of the secondary supporting step include a method of drying the primary support impregnated with the secondary impregnating liquid (secondary drying operation), and further heating and baking at an arbitrary temperature (secondary baking operation).
The drying method in the secondary drying operation is not particularly limited, and examples thereof include a method of heating the primary carrier impregnated with the secondary impregnation liquid at an arbitrary temperature. The heating temperature in secondary drying operation should just be the temperature which can evaporate the solvent of a secondary impregnation liquid, and will be 80-120 degreeC, if a solvent is water. The heating temperature in the secondary firing operation is, for example, 300 to 600 ° C. By performing the secondary firing operation, components that do not contribute to the catalytic reaction among the components contained in the raw material compound of the hydrogenation active metal α are sufficiently volatilized, and the catalytic activity can be further enhanced.

得られた触媒粒子αは、還元処理が施されて、活性化される。
還元処理の方法としては、好ましくは200〜600℃で、還元ガスを触媒粒子αに接触させるものが挙げられる。
還元処理における加熱時間は、例えば、1〜10時間が好ましく、2〜5時間がより好ましい。
The obtained catalyst particles α are subjected to a reduction treatment and activated.
As a method for the reduction treatment, a method in which a reducing gas is brought into contact with the catalyst particles α at 200 to 600 ° C. is preferable.
For example, the heating time in the reduction treatment is preferably 1 to 10 hours, and more preferably 2 to 5 hours.

<触媒粒子β>
触媒粒子βは、銅を含有するものである。
触媒粒子βは、銅以外の金属を含有してもよい。銅以外の金属としては、アルデヒドやカルボン酸をエタノール及び/又は酢酸エチルに変換するものが好ましく、例えば、鉄、ロジウム−鉄、ロジウム−モリブデン、パラジウム、パラジウム−鉄、パラジウム−モリブデン、イリジウム−鉄、ロジウム−イリジウム−鉄、イリジウム−モリブデン、レニウム−亜鉛、白金、ニッケル、コバルト、ルテニウム、酸化ロジウム、酸化パラジウム、酸化白金、酸化ルテニウム等が挙げられる。以下、触媒粒子βに含有される銅とこれ以外の金属とを合わせて触媒金属βということがある。
中でも、触媒金属βとしては、銅単独又は銅と銅以外の遷移金属との組み合わせ(本稿において遷移金属は第12族に属する元素を含む)が好ましく、銅、銅−亜鉛、銅−クロム又は銅−亜鉛−クロムが好ましい。
なお、触媒粒子βとしては、アルデヒドやカルボン酸のみならず、酢酸エチル以外のエステルをエタノール及び/又は酢酸エチルに変換できるものが好ましい。
このような触媒粒子βを用いることで、アルデヒドやカルボン酸等の副生物が減少し、酢酸エチルを単離する工程が簡略化され、製造効率のさらなる向上が図れる。
<Catalyst particles β>
The catalyst particles β contain copper.
The catalyst particles β may contain a metal other than copper. As metals other than copper, those which convert aldehydes and carboxylic acids into ethanol and / or ethyl acetate are preferable, for example, iron, rhodium-iron, rhodium-molybdenum, palladium, palladium-iron, palladium-molybdenum, iridium-iron. Rhodium-iridium-iron, iridium-molybdenum, rhenium-zinc, platinum, nickel, cobalt, ruthenium, rhodium oxide, palladium oxide, platinum oxide, ruthenium oxide and the like. Hereinafter, the copper contained in the catalyst particles β and the other metals may be collectively referred to as catalyst metal β.
Among them, as the catalytic metal β, copper alone or a combination of copper and a transition metal other than copper (in this paper, the transition metal includes an element belonging to Group 12) is preferable, and copper, copper-zinc, copper-chromium or copper -Zinc-chromium is preferred.
The catalyst particles β are preferably those that can convert not only aldehydes and carboxylic acids but also esters other than ethyl acetate into ethanol and / or ethyl acetate.
By using such catalyst particles β, by-products such as aldehyde and carboxylic acid are reduced, the process of isolating ethyl acetate is simplified, and the production efficiency can be further improved.

触媒粒子βは、触媒金属βの集合物であってもよいし、触媒金属βが担体に担持された担持触媒であってもよく、中でも、担持触媒が好ましい。担持触媒とすることで、より効率的にアルデヒドやカルボン酸をエタノール及び/又は酢酸エチルに変換できる。
触媒粒子βの担体は、触媒粒子αの担体と同様である。
The catalyst particles β may be aggregates of catalyst metals β, or may be supported catalysts in which the catalyst metal β is supported on a carrier, and among these, supported catalysts are preferable. By using a supported catalyst, aldehyde and carboxylic acid can be more efficiently converted to ethanol and / or ethyl acetate.
The catalyst particle β carrier is the same as the catalyst particle α carrier.

担持触媒中の触媒金属βの担持量は、触媒金属βの種類等を勘案して決定され、例えば、多孔質担体100質量部に対して1〜50質量部が好ましく、3〜25質量部がより好ましく、4〜20質量部がさらに好ましく、5〜15質量部が特に好ましい。上記下限値未満では、触媒金属βの担持量が少なすぎて、活性が低下するおそれがあり、上記上限値超では、多孔質担体の表面が触媒金属βで過剰に被覆されてしまい、活性が低下するおそれがある。  The supported amount of the catalyst metal β in the supported catalyst is determined in consideration of the type of the catalyst metal β and the like, for example, 1 to 50 parts by weight is preferable with respect to 100 parts by weight of the porous carrier, and 3 to 25 parts by weight More preferably, 4-20 mass parts is further more preferable, and 5-15 mass parts is especially preferable. If the amount is less than the above lower limit value, the amount of catalyst metal β supported is too small and the activity may be reduced. If the amount exceeds the upper limit value, the surface of the porous carrier is excessively coated with the catalyst metal β, and the activity is low. May decrease.

触媒粒子βとしては、銅単独又は銅と銅以外の遷移金属とが担体に担持された触媒(以下、銅系担持触媒ということがある)が好ましい。
銅系担持触媒としては、下記(II)式で表されるものが好ましい。
eE・fF ・・・・(II)
(II)式中、Eは銅を表し、Fは、銅以外の遷移金属を表し、e及びfはモル分率を表し、e+f=1である。
(II)式中、Fとしては、亜鉛、クロムが好ましい。Fは、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
(II)式中のeは、0.5〜0.9が好ましい。上記下限値未満であると、銅の含有量が少なすぎて、アルデヒドやカルボン酸をエタノール及び/又は酢酸エチルに変換する効率が低下するおそれがあり、上記上限値超であると、Fの含有量が少なくなりすぎて、アルデヒド、カルボン酸、酢酸エチル以外のエステルをエタノール及び/又は酢酸エチルに変換する効率が低下するおそれがある。
(II)式中のfは、0.1〜0.5が好ましい。上記下限値未満であると、Fの含有量が少なすぎて、アルデヒド、カルボン酸、酢酸エチル以外のエステルをエタノール及び/又は酢酸エチルに変換する効率が低下するおそれがあり、上記上限値超であると、銅の含有量が少なくなりすぎて、アルデヒドやカルボン酸をエタノール及び/又は酢酸エチルに変換する効率が低下するおそれがある。
As the catalyst particles β, copper alone or a catalyst in which copper and a transition metal other than copper are supported on a carrier (hereinafter sometimes referred to as a copper-based supported catalyst) is preferable.
As the copper-based supported catalyst, those represented by the following formula (II) are preferable.
eE · fF ··· (II)
(II) In the formula, E represents copper, F represents a transition metal other than copper, e and f represent molar fractions, and e + f = 1.
(II) In the formula, F is preferably zinc or chromium. F may be used individually by 1 type and may be used in combination of 2 or more type.
In formula (II), e is preferably 0.5 to 0.9. If it is less than the above lower limit value, the copper content is too small, and the efficiency of converting aldehydes and carboxylic acids to ethanol and / or ethyl acetate may be reduced. If the amount is too small, the efficiency of converting esters other than aldehyde, carboxylic acid, and ethyl acetate into ethanol and / or ethyl acetate may be reduced.
(II) f in the formula is preferably 0.1 to 0.5. If it is less than the above lower limit, the content of F is too small, and the efficiency of converting esters other than aldehyde, carboxylic acid, and ethyl acetate into ethanol and / or ethyl acetate may be reduced. When it exists, there exists a possibility that the content of copper may decrease too much and the efficiency which converts an aldehyde and carboxylic acid into ethanol and / or ethyl acetate may fall.

本発明における触媒粒子αと触媒粒子βとの好適な組み合わせとしては、ロジウムを含有し銅を含有しない触媒粒子αと、銅を含有しロジウムを含有しない触媒粒子βとの組み合わせが好ましい。   As a suitable combination of the catalyst particle α and the catalyst particle β in the present invention, a combination of the catalyst particle α containing rhodium and not containing copper and the catalyst particle β containing copper and not containing rhodium is preferable.

触媒粒子βの粒子群(触媒粒子群β)の平均粒子径は、触媒粒子群αの平均粒子径と同様である。
触媒粒子群βの平均粒子径は、触媒粒子群αの平均粒子径と同じでもよいし、異なってもよい。ただし、触媒粒子αと触媒粒子βとが分級するのを防止する観点から、[触媒粒子群αの平均粒子径]/[触媒粒子群βの平均粒子径]で表される比は、0.5〜2が好ましい。
触媒粒子βの比重と触媒粒子αの比重とは同じでもよいし、異なってもよい。ただし、触媒粒子αと触媒粒子βとが分離するのを防止する観点から、[触媒粒子αの比重]/[触媒粒子βの比重]で表される比は、0.5〜2が好ましい。
The average particle diameter of the particle group (catalyst particle group β) of the catalyst particles β is the same as the average particle diameter of the catalyst particle group α.
The average particle diameter of the catalyst particle group β may be the same as or different from the average particle diameter of the catalyst particle group α. However, from the viewpoint of preventing the catalyst particles α and the catalyst particles β from being classified, the ratio represented by [average particle diameter of the catalyst particle group α] / [average particle diameter of the catalyst particle group β] is 0. 5 to 2 is preferable.
The specific gravity of the catalyst particles β and the specific gravity of the catalyst particles α may be the same or different. However, from the viewpoint of preventing separation of the catalyst particles α and the catalyst particles β, the ratio represented by [specific gravity of the catalyst particles α] / [specific gravity of the catalyst particles β] is preferably 0.5 to 2.

合成触媒中、触媒粒子βの含有量は、触媒粒子βの能力等を勘案して決定され、例えば、9〜91質量%の範囲で適宜決定される。
合成触媒中の触媒粒子βの種類は、1種でもよいし、2種以上でもよい。
In the synthetic catalyst, the content of the catalyst particles β is determined in consideration of the ability of the catalyst particles β and the like, for example, appropriately determined in the range of 9 to 91% by mass.
The type of catalyst particles β in the synthesis catalyst may be one type or two or more types.

触媒粒子β/触媒粒子αで表される質量比(以下、β/α質量比)は、例えば、1以上が好ましく、1超がより好ましく、1超5以下がさらに好ましく、2.5〜5が特に好ましい。β/α質量比が上記下限値未満では、早期にCO転化率が低下したり、アルデヒドやカルボン酸の含有率が多くなってこれらを分離するためにコストが増加したりするおそれがある。上記上限値超では、合成触媒の単位質量当たりの酢酸エチルの生成量が少なくなり、製造効率が低下するおそれがある。   The mass ratio represented by catalyst particle β / catalyst particle α (hereinafter referred to as β / α mass ratio) is, for example, preferably 1 or more, more preferably more than 1, more preferably more than 1 or less, and more preferably 2.5 to 5 Is particularly preferred. If the β / α mass ratio is less than the above lower limit value, the CO conversion rate may be lowered at an early stage, or the aldehyde or carboxylic acid content may increase and the cost may be increased for separating them. If the value exceeds the upper limit, the production amount of ethyl acetate per unit mass of the synthesis catalyst is decreased, and the production efficiency may be reduced.

[混合される触媒粒子群βの体積]/[混合される触媒粒子群αの体積]で表される体積比(以下、β/α体積比)は、例えば、1以上が好ましく、1超がより好ましく、1超6未満がさらに好ましく、2〜5が特に好ましい。β/α体積比が上記下限値未満では、早期にCO転化率が低下したり、アルデヒドやカルボン酸の含有率が多くなってこれらを分離するためにコストが増加したりするおそれがある。上記上限値超では、合成触媒の単位質量当たりの酢酸エチルの生成量が少なくなり、製造効率が低下するおそれがある。
なお、[混合される触媒粒子群βの体積]及び[混合される触媒粒子群αの体積]は、混合前の見かけ体積である。
The volume ratio represented by [volume of catalyst particle group β to be mixed] / [volume of catalyst particle group α to be mixed] (hereinafter, β / α volume ratio) is, for example, preferably 1 or more and more than 1 More preferably, more than 1 and less than 6 is more preferable, and 2 to 5 is particularly preferable. If the β / α volume ratio is less than the above lower limit value, the CO conversion rate may decrease at an early stage, or the aldehyde or carboxylic acid content may increase and the cost may increase due to separation of these. If the value exceeds the upper limit, the production amount of ethyl acetate per unit mass of the synthesis catalyst is decreased, and the production efficiency may be reduced.
[Volume of catalyst particle group β to be mixed] and [Volume of catalyst particle group α to be mixed] are apparent volumes before mixing.

触媒粒子βの製造方法としては、触媒粒子αの製造方法と同様の方法が挙げられる。
得られた触媒粒子βは、還元処理が施されて、活性化される。
還元処理の方法としては、好ましくは200〜600℃で、還元ガスを触媒粒子βに接触させるものが挙げられる。
還元処理における加熱時間は、例えば、1〜10時間が好ましく、2〜5時間がより好ましい。
Examples of the method for producing the catalyst particles β include the same method as the method for producing the catalyst particles α.
The obtained catalyst particles β are subjected to a reduction treatment and activated.
As a method for the reduction treatment, a method in which a reducing gas is brought into contact with the catalyst particles β at 200 to 600 ° C. is preferable.
For example, the heating time in the reduction treatment is preferably 1 to 10 hours, and more preferably 2 to 5 hours.

<その他の触媒粒子>
合成触媒は、触媒粒子α及び触媒粒子β以外の触媒粒子を含んでもよいが、副次的な反応を制御して、酢酸エチルの製造効率の低下を防止する観点から、合成触媒は、実質的に触媒粒子αと触媒粒子βとからなることが好ましい。「実質的に触媒粒子αと触媒粒子βとからなる」とは、触媒粒子α及び触媒粒子β以外の触媒粒子をまったく含まないか、あるいは本発明の効果に影響しない程度に、触媒粒子α及び触媒粒子β以外の触媒粒子を含むことを意味する。
<Other catalyst particles>
The synthetic catalyst may include catalyst particles other than the catalyst particles α and the catalyst particles β. However, from the viewpoint of controlling a secondary reaction and preventing a decrease in production efficiency of ethyl acetate, the synthetic catalyst is substantially The catalyst particles α and the catalyst particles β are preferably included. “Substantially consisting of catalyst particles α and catalyst particles β” means that the catalyst particles α and the catalyst particles α and the catalyst particles β are not included at all or do not affect the effect of the present invention. It means that catalyst particles other than the catalyst particle β are included.

合成触媒の製造方法は、触媒粒子αと触媒粒子βとを混合するものである。触媒粒子αと触媒粒子βとの混合方法は、特に限定されず、例えば、触媒粒子群αと触媒粒子群βとを粉体混合装置等で混合する方法が挙げられる。   The method for producing a synthetic catalyst is to mix catalyst particles α and catalyst particles β. The mixing method of the catalyst particles α and the catalyst particles β is not particularly limited, and examples thereof include a method of mixing the catalyst particle group α and the catalyst particle group β with a powder mixing device or the like.

(酢酸エチルの製造装置)
本発明の酢酸エチルの製造装置(以下、単に製造装置ということがある)は、合成触媒が充填された反応管と、混合ガスを反応管内に供給する供給手段と、反応管から生成物を排出する排出手段とを備えるものである。
(Ethyl acetate production equipment)
The ethyl acetate production apparatus of the present invention (hereinafter sometimes simply referred to as production apparatus) includes a reaction tube filled with a synthesis catalyst, a supply means for supplying a mixed gas into the reaction tube, and a product discharged from the reaction tube. And a discharging means.

本発明の製造装置の一例について、図1を用いて説明する。図1は、本発明の一実施形態にかかる製造装置10を示す模式図である。製造装置10は、合成触媒が充填されて反応床2が形成された反応管1と、反応管1に接続された供給管3と、反応管1に接続された排出管4と、反応管1に接続された温度制御部5と、排出管4に設けられた圧力制御部6とを備えるものである。   An example of the manufacturing apparatus of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing a manufacturing apparatus 10 according to an embodiment of the present invention. The production apparatus 10 includes a reaction tube 1 filled with a synthesis catalyst to form a reaction bed 2, a supply tube 3 connected to the reaction tube 1, a discharge tube 4 connected to the reaction tube 1, and a reaction tube 1. And a pressure control unit 6 provided in the discharge pipe 4.

反応床2は、合成触媒のみが充填されたものでもよいし、合成触媒と希釈材とが充填されたものでもよい。希釈材は、酢酸エチルの製造中における合成触媒の過度の発熱を防止するためのものであり、例えば、触媒粒子αに用いられる担体と同様のものや、石英砂、アルミナボール等が挙げられる。
反応床2に希釈材を充填する場合、希釈材/合成触媒で表される質量比は、それぞれの種類や比重等を勘案して決定され、例えば、0.5〜5が好ましい。
ただし、本発明においては、触媒粒子βが、触媒粒子αに対して希釈材としての役割を果たすため、反応床2には、合成触媒のみが充填されていることが好ましい。希釈材を用いなければ、反応床2の単位体積当たりの酢酸エチルの製造量を高め、製造装置10のコンパクト化を図れる。
The reaction bed 2 may be filled with only the synthesis catalyst, or may be filled with the synthesis catalyst and the diluent. The diluent is for preventing excessive heat generation of the synthetic catalyst during the production of ethyl acetate, and examples thereof include the same carriers as those used for the catalyst particles α, quartz sand, alumina balls, and the like.
When the reaction bed 2 is filled with a diluent, the mass ratio represented by the diluent / synthetic catalyst is determined in consideration of the type and specific gravity, and is preferably 0.5 to 5, for example.
However, in the present invention, since the catalyst particle β plays a role as a diluent with respect to the catalyst particle α, it is preferable that the reaction bed 2 is filled with only the synthetic catalyst. If no diluent is used, the production amount of ethyl acetate per unit volume of the reaction bed 2 can be increased, and the production apparatus 10 can be made compact.

反応管1は、混合ガス及び合成された酸素化物に対して不活性な材料が好ましく、100〜500℃程度の加熱、又は10MPa程度の加圧に耐え得る形状のものが好ましい。反応管1としては、例えば、ステンレス製の略円筒形の部材が挙げられる。
供給管3は、混合ガスを反応管1内に供給する供給手段であり、例えば、ステンレス製等の配管が挙げられる。
排出管4は、反応床2で合成された酢酸エチルを含む合成ガス(生成物)を排出する排出手段であり、例えば、ステンレス製等の配管が挙げられる。
温度制御部5は、反応管1内の反応床2を任意の温度にできるものであればよく、例えば、電気炉等が挙げられる。
圧力制御部6は、反応管1内の圧力を任意の圧力にできるものであればよく、例えば、公知の圧力弁等が挙げられる。
また、製造装置10は、マスフロー等、ガスの流量を調整するガス流量制御部等の周知の機器を備えていてもよい。
The reaction tube 1 is preferably made of a material that is inert to the mixed gas and the synthesized oxygenate, and preferably has a shape capable of withstanding heating at about 100 to 500 ° C. or pressurization at about 10 MPa. An example of the reaction tube 1 is a substantially cylindrical member made of stainless steel.
The supply pipe 3 is a supply means for supplying the mixed gas into the reaction tube 1 and includes, for example, a pipe made of stainless steel or the like.
The discharge pipe 4 is a discharge means for discharging the synthesis gas (product) containing ethyl acetate synthesized in the reaction bed 2 and includes, for example, a pipe made of stainless steel or the like.
The temperature control part 5 should just be what can make the reaction bed 2 in the reaction tube 1 arbitrary temperature, for example, an electric furnace etc. are mentioned.
The pressure control part 6 should just be what can make the pressure in the reaction tube 1 arbitrary pressure, for example, a well-known pressure valve etc. are mentioned.
The manufacturing apparatus 10 may include a known device such as a gas flow rate control unit that adjusts a gas flow rate such as mass flow.

(酢酸エチルの製造方法)
本発明の酢酸エチルの製造方法は、混合ガスを合成触媒に接触させるものである。本発明の酢酸エチルの製造方法の一例について、図1の製造装置を用いて説明する。
まず、反応管1内を任意の温度及び任意の圧力とし、混合ガス20を供給管3から反応管1内に流入させる。
(Method for producing ethyl acetate)
In the method for producing ethyl acetate of the present invention, a mixed gas is brought into contact with a synthesis catalyst. An example of the manufacturing method of ethyl acetate of this invention is demonstrated using the manufacturing apparatus of FIG.
First, the inside of the reaction tube 1 is set to an arbitrary temperature and an arbitrary pressure, and the mixed gas 20 is caused to flow into the reaction tube 1 from the supply tube 3.

混合ガス20は、水素と一酸化炭素とを含むものであれば特に限定されず、例えば、天然ガス、石炭から調製されたものであってもよいし、バイオマスをガス化して得られるバイオマスガス等であってもよいし、廃プラスチック、廃紙、廃衣料等の有機性廃棄物をガス化して得られるもの(以下、リサイクルガスということがある)であってもよい。バイオマスガス、リサイクルガスは、例えば、粉砕したバイオマスや有機性廃棄物を水蒸気の存在下で加熱(例えば、800〜1000℃)する等、従来公知の方法で得られる。
混合ガス20として、バイオマスガス又はリサイクルガスを用いる場合、混合ガス20を反応管1内に供給する前に、タール分、硫黄分、窒素分、塩素分、水分等の不純物を除去する目的で、混合ガス20にガス精製処理を施してもよい。ガス精製処理としては、例えば、湿式法、乾式法等、当該技術分野で知られる各方式を採用できる。湿式法としては、水酸化ナトリウム法、アンモニア吸収法、石灰・石膏法、水酸化マグネシウム法等が挙げられ、乾式法としては、圧力スイング吸着(PSA)法等の活性炭吸着法、電子ビーム法等が挙げられる。
The mixed gas 20 is not particularly limited as long as it contains hydrogen and carbon monoxide. For example, the mixed gas 20 may be prepared from natural gas or coal, biomass gas obtained by gasifying biomass, or the like. It may also be one obtained by gasifying organic waste such as waste plastic, waste paper, and waste clothing (hereinafter sometimes referred to as recycle gas). Biomass gas and recycle gas are obtained by a conventionally known method, for example, heating pulverized biomass or organic waste in the presence of water vapor (for example, 800 to 1000 ° C.).
When biomass gas or recycle gas is used as the mixed gas 20, before supplying the mixed gas 20 into the reaction tube 1, for the purpose of removing impurities such as tar, sulfur, nitrogen, chlorine and moisture, The mixed gas 20 may be subjected to gas purification treatment. As the gas purification treatment, for example, various methods known in the technical field such as a wet method and a dry method can be adopted. Examples of wet methods include sodium hydroxide method, ammonia absorption method, lime / gypsum method, magnesium hydroxide method, and dry methods include activated carbon adsorption method such as pressure swing adsorption (PSA) method, electron beam method, etc. Is mentioned.

混合ガス20は、水素と一酸化炭素とを主成分とするもの、即ち混合ガス20中の水素と一酸化炭素との合計が、50体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることがさらに好ましく、100体積%であってもよい。水素と一酸化炭素との含有量が多いほど、酢酸エチルの製造効率をより高められる。
混合ガス20における水素/一酸化炭素で表される体積比(以下、H/CO比ということがある)は、1/5〜5/1が好ましく、1/2〜3/1がより好ましく、1/1〜2.5/1がさらに好ましい。上記範囲内であれば、触媒反応における酸素化物が生成される反応で、化学量論的に適正な範囲となり、酢酸エチルの製造効率のさらなる向上を図れる。
なお、混合ガス20は、水素及び一酸化炭素の他に、メタン、エタン、エチレン、窒素、二酸化炭素、水等を含んでいてもよい。
The mixed gas 20 is mainly composed of hydrogen and carbon monoxide, that is, the total of hydrogen and carbon monoxide in the mixed gas 20 is preferably 50% by volume or more, and 80% by volume or more. More preferably, it is more preferable that it is 90 volume% or more, and 100 volume% may be sufficient. The greater the content of hydrogen and carbon monoxide, the higher the production efficiency of ethyl acetate.
The volume ratio represented by hydrogen / carbon monoxide in the mixed gas 20 (hereinafter sometimes referred to as H 2 / CO ratio) is preferably 1/5 to 5/1, and more preferably 1/2 to 3/1. 1/1 to 2.5 / 1 is more preferable. If it is in the said range, it will become a stoichiometrically appropriate range by reaction by which the oxygenated product in a catalytic reaction is produced | generated, and the further improvement of the production efficiency of ethyl acetate can be aimed at.
The mixed gas 20 may contain methane, ethane, ethylene, nitrogen, carbon dioxide, water, etc. in addition to hydrogen and carbon monoxide.

混合ガス20と触媒とを接触させる際の温度(反応温度)、即ち反応管1内の温度は、例えば、260〜280℃が好ましい。上記下限値以上であれば、触媒反応の速度を十分に高め、酢酸エチルをより効率的に製造できる。上記上限値以下であれば、酢酸エチルの合成反応を主反応として、酢酸エチルの製造効率のさらなる向上を図れる。  The temperature (reaction temperature) for bringing the mixed gas 20 and the catalyst into contact, that is, the temperature in the reaction tube 1 is preferably, for example, 260 to 280 ° C. If it is more than the said lower limit, the speed | rate of a catalytic reaction can fully be raised and ethyl acetate can be manufactured more efficiently. If it is below the upper limit, the ethyl acetate synthesis reaction can be used as the main reaction to further improve the ethyl acetate production efficiency.

混合ガス20と触媒とを接触させる際の圧力(反応圧力)、即ち反応管1内の圧力は、例えば、2〜3MPaが好ましい。上記下限値以上であれば、触媒反応の速度を十分に高め酢酸エチルをより効率的に製造できる。上記上限値以下であれば、酢酸エチルの合成反応を主反応として、酢酸エチルの製造効率のさらなる向上を図れる。  The pressure (reaction pressure) when bringing the mixed gas 20 and the catalyst into contact, that is, the pressure in the reaction tube 1 is preferably, for example, 2 to 3 MPa. If it is more than the said lower limit, the speed | rate of a catalytic reaction can fully be raised and ethyl acetate can be manufactured more efficiently. If it is below the upper limit, the ethyl acetate synthesis reaction can be used as the main reaction to further improve the ethyl acetate production efficiency.

流入した混合ガス20は、反応床2の触媒粒子αと接触し、例えば、下記(1)〜(4)式で表される触媒反応により、その一部が酢酸エチルと、アルデヒドや、カルボン酸、アルコール等の副生物とを含む酸素化物となる。副生物の内、アセトアルデヒド等のアルデヒドは、触媒粒子βにより速やかにアルコールに変換され(下記(5)式)、(4)式の反応(酢酸エチルの生成)が促進する。   The inflowing mixed gas 20 comes into contact with the catalyst particles α in the reaction bed 2, and, for example, a part thereof is ethyl acetate, aldehyde, or carboxylic acid by a catalytic reaction represented by the following formulas (1) to (4). It becomes an oxygenate containing by-products such as alcohol. Among the by-products, aldehydes such as acetaldehyde are quickly converted to alcohol by the catalyst particles β (formula (5) below), and the reaction of formula (4) (formation of ethyl acetate) is promoted.

2H+2CO→CHCOOH ・・・(1)
3H+2CO→CHCHO+HO ・・・(2)
4H+2CO→CHCHOH+HO ・・・(3)
CHCOOH+CHCHOH→CHCOOCHCH+HO・・・(4)
+CHCHO→CHCHOH ・・・(5)
2H 2 + 2CO → CH 3 COOH (1)
3H 2 + 2CO → CH 3 CHO + H 2 O (2)
4H 2 + 2CO → CH 3 CH 2 OH + H 2 O (3)
CH 3 COOH + CH 3 CH 2 OH → CH 3 COOCH 2 CH 3 + H 2 O (4)
H 2 + CH 3 CHO → CH 3 CH 2 OH (5)

そして、この酢酸エチルを含む合成ガス22は、排出管4から排出される。合成ガス22は、酢酸エチルを含むものであれば特に限定されず、例えば、酢酸エチル以外の酸素化物や、メタン等の炭化水素等を含んでいてもよい。
合成ガス22において、酢酸エチルの選択率は10モル%以上が好ましく、15モル%以上がより好ましい。酢酸エチルの選択率が上記下限値以上であれば、酢酸エチル以外の化合物を除去したりする工程の簡略化を図れる。
Then, the synthesis gas 22 containing ethyl acetate is discharged from the discharge pipe 4. The synthesis gas 22 is not particularly limited as long as it contains ethyl acetate. For example, the synthesis gas 22 may contain oxygenated substances other than ethyl acetate, hydrocarbons such as methane, and the like.
In the synthesis gas 22, the selectivity for ethyl acetate is preferably 10 mol% or more, and more preferably 15 mol% or more. If the selectivity of ethyl acetate is not less than the above lower limit, the process of removing compounds other than ethyl acetate can be simplified.

混合ガス20の供給速度は、例えば、反応床2における混合ガスの空間速度(単位時間当たりのガスの供給量を触媒の総量(体積換算)で除した値)が標準状態換算で、好ましくは10〜50000L/L−触媒/h、より好ましくは100〜10000L/L−触媒/h、さらに好ましくは500〜5000L/L−触媒/hとされ、特に好ましくは500〜1200L/L−触媒/hとされる。空間速度は、反応圧力、反応温度、及び原料である混合ガスの組成を勘案して、適宜調整される。   As for the supply speed of the mixed gas 20, for example, the space velocity of the mixed gas in the reaction bed 2 (a value obtained by dividing the supply amount of gas per unit time by the total amount of catalyst (in terms of volume)) is preferably 10 To 50,000 L / L-catalyst / h, more preferably 100 to 10000 L / L-catalyst / h, still more preferably 500 to 5000 L / L-catalyst / h, and particularly preferably 500 to 1200 L / L-catalyst / h. Is done. The space velocity is appropriately adjusted in consideration of the reaction pressure, the reaction temperature, and the composition of the mixed gas that is a raw material.

必要に応じ、排出管4から排出された合成ガス22を気液分離器等で処理し、酢酸エチルと、未反応の混合ガス20や副生物とを分離してもよい。  If necessary, the synthesis gas 22 discharged from the discharge pipe 4 may be treated with a gas-liquid separator or the like to separate ethyl acetate from the unreacted mixed gas 20 and by-products.

本実施形態では、固定床の反応床2に混合ガスを接触させているが、例えば、合成触媒を流動床又は移動床等、固定床以外の形態とし、これに混合ガスを接触させてもよい。   In the present embodiment, the mixed gas is brought into contact with the reaction bed 2 of the fixed bed. However, for example, the synthesis catalyst may be in a form other than the fixed bed, such as a fluidized bed or a moving bed, and the mixed gas may be brought into contact therewith. .

本発明においては、合成ガス22中の副生物を蒸留等によって、成分毎に分離してもよい。分離されたエタノールと酢酸とを用いて、常法に基づき、酢酸エチルを合成してもよい。   In the present invention, by-products in the synthesis gas 22 may be separated for each component by distillation or the like. Ethyl acetate may be synthesized based on a conventional method using the separated ethanol and acetic acid.

本発明の合成触媒は、ロジウムを含有する触媒粒子αと、銅を含有する触媒粒子βとの混合物であるため、これを使用することによって、水素と一酸化炭素とを含む混合ガスから酢酸エチルを製造できる。   Since the synthesis catalyst of the present invention is a mixture of catalyst particles α containing rhodium and catalyst particles β containing copper, by using this, a mixed gas containing hydrogen and carbon monoxide is used to produce ethyl acetate. Can be manufactured.

以下に、実施例を示して本発明を説明するが、本発明は実施例によって限定されるものではない。  EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples.

(製造例1)触媒粒子αの製造
チタンラクテートアンモニウム塩(Ti(OH)[OCH(CH)COO(NH )1.23gを含む水溶液61mLを、粒子径1〜2mmの球形シリカゲル(比表面積:430m/g、平均細孔直径:5.7nm、全細孔容積:0.61mL/g)100gに滴下して含浸させた。これを110℃にて3時間乾燥し、さらに450℃にて3時間焼成して一次担持体とした。塩化ロジウム三水和物(RhCl・3HO)7.68gと、塩化リチウム一水和物(LiCl・HO)0.48gと、塩化マンガン四水和物(MnCl・4HO)4.33gとを含む水溶液61mLを一次担持体に滴下して含浸させ、110℃にて3時間乾燥し、さらに400℃にて3時間焼成して触媒粒子αを得た。得られた触媒粒子αは、触媒金属αとしてロジウム、マンガン、リチウム及びチタンを含有し、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Ti=1.00:0.750:0.275:0.143(モル比)であった。
(Production Example 1) Production of Catalyst Particles α 61 mL of an aqueous solution containing 1.23 g of titanium lactate ammonium salt (Ti (OH) 2 [OCH (CH 3 ) COO ] 2 (NH 4 + ) 2 ) It was dropped and impregnated on 100 g of 2 mm spherical silica gel (specific surface area: 430 m 2 / g, average pore diameter: 5.7 nm, total pore volume: 0.61 mL / g). This was dried at 110 ° C. for 3 hours and further calcined at 450 ° C. for 3 hours to obtain a primary support. 7.68 g of rhodium chloride trihydrate (RhCl 3 .3H 2 O), 0.48 g of lithium chloride monohydrate (LiCl · H 2 O), manganese chloride tetrahydrate (MnCl 2 .4H 2 O) ) 61 mL of an aqueous solution containing 4.33 g was dropped onto the primary support, impregnated, dried at 110 ° C. for 3 hours, and further calcined at 400 ° C. for 3 hours to obtain catalyst particles α. The obtained catalyst particle α contains rhodium, manganese, lithium and titanium as the catalyst metal α, and the rhodium loading rate = 3 mass% / SiO 2 , Rh: Mn: Li: Ti = 1.00: 0.750: It was 0.275: 0.143 (molar ratio).

(製造例2)触媒粒子βの製造
硝酸銅三水和物(Cu(NO・3HO)19.0gと、硝酸亜鉛六水和物(Zn(NO・6HO)22.7gとを含む水溶液95mLを、粒子径1〜2mmの球形シリカゲル(比表面積:315m/g、平均細孔直径:10nm、全細孔容積:0.95mL/g)100gに滴下して含浸させた。これを110℃にて3時間乾燥し、さらに400℃にて3時間焼成して、触媒粒子βを得た。得られた触媒粒子βは、触媒金属βとして銅及び亜鉛を含有し、銅担持率=5質量%/SiO、Cu:Zn=1.00:0.97(モル比)であった。
(Production Example 2) Production of catalyst particles β Copper nitrate trihydrate (Cu (NO 3 ) 2 .3H 2 O) 19.0 g and zinc nitrate hexahydrate (Zn (NO 3 ) 3 .6H 2 O ) 95 mL of an aqueous solution containing 22.7 g was added dropwise to 100 g of spherical silica gel having a particle size of 1 to 2 mm (specific surface area: 315 m 2 / g, average pore diameter: 10 nm, total pore volume: 0.95 mL / g). And impregnated. This was dried at 110 ° C. for 3 hours and further calcined at 400 ° C. for 3 hours to obtain catalyst particles β. The obtained catalyst particles β contained copper and zinc as the catalyst metal β, and had a copper loading ratio = 5 mass% / SiO 2 and Cu: Zn = 1.00: 0.97 (molar ratio).

(試験例1)
製造例1で得られた触媒粒子αを6.4gと、製造例2で得られた触媒粒子βを13.5gとを混合して合成触媒([混合される前記触媒粒子βの粒子群]/[混合される前記触媒粒子αの粒子群]で表される体積比は3)を得た。これを内径10.2mm、長さ108cmのステンレス製の円筒型の反応管に充填して反応床とし、図1の酢酸エチルの製造装置10と同様の酢酸エチルの製造装置を得た。
反応床に、常圧で還元ガス(水素濃度30体積%、窒素濃度70体積%)を750L/L−触媒/hで流通させながら、320℃で2時間加熱し、触媒に還元処理を施した。
次いで、以下の手順で酢酸エチルを製造した。
反応床温度を240℃まで降温した後、混合ガス(水素濃度60体積%、一酸化炭素濃度30体積%、窒素濃度10体積%)を空間速度1500L/L−触媒/hで流通させ、反応圧力を2.0MPaまで昇圧した。その後、反応温度を1℃/1分の速度で268℃まで昇温し、温度が安定した時を反応開始時とした。反応開始時から2時間後に、合成ガスを回収し、ガスクロマトグラフィーにより分析した。得られたデータから、CO転化率(モル%)及び生成物の選択率(モル%)を算出した。これらの結果を表1に示す。
(Test Example 1)
6.4 g of the catalyst particles α obtained in Production Example 1 and 13.5 g of the catalyst particles β obtained in Production Example 2 were mixed to produce a synthetic catalyst ([particle group of catalyst particles β to be mixed] / The volume ratio represented by [particle group of the catalyst particles α to be mixed] was 3). This was filled into a stainless steel cylindrical reaction tube having an inner diameter of 10.2 mm and a length of 108 cm to form a reaction bed, and an ethyl acetate production apparatus similar to the ethyl acetate production apparatus 10 of FIG. 1 was obtained.
While reducing gas (hydrogen concentration 30% by volume, nitrogen concentration 70% by volume) was passed through the reaction bed at 750 L / L-catalyst / h at normal pressure, it was heated at 320 ° C. for 2 hours to reduce the catalyst. .
Next, ethyl acetate was produced by the following procedure.
After the reaction bed temperature is lowered to 240 ° C., a mixed gas (hydrogen concentration 60 vol%, carbon monoxide concentration 30 vol%, nitrogen concentration 10 vol%) is circulated at a space velocity of 1500 L / L-catalyst / h, and the reaction pressure Was increased to 2.0 MPa. Thereafter, the reaction temperature was raised to 268 ° C. at a rate of 1 ° C./1 minute, and the time when the temperature was stabilized was regarded as the reaction start time. Two hours after the start of the reaction, the synthesis gas was recovered and analyzed by gas chromatography. From the obtained data, the CO conversion rate (mol%) and the product selectivity (mol%) were calculated. These results are shown in Table 1.

(試験例2〜6)
反応圧力と反応温度とを、それぞれ表1に示す値に変更した以外は、試験例1と同様にして酢酸エチルを製造し、CO転化率及び生成物の選択率を求め、これらの結果を表1に示す。
(Test Examples 2 to 6)
Except that the reaction pressure and reaction temperature were changed to the values shown in Table 1, respectively, ethyl acetate was produced in the same manner as in Test Example 1, and the CO conversion rate and the product selectivity were determined. It is shown in 1.

(試験例7)
製造例1で得られた触媒粒子αを19.3gと、製造例2で得られた触媒粒子βを40.7gとを混合して合成触媒([混合される前記触媒粒子βの粒子群]/[混合される前記触媒粒子αの粒子群]で表される体積比は3)を得た。これを内径16.55mm、長さ103cmのステンレス製の円筒型の反応管に充填して反応床とし、図1の酢酸エチルの製造装置10と同様の酢酸エチルの製造装置を得た。
反応床に、常圧で還元ガス(水素濃度30体積%、窒素濃度70体積%)を350L/L−触媒/hで流通させながら、295℃で2時間加熱し、触媒に還元処理を施した。
次いで、以下の手順で酢酸エチルを製造した。
反応床温度を240℃まで降温した後、混合ガス(水素濃度60体積%、一酸化炭素濃度30体積%、窒素濃度10体積%)を空間速度700L/L−触媒/hで流通させ、反応圧力を2.0MPaまで昇圧した。その後、反応温度を1℃/1分の速度で261℃まで昇温し、温度が安定した時を反応開始時とした。反応開始時から2時間後に、合成ガスを回収し、ガスクロマトグラフィーにより分析した。得られたデータから、CO転化率(モル%)及び生成物の選択率(モル%)を算出した。これらの結果を表1に示す。
(Test Example 7)
19.3 g of the catalyst particles α obtained in Production Example 1 and 40.7 g of the catalyst particles β obtained in Production Example 2 were mixed to produce a synthetic catalyst ([particle group of the catalyst particles β to be mixed] / The volume ratio represented by [particle group of the catalyst particles α to be mixed] was 3). This was filled into a stainless steel cylindrical reaction tube having an inner diameter of 16.55 mm and a length of 103 cm to form a reaction bed, and an ethyl acetate production apparatus similar to the ethyl acetate production apparatus 10 of FIG. 1 was obtained.
While reducing gas (hydrogen concentration 30 vol%, nitrogen concentration 70 vol%) was passed through the reaction bed at 350 L / L-catalyst / h at normal pressure, it was heated at 295 ° C. for 2 hours to reduce the catalyst. .
Next, ethyl acetate was produced by the following procedure.
After the reaction bed temperature is lowered to 240 ° C., a mixed gas (hydrogen concentration 60 vol%, carbon monoxide concentration 30 vol%, nitrogen concentration 10 vol%) is circulated at a space velocity of 700 L / L-catalyst / h, and the reaction pressure Was increased to 2.0 MPa. Thereafter, the reaction temperature was raised to 261 ° C. at a rate of 1 ° C./1 minute, and the time when the temperature was stabilized was regarded as the reaction start time. Two hours after the start of the reaction, the synthesis gas was recovered and analyzed by gas chromatography. From the obtained data, the CO conversion rate (mol%) and the product selectivity (mol%) were calculated. These results are shown in Table 1.

Figure 2016026864
Figure 2016026864

表1に示すように、試験例1〜7は、酢酸エチルの選択率が5.1〜50.7モル%であった。この結果から、本発明を適用することで、水素と一酸化炭素とを含む混合ガスから酢酸エチルを合成できることが判った。
試験例1〜7の比較において、反応温度が260〜280℃、かつ、反応圧力が2〜3MPaである試験例1〜4は、反応温度が260〜280℃、かつ、反応圧力が1MPaである試験例5〜6に比べて、酢酸エチルの選択率が高かった。この結果から、反応温度を260〜280℃、かつ、反応圧力を2〜3MPaとすることで、酢酸エチルの製造効率をより高められることが判った。
さらに、反応ガス流速を空間速度700L/L−触媒/hとした試験例7は、酢酸エチル選択率が50モル%超となった。この結果から、反応ガスの流速を調節することで、酢酸エチルの選択率が非常に高くなることが判った。
As shown in Table 1, in Test Examples 1 to 7, the ethyl acetate selectivity was 5.1 to 50.7 mol%. From this result, it was found that by applying the present invention, ethyl acetate can be synthesized from a mixed gas containing hydrogen and carbon monoxide.
In comparison between Test Examples 1 to 7, Test Examples 1 to 4 having a reaction temperature of 260 to 280 ° C. and a reaction pressure of 2 to 3 MPa have a reaction temperature of 260 to 280 ° C. and a reaction pressure of 1 MPa. Compared with Test Examples 5-6, the selectivity of ethyl acetate was high. From this result, it was found that the production efficiency of ethyl acetate can be further increased by setting the reaction temperature to 260 to 280 ° C. and the reaction pressure to 2 to 3 MPa.
Furthermore, in Test Example 7 in which the reaction gas flow rate was a space velocity of 700 L / L-catalyst / h, the ethyl acetate selectivity was more than 50 mol%. From this result, it was found that the selectivity of ethyl acetate becomes very high by adjusting the flow rate of the reaction gas.

1 反応管
2 反応床
3 供給管
4 排出管
5 温度制御部
6 圧力制御部
10 製造装置
20 混合ガス
22 合成ガス
DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Reaction bed 3 Supply tube 4 Discharge tube 5 Temperature control part 6 Pressure control part 10 Manufacturing apparatus 20 Mixed gas 22 Syngas

Claims (5)

水素と一酸化炭素とを含む混合ガスから酢酸エチルを合成する酢酸エチル合成用の触媒であって、
ロジウムを含有する触媒粒子αと、銅を含有する触媒粒子βとの混合物であることを特徴とする酢酸エチル合成用の触媒。
A catalyst for ethyl acetate synthesis that synthesizes ethyl acetate from a mixed gas containing hydrogen and carbon monoxide,
A catalyst for synthesizing ethyl acetate, which is a mixture of catalyst particles α containing rhodium and catalyst particles β containing copper.
[混合される前記触媒粒子βの粒子群]/[混合される前記触媒粒子αの粒子群]で表される体積比は、1以上であることを特徴とする請求項1に記載の酢酸エチル合成用の触媒。   2. The ethyl acetate according to claim 1, wherein a volume ratio represented by [particle group of catalyst particles β to be mixed] / [particle group of catalyst particles α to be mixed] is 1 or more. Catalyst for synthesis. 請求項1又は2に記載の酢酸エチル合成用の触媒が充填された反応管と、前記混合ガスを前記反応管内に供給する供給手段と、前記反応管から生成物を排出する排出手段とを備えることを特徴とする酢酸エチルの製造装置。   A reaction tube filled with the catalyst for synthesizing ethyl acetate according to claim 1, a supply unit that supplies the mixed gas into the reaction tube, and a discharge unit that discharges a product from the reaction tube. An ethyl acetate production apparatus characterized by the above. 請求項1又は2に記載の酢酸エチル合成用の触媒に、水素と一酸化炭素とを含む混合ガスを接触させて酢酸エチルを得ることを特徴とする酢酸エチルの製造方法。   A method for producing ethyl acetate, wherein the catalyst for synthesizing ethyl acetate according to claim 1 or 2 is brought into contact with a mixed gas containing hydrogen and carbon monoxide to obtain ethyl acetate. 温度260〜280℃、かつ、圧力2〜3MPaの条件下で、前記の酢酸エチル合成用の触媒に前記混合ガスを接触させることを特徴とする請求項4に記載の酢酸エチルの製造方法。   5. The method for producing ethyl acetate according to claim 4, wherein the mixed gas is brought into contact with the catalyst for synthesizing ethyl acetate under the conditions of a temperature of 260 to 280 ° C. and a pressure of 2 to 3 MPa.
JP2015036907A 2014-06-25 2015-02-26 Catalyst for synthesis of ethyl acetate, device of producing ethyl acetate and method for producing ethyl acetate Pending JP2016026864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015036907A JP2016026864A (en) 2014-06-25 2015-02-26 Catalyst for synthesis of ethyl acetate, device of producing ethyl acetate and method for producing ethyl acetate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014130108 2014-06-25
JP2014130108 2014-06-25
JP2015036907A JP2016026864A (en) 2014-06-25 2015-02-26 Catalyst for synthesis of ethyl acetate, device of producing ethyl acetate and method for producing ethyl acetate

Publications (1)

Publication Number Publication Date
JP2016026864A true JP2016026864A (en) 2016-02-18

Family

ID=55352511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015036907A Pending JP2016026864A (en) 2014-06-25 2015-02-26 Catalyst for synthesis of ethyl acetate, device of producing ethyl acetate and method for producing ethyl acetate

Country Status (1)

Country Link
JP (1) JP2016026864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019142865A1 (en) * 2018-01-17 2021-01-14 積水化学工業株式会社 A catalyst and a method for producing a diene compound using the catalyst.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259232A (en) * 1985-09-09 1987-03-14 Agency Of Ind Science & Technol Production of ethanol
JP2012001441A (en) * 2010-06-14 2012-01-05 Sekisui Chem Co Ltd Method for producing ethanol and system for producing ethanol
JP2012131709A (en) * 2010-12-17 2012-07-12 Sekisui Chem Co Ltd Method for producing alcohol, and apparatus for producing alcohol
JP2012149089A (en) * 2009-02-12 2012-08-09 Ichikawa Office Inc Method for producing ethanol
JP2013508424A (en) * 2009-10-26 2013-03-07 セラニーズ・インターナショナル・コーポレーション Method for producing ethanol from acetic acid using acidic catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259232A (en) * 1985-09-09 1987-03-14 Agency Of Ind Science & Technol Production of ethanol
JP2012149089A (en) * 2009-02-12 2012-08-09 Ichikawa Office Inc Method for producing ethanol
JP2013508424A (en) * 2009-10-26 2013-03-07 セラニーズ・インターナショナル・コーポレーション Method for producing ethanol from acetic acid using acidic catalyst
JP2012001441A (en) * 2010-06-14 2012-01-05 Sekisui Chem Co Ltd Method for producing ethanol and system for producing ethanol
JP2012131709A (en) * 2010-12-17 2012-07-12 Sekisui Chem Co Ltd Method for producing alcohol, and apparatus for producing alcohol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019142865A1 (en) * 2018-01-17 2021-01-14 積水化学工業株式会社 A catalyst and a method for producing a diene compound using the catalyst.

Similar Documents

Publication Publication Date Title
JP6698534B2 (en) Butadiene production method and butadiene production apparatus
JP6093780B2 (en) Catalyst for alcohol synthesis, apparatus for producing alcohol, and method for producing alcohol
JP5999569B2 (en) C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method
JP6329286B2 (en) Method for producing catalyst for oxygenate synthesis, and method for producing oxygenate
JP6408114B2 (en) Oxygenation production system and oxygenation production method
JP2016026864A (en) Catalyst for synthesis of ethyl acetate, device of producing ethyl acetate and method for producing ethyl acetate
JP6183916B2 (en) Oxygen synthesis catalyst, oxygen production apparatus, and oxygen production method
JP6037305B2 (en) C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method
JP2015163387A (en) Catalyst for synthesis, production method thereof, and apparatus and method for producing oxygenated product
JP5996423B2 (en) C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method
JP2013049023A (en) Catalyst for synthesizing oxygenate, and device and method for producing the oxygenate
JP2013063418A (en) Catalyst for synthesizing oxygenates, and apparatus and method for manufacturing the oxygenates
JP2015178101A (en) Catalyst for oxygenate synthesis, method of producing catalyst for oxygenate synthesis, and apparatus and method for production of oxygenate
JP2013049024A (en) Catalyst for synthesizing oxygenate, and device and method for producing the oxygenate
JP2015163594A (en) Method of producing oxygenated product
JP2015139770A (en) Catalyst for alcohol synthesis, method for producing the same, and apparatus and method for producing alcohol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401