JP2013049023A - Catalyst for synthesizing oxygenate, and device and method for producing the oxygenate - Google Patents

Catalyst for synthesizing oxygenate, and device and method for producing the oxygenate Download PDF

Info

Publication number
JP2013049023A
JP2013049023A JP2011189054A JP2011189054A JP2013049023A JP 2013049023 A JP2013049023 A JP 2013049023A JP 2011189054 A JP2011189054 A JP 2011189054A JP 2011189054 A JP2011189054 A JP 2011189054A JP 2013049023 A JP2013049023 A JP 2013049023A
Authority
JP
Japan
Prior art keywords
catalyst
oxygenate
component
mixed gas
synthesizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011189054A
Other languages
Japanese (ja)
Inventor
Toshihito Miyama
稔人 御山
Kazuhisa Murata
和久 村田
Genyu Ryu
彦勇 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sekisui Chemical Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sekisui Chemical Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011189054A priority Critical patent/JP2013049023A/en
Publication of JP2013049023A publication Critical patent/JP2013049023A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for synthesizing oxygenates capable of efficiently synthesizing alcohols heightening the ratio of the alcohols in the oxygenates being products.SOLUTION: The enzymatic synthesizing catalyst for synthesizing the enzymatic compound from the mixed gas containing hydrogen and carbon monoxide includes the component (A) of rhodium, (B) of manganese, (C) of alkaline metal and (D) of iron.

Description

本発明は、酸素化物合成用の触媒、酸素化物の製造装置及び酸素化物の製造方法に関する。  The present invention relates to an oxygenate synthesis catalyst, an oxygenate production apparatus, and an oxygenate production method.

バイオエタノールは、石油代替燃料としての普及が進められている。バイオエタノールは、主にサトウキビやトウモロコシの糖化及び発酵によって製造されている。近年、食料や飼料と競合しない、廃木材や稲わら等の作物の未利用部分等の木質系及び草本系バイオマス(セルロース系バイオマスともいう)からバイオエタノールを製造する技術が開発されている。
セルロース系バイオマスを原料とし、従来のエタノール発酵法を用いてバイオエタノールを製造するためには、セルロースを糖化させる必要がある。糖化方法としては、濃硫酸糖化法、希硫酸・酵素糖化法、水熱糖化法等があるが、安価にバイオエタノールを製造するためにはいまだ多くの課題が残されている。
Bioethanol is being popularized as an alternative fuel for petroleum. Bioethanol is mainly produced by saccharification and fermentation of sugarcane and corn. In recent years, techniques for producing bioethanol from woody and herbaceous biomass (also referred to as cellulose biomass) such as waste wood and unused parts of crops such as rice straw that do not compete with food and feed have been developed.
In order to produce bioethanol using cellulose-based biomass as a raw material using a conventional ethanol fermentation method, it is necessary to saccharify cellulose. As saccharification methods, there are concentrated sulfuric acid saccharification method, dilute sulfuric acid / enzymatic saccharification method, hydrothermal saccharification method and the like, but many problems still remain to produce bioethanol at low cost.

一方、セルロース系バイオマスを水素と一酸化炭素とを含む混合ガスに変換した後、この混合ガスからエタノールを合成する方法がある。この方法により、エタノール発酵法の適用が難しいセルロース系バイオマスから、効率的にバイオエタノールを製造する試みがなされている。加えて、この方法によれば、木質系・草本系バイオマスに限らず、動物の死骸や糞等由来の動物バイオマス、生ゴミ、廃棄紙、廃繊維といった多様なバイオマスを原料に用いることができる。
さらに、水素と一酸化炭素との混合ガスは、天然ガス、石炭等の石油以外の資源からも得られるため、混合ガスから酸素化物を合成する方法は、石油依存を脱却する技術として研究されている。
水素と一酸化炭素との混合ガスからアルコール、アルデヒド化合物、カルボン酸等の酸素化物を得る方法としては、例えば、ロジウム、アルカリ金属及びマンガンを含む触媒に混合ガスを接触させる方法が知られている(例えば、特許文献1〜2)。
On the other hand, there is a method of synthesizing ethanol from this mixed gas after converting cellulosic biomass into a mixed gas containing hydrogen and carbon monoxide. By this method, the trial which manufactures bioethanol efficiently from the cellulose biomass which is difficult to apply the ethanol fermentation method is made. In addition, according to this method, not only woody and herbaceous biomass but also various biomass such as animal biomass derived from animal carcasses and feces, raw garbage, waste paper, and waste fiber can be used as a raw material.
Furthermore, since a mixed gas of hydrogen and carbon monoxide can be obtained from resources other than petroleum such as natural gas and coal, the method of synthesizing oxygenates from the mixed gas has been studied as a technology to escape from dependence on petroleum. Yes.
As a method for obtaining oxygenates such as alcohols, aldehyde compounds, and carboxylic acids from a mixed gas of hydrogen and carbon monoxide, for example, a method of contacting the mixed gas with a catalyst containing rhodium, alkali metal and manganese is known. (For example, patent documents 1-2).

特開昭61−36730号公報JP-A 61-36730 特開昭61−36731号公報JP 61-36731 A

しかしながら、従来の酸素化物合成用の触媒は、アルコール以外の酸素化物の生成量が多く、アルコールを単離する工程に多くの時間やエネルギーが必要になるという問題があった。
そこで、本発明は、生成物である酸素化物中のアルコールの比率を高めて、アルコールを効率的に合成できる酸素化物合成用の触媒を目的とする。
However, the conventional catalyst for synthesizing oxygenates has a problem that a large amount of oxygenates other than alcohol is produced, and much time and energy are required for the process of isolating alcohol.
Accordingly, an object of the present invention is to provide an oxygenate synthesis catalyst capable of efficiently synthesizing an alcohol by increasing the ratio of alcohol in the product oxygenate.

本発明の酸素化物合成用の触媒は、水素と一酸化炭素とを含む混合ガスから酸素化物を合成する酸素化物合成用の触媒において、(A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:鉄とを含むことを特徴とする。
本発明の酸素化物合成用の触媒は、下記(I)式で表される触媒であることが好ましい。
aA・bB・cC・dD ・・・・(I)
[(I)式中、Aは(A)成分を表し、Bは(B)成分を表し、Cは(C)成分を表し、Dは(D)成分を表し、a、b、c及びdはモル分率を表し、
a+b+c+d=1、
a=0.064〜0.98、
b=0.00074〜0.67、
c=0.00069〜0.51、
d=0.0024〜0.93である。]
The catalyst for synthesizing oxygenates of the present invention is a catalyst for synthesizing oxygenates from a mixed gas containing hydrogen and carbon monoxide, wherein (A) component: rhodium, (B) component: manganese, , (C) component: an alkali metal and (D) component: iron.
The catalyst for synthesizing oxygenates of the present invention is preferably a catalyst represented by the following formula (I).
aA ・ bB ・ cC ・ dD (I)
[In the formula (I), A represents the (A) component, B represents the (B) component, C represents the (C) component, D represents the (D) component, a, b, c and d Represents the mole fraction,
a + b + c + d = 1,
a = 0.064-0.98,
b = 0.00074-0.67,
c = 0.00069-0.51,
d = 0.024 to 0.93. ]

本発明の酸素化物の製造装置は、本発明の前記の酸素化物合成用の触媒が充填された反応管と、前記混合ガスを前記反応管に供給する供給手段と、前記反応管から生成物を排出する排出手段とを備えることを特徴とする。   An apparatus for producing oxygenates according to the present invention comprises a reaction tube filled with the catalyst for synthesizing oxygenates according to the present invention, a supply means for supplying the mixed gas to the reaction tube, and a product from the reaction tube. And a discharging means for discharging.

本発明の酸素化物の製造方法は、本発明の前記の酸素化物合成用の触媒に、水素と一酸化炭素とを含む混合ガスを接触させて酸素化物を得ることを特徴とする。   The method for producing an oxygenate according to the present invention is characterized in that the oxygenated product is obtained by bringing the mixed catalyst containing hydrogen and carbon monoxide into contact with the catalyst for synthesizing oxygenate according to the present invention.

本稿において酸素化物は、酢酸、エタノール、アセトアルデヒド、メタノール、プロパノール、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル等、炭素原子と水素原子と酸素原子からなる分子を意味する。   In this article, oxygenates mean molecules consisting of carbon, hydrogen, and oxygen, such as acetic acid, ethanol, acetaldehyde, methanol, propanol, methyl formate, ethyl formate, methyl acetate, and ethyl acetate.

本発明の酸素化物合成用の触媒は、生成物である酸素化物中のアルコールの比率を高めて、アルコールを効率的に合成できる。   The catalyst for synthesizing oxygenates of the present invention can efficiently synthesize alcohol by increasing the ratio of alcohol in the product oxygenate.

本発明の一実施形態にかかる酸素化物の製造装置の模式図である。It is a schematic diagram of the manufacturing apparatus of the oxygenated product concerning one Embodiment of this invention.

(酸素化物合成用の触媒)
本発明の酸素化物合成用の触媒(以下、単に触媒ということがある)は、(A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:鉄とを含むものである。(A)〜(D)成分を含むことで、生成物である酸素化物中のアルコールの比率を高められる。
(Catalyst for oxygenate synthesis)
The catalyst for synthesizing oxygenates according to the present invention (hereinafter sometimes simply referred to as catalyst) includes (A) component: rhodium, (B) component: manganese, (C) component: alkali metal, and (D) component. : Contains iron. By including the components (A) to (D), the ratio of the alcohol in the oxygenated product can be increased.

(C)成分は、アルカリ金属である。(C)成分としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)等が挙げられ、中でも、副生成物の発生を低減し、CO転化率を高め、酸素化物をより効率的に合成できる観点から、リチウムが好ましい。なお、「CO転化率」とは、「混合ガス中のCOのモル数のうち、消費されたCOのモル数が占める百分率」を意味する。  (C) A component is an alkali metal. Examples of the component (C) include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc. Among them, the generation of by-products is reduced, and the CO conversion rate Lithium is preferable from the viewpoint of increasing the oxygen content and more efficiently synthesizing oxygenates. The “CO conversion rate” means “percentage occupied by the number of moles of consumed CO in the number of moles of CO in the mixed gas”.

(D)成分は、鉄である。触媒は、(D)成分を含むことで、高い選択率でアルコールを合成し、酸素化物中のアルコールの比率を高められる。
(D)成分を含むことで酸素化物中のアルコールの比率が高まる機構については明らかではないが、(D)成分により水素化反応がより促進されるためと推測される。
なお、「選択率」とは、混合ガス中の消費されたCOのモル数のうち、特定の酸素化物へ変換されたCのモル数が占める百分率である。例えば、下記(α)式によれば、酸素化物であるエタノールの選択率は100モル%である。一方、下記(β)式によれば、酸素化物であるエタノールの選択率は50モル%であり、酸素化物であるアセトアルデヒドの選択率も50モル%である。
4H+2CO→CHCHOH+HO ・・・(α)
7H+4CO→COH+CHCHO+2HO ・・・(β)
(D) A component is iron. By containing the component (D), the catalyst synthesizes alcohol with a high selectivity and can increase the ratio of alcohol in the oxygenate.
Although it is not clear about the mechanism in which the ratio of the alcohol in the oxygenate is increased by including the component (D), it is assumed that the hydrogenation reaction is further promoted by the component (D).
The “selectivity” is the percentage occupied by the number of moles of C converted into a specific oxygenate out of the number of moles of CO consumed in the mixed gas. For example, according to the following formula (α), the selectivity for ethanol as an oxygenate is 100 mol%. On the other hand, according to the following formula (β), the selectivity for ethanol as an oxygenate is 50 mol%, and the selectivity for acetaldehyde as an oxygenate is also 50 mol%.
4H 2 + 2CO → CH 3 CH 2 OH + H 2 O (α)
7H 2 + 4CO → C 2 H 5 OH + CH 3 CHO + 2H 2 O (β)

本発明の触媒は、下記(I)式で表される組成であることが好ましい。
aA・bB・cC・dD ・・・・(I)
(I)式中、Aは(A)成分を表し、Bは(B)成分を表し、Cは(C)成分を表し、Dは(D)成分を表し、a、b、c及びdはモル分率を表し、a+b+c+d=1である。
(I)式中のaは、0.064〜0.98が好ましく、0.23〜0.81がより好ましく、0.28〜0.7がさらに好ましい。上記下限値未満であると(A)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(B)〜(D)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
(I)式中のbは、0.00074〜0.67が好ましく、0.035〜0.58がより好ましく、0.0074〜0.45がさらにこのましい。上記下限値未満であると(B)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(C)成分、(D)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
(I)式中のcは、0.00069〜0.51が好ましく、0.028〜0.42がより好ましく、0.065〜0.33がさらに好ましい。上記下限値未満であると(C)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(B)成分、(D)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
(I)式中のdは、0.0024〜0.93が好ましく、0.016〜0.43がより好ましく、0.021〜0.39がさらに好ましい。上記下限値未満であると(D)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)〜(C)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
The catalyst of the present invention preferably has a composition represented by the following formula (I).
aA ・ bB ・ cC ・ dD (I)
In the formula (I), A represents the component (A), B represents the component (B), C represents the component (C), D represents the component (D), and a, b, c, and d represent It represents the molar fraction, a + b + c + d = 1.
In formula (I), a is preferably 0.064 to 0.98, more preferably 0.23 to 0.81, and still more preferably 0.28 to 0.7. If the content is less than the lower limit, the content of the component (A) is too small and the synthesis efficiency of the oxygenate may not be sufficiently increased. If the content exceeds the upper limit, the content of the components (B) to (D) There is a possibility that the amount becomes too small and the synthesis efficiency of oxygenates is not sufficiently increased.
In the formula (I), b is preferably 0.00074 to 0.67, more preferably 0.035 to 0.58, and even more preferably 0.0074 to 0.45. If the amount is less than the lower limit, the content of the component (B) is too small and the synthesis efficiency of the oxygenate may not be sufficiently increased. If the amount exceeds the upper limit, the components (A), (C), There is a possibility that the content of the component (D) becomes too small and the synthesis efficiency of the oxygenate is not sufficiently increased.
In the formula (I), c is preferably 0.00069 to 0.51, more preferably 0.028 to 0.42, and further preferably 0.065 to 0.33. If the amount is less than the above lower limit, the content of the component (C) is too small and the synthesis efficiency of the oxygenate may not be sufficiently increased. If the content exceeds the upper limit, the components (A), (B), There is a possibility that the content of the component (D) becomes too small and the synthesis efficiency of the oxygenate is not sufficiently increased.
In the formula (I), d is preferably from 0.0024 to 0.93, more preferably from 0.016 to 0.43, still more preferably from 0.021 to 0.39. If the content is less than the lower limit, the content of the component (D) is too small and the synthesis efficiency of the oxygenate may not be sufficiently increased. If the content exceeds the upper limit, the content of the components (A) to (C) There is a possibility that the amount becomes too small and the synthesis efficiency of oxygenates is not sufficiently increased.

本発明の触媒は、(A)〜(D)成分がそれぞれ独立して存在していてもよいし、(A)〜(D)成分が合金を形成していてもよい。
本発明の触媒は、(A)〜(D)成分の集合物であってもよいし、(A)〜(D)成分が担体に担持された担持触媒であってもよく、担持触媒であることが好ましい。担持触媒とすることで、(A)〜(D)成分と混合ガスとの接触効率が高まり、酸素化物の生成量を高めると共に、アルコールをより効率的に合成できる。
担体としては、金属触媒の担体として周知のものを用いることができ、例えば、シリカ、チタニア、アルミナ、セリア等が挙げられ、中でも、触媒反応の選択率を高める観点、CO転化率を高める観点、比表面積や細孔径が異なる種々の製品が市場で調達できることから、シリカが好ましい。
In the catalyst of the present invention, the components (A) to (D) may be present independently, and the components (A) to (D) may form an alloy.
The catalyst of the present invention may be an aggregate of the components (A) to (D), or a supported catalyst in which the components (A) to (D) are supported on a carrier, and is a supported catalyst. It is preferable. By using the supported catalyst, the contact efficiency between the components (A) to (D) and the mixed gas is increased, the amount of oxygenated product generated is increased, and the alcohol can be synthesized more efficiently.
As the support, those known as metal catalyst supports can be used, for example, silica, titania, alumina, ceria and the like. Among them, the viewpoint of increasing the selectivity of the catalytic reaction, the viewpoint of increasing the CO conversion rate, Silica is preferred because various products with different specific surface areas and pore sizes can be procured on the market.

担体としては、比表面積が10〜1000m/gであり、かつ1nm以上の細孔径を有するものが好ましい。
加えて、担体は、粒子径の分布が狭いものが好ましい。担体の平均粒子径は、特に限定されないが、0.5〜5000μmが好ましい。
本発明の触媒を担持触媒とする場合、担体100質量部に対する(A)〜(D)成分の合計量は、0.01〜10質量部が好ましく、0.1〜5質量部がより好ましい。上記下限値未満では、酸素化物の合成効率が低下するおそれがあり、上記上限値超では、(A)〜(D)成分が均一かつ高分散な状態となりにくく、酸素化物の合成効率が低下するおそれがある。
As the carrier, a carrier having a specific surface area of 10 to 1000 m 2 / g and a pore diameter of 1 nm or more is preferable.
In addition, the carrier preferably has a narrow particle size distribution. The average particle size of the carrier is not particularly limited, but is preferably 0.5 to 5000 μm.
When the catalyst of the present invention is used as a supported catalyst, the total amount of the components (A) to (D) with respect to 100 parts by mass of the carrier is preferably 0.01 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass. If the amount is less than the lower limit, the synthesis efficiency of the oxygenate may be reduced. If the amount exceeds the upper limit, the components (A) to (D) are less likely to be in a uniform and highly dispersed state, and the synthesis efficiency of the oxygenate is reduced. There is a fear.

本発明の触媒は、従来公知の貴金属触媒の製造方法に準じて製造される。触媒の製造方法としては、例えば、含浸法、浸漬法、イオン交換法、共沈法、混練法等が挙げられ、中でも含浸法が好ましい。含浸法を用いることで、得られる触媒は、(A)〜(D)成分がより均一に分散され、混合ガスとの接触効率がより高められ、酸素化物の生成量を高められると共に、アルコールをより効率的に合成できる。
触媒調製に用いられる(A)〜(D)成分の原料化合物としては、酸化物、塩化物、硝酸塩、炭酸塩等の無機塩、シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩又はキレート化合物、カルボニル化合物、シクロペンタジエニル化合物、アンミン錯体、アルコキシド化合物、アルキル化合物等、(A)〜(D)成分の化合物として、各種触媒を調製する際に用いられるものが挙げられる。
The catalyst of the present invention is produced according to a conventionally known method for producing a noble metal catalyst. Examples of the method for producing the catalyst include an impregnation method, an immersion method, an ion exchange method, a coprecipitation method, a kneading method, and the like. Among these, the impregnation method is preferable. By using the impregnation method, the obtained catalyst has the components (A) to (D) more uniformly dispersed, the contact efficiency with the mixed gas is further increased, the amount of oxygenated products generated is increased, and alcohol is added. It can be synthesized more efficiently.
The raw material compounds of the components (A) to (D) used for the catalyst preparation include inorganic salts such as oxides, chlorides, nitrates and carbonates, oxalates, acetylacetonate salts, dimethylglyoxime salts, ethylenediamineacetic acid Organic compounds such as salts or chelate compounds, carbonyl compounds, cyclopentadienyl compounds, ammine complexes, alkoxide compounds, alkyl compounds, etc., used when preparing various catalysts as compounds of components (A) to (D) Is mentioned.

含浸法について説明する。まず、(A)〜(D)成分の原料化合物を水、メタノール、エタノール、テトラヒドロフラン、ジオキサン、ヘキサン、ベンゼン、トルエン等の溶媒に溶解し、得られた溶液(含浸液)に担体を浸漬する等して、含浸液を担体に付着させる。担体として多孔質体を用いる場合には、含浸液を担体の細孔内に十分浸透させた後、溶媒を蒸発させて触媒とする。
含浸液を担体に含浸させる方法としては、全ての原料化合物を溶解した溶液を担体に含浸させる方法(同時法)、各原料化合物を別個に溶解した溶液を調製し、逐次的に担体に各溶液を含浸させる方法(逐次法)等が挙げられ、中でも、逐次法が好ましい。逐次法で得られた触媒は、酸素化物中のアルコールの比率をより高められる。
The impregnation method will be described. First, the raw material compounds of the components (A) to (D) are dissolved in a solvent such as water, methanol, ethanol, tetrahydrofuran, dioxane, hexane, benzene, toluene, and the carrier is immersed in the obtained solution (impregnation liquid). Then, the impregnating liquid is attached to the carrier. When a porous material is used as the carrier, the impregnating solution is sufficiently permeated into the pores of the carrier, and then the solvent is evaporated to form a catalyst.
As a method of impregnating the carrier with the impregnating solution, a method in which a solution in which all raw material compounds are dissolved is impregnated in the carrier (simultaneous method), a solution in which each raw material compound is separately dissolved is prepared, and each solution is sequentially added to the carrier. And the like (sequential method) and the like. Among these, the sequential method is preferable. The catalyst obtained by the sequential process can further increase the proportion of alcohol in the oxygenate.

逐次法としては、例えば、(D)成分を含む溶液(一次含浸液)を担体に含浸させ(一次含浸工程)、これを乾燥して(D)成分を担体に担持させた一次担持体を得(一次担持工程)、次いで(A)〜(C)成分を含む溶液(二次含浸液)を一次担持体に含浸させ(二次含浸工程)、これを乾燥する(二次担持工程)方法が挙げられる。このように、(D)成分を担体に担持させ、次いで(A)〜(C)成分を担体に担持させることで、触媒は(A)〜(D)成分がより高分散なものとなり、酸素化物をより効率的に合成できる。  As the sequential method, for example, a carrier containing a component (D) (primary impregnation liquid) is impregnated (primary impregnation step) and dried to obtain a primary carrier having the component (D) supported on the carrier. (Primary supporting step) Next, a method (secondary impregnation step) in which the primary support is impregnated with a solution (secondary impregnation liquid) containing the components (A) to (C) and dried (secondary supporting step). Can be mentioned. In this way, by supporting the component (D) on the carrier and then supporting the components (A) to (C) on the carrier, the catalyst has a higher dispersion of the components (A) to (D), and oxygen The compound can be synthesized more efficiently.

一次担持工程は、例えば、一次含浸液が含浸された担体を乾燥し(一次乾燥操作)、これを任意の温度で加熱して焼成する(一次焼成操作)方法が挙げられる。
一次乾燥操作における乾燥方法は特に限定されず、例えば、一次含浸液が含浸された担体を任意の温度で加熱する方法が挙げられる。一次乾燥操作における加熱温度は、一次含浸液の溶媒を蒸発できる温度であればよく、溶媒が水であれば、80〜120℃とされる。一次焼成操作における加熱温度は、例えば、300〜600℃とされる。一次焼成操作を行うことで、(D)成分の原料化合物に含まれていた成分の内、触媒反応に寄与しない成分を十分に揮散し、触媒活性をより高められる。
Examples of the primary supporting step include a method of drying the carrier impregnated with the primary impregnating liquid (primary drying operation), and heating and baking it at an arbitrary temperature (primary baking operation).
The drying method in the primary drying operation is not particularly limited, and examples thereof include a method of heating the carrier impregnated with the primary impregnation liquid at an arbitrary temperature. The heating temperature in primary drying operation should just be the temperature which can evaporate the solvent of a primary impregnation liquid, and will be 80-120 degreeC, if a solvent is water. The heating temperature in the primary firing operation is, for example, 300 to 600 ° C. By performing the primary firing operation, among the components contained in the raw material compound of component (D), components that do not contribute to the catalytic reaction are sufficiently volatilized, and the catalytic activity can be further enhanced.

二次担持工程は、例えば、二次含浸液が含浸された一次担持体を乾燥し(二次乾燥操作)、さらに任意の温度で加熱して焼成する(二次焼成操作)方法が挙げられる。
二次乾燥操作における乾燥方法は特に限定されず、例えば、二次含浸液が含浸された一次担持体を任意の温度で加熱する方法が挙げられる。二次乾燥操作における加熱温度は、二次含浸液の溶媒を蒸発できる温度であればよく、溶媒が水であれば、80〜120℃とされる。二次焼成操作における加熱温度は、例えば、300〜600℃とされる。二次焼成操作を行うことで、(A)〜(C)成分の原料化合物に含まれていた成分の内、触媒反応に寄与しない成分を十分に揮散し、触媒活性をより高められる。
Examples of the secondary supporting step include a method of drying the primary support impregnated with the secondary impregnating liquid (secondary drying operation), and further heating and baking at an arbitrary temperature (secondary baking operation).
The drying method in the secondary drying operation is not particularly limited, and examples thereof include a method of heating the primary carrier impregnated with the secondary impregnation liquid at an arbitrary temperature. The heating temperature in secondary drying operation should just be the temperature which can evaporate the solvent of a secondary impregnation liquid, and will be 80-120 degreeC, if a solvent is water. The heating temperature in the secondary firing operation is, for example, 300 to 600 ° C. By performing the secondary firing operation, components that do not contribute to the catalytic reaction among the components contained in the raw material compounds of the components (A) to (C) are sufficiently volatilized, and the catalytic activity can be further enhanced.

上述の方法によって調製された触媒は、通常、還元処理が施されて活性化され、酸素化物の合成に用いられる。還元処理としては、水素を含む気体に、触媒を接触させる方法が簡便で好ましい。この際、処理温度は、ロジウムが還元される程度の温度、即ち100℃程度であればよいが、好ましくは200〜600℃とされる。加えて、(A)〜(D)成分を十分に分散させる目的で、低温から徐々にあるいは段階的に昇温しながら水素還元を行ってもよい。また、例えば、一酸化炭素と水との存在下、又はヒドラジン、水素化ホウ素化合物もしくは水素化アルミニウム化合物等の還元剤の存在下で、触媒に還元処理を施してもよい。
還元処理における加熱時間は、例えば、1〜10時間が好ましく、2〜5時間がより好ましい。上記下限値未満では、(A)〜(D)成分の還元が不十分となり、酸素化物の製造効率が低下するおそれがある。上記上限値超では、(A)〜(D)成分における金属粒子が凝集し、酸素化物の合成効率が低下したり、還元処理におけるエネルギーが過剰になり経済的な不利益が生じたりするおそれがある。
The catalyst prepared by the above-described method is usually subjected to a reduction treatment to be activated and used for the synthesis of oxygenates. As the reduction treatment, a method of bringing a catalyst into contact with a gas containing hydrogen is simple and preferable. At this time, the treatment temperature may be a temperature at which rhodium is reduced, that is, about 100 ° C., but is preferably 200 to 600 ° C. In addition, for the purpose of sufficiently dispersing the components (A) to (D), hydrogen reduction may be performed while gradually or gradually increasing the temperature from a low temperature. For example, the catalyst may be subjected to a reduction treatment in the presence of carbon monoxide and water, or in the presence of a reducing agent such as hydrazine, a borohydride compound, or an aluminum hydride compound.
For example, the heating time in the reduction treatment is preferably 1 to 10 hours, and more preferably 2 to 5 hours. If it is less than the said lower limit, there exists a possibility that the reduction | restoration of (A)-(D) component may become inadequate, and the manufacturing efficiency of oxygenate may fall. If the value exceeds the upper limit, the metal particles in the components (A) to (D) may be aggregated, and the synthesis efficiency of the oxygenate may be reduced, or the energy in the reduction treatment may be excessive, resulting in an economic disadvantage. is there.

一次担持工程の後で二次含浸工程の前に、一次担持体にアルカリ水溶液を接触させて表面処理を施す表面処理工程が設けられていてもよい。表面処理工程を設けることで、一次担持体の表面の一部を水酸化物とし、(A)成分を含む金属粒子の分散性がより向上するものと推察される。
表面処理工程に用いられるアルカリ水溶液は、担体の種類等を勘案して決定でき、例えば、アンモニア水溶液等が挙げられる。アルカリ水溶液の濃度は、(D)成分の種類や担体の種類等を勘案して決定でき、例えば、0.1〜3モル/Lとされる。
一次担持体にアルカリ水溶液を接触させる方法は、特に限定されず、例えば、アルカリ水溶液に一次担持体を浸漬する方法、アルカリ水溶液を一次担持体に噴霧等により塗布する方法等が挙げられる。
A surface treatment step of performing a surface treatment by bringing an alkaline aqueous solution into contact with the primary support may be provided after the primary support step and before the secondary impregnation step. By providing the surface treatment step, it is assumed that a part of the surface of the primary carrier is converted into a hydroxide and the dispersibility of the metal particles containing the component (A) is further improved.
The alkaline aqueous solution used in the surface treatment step can be determined in consideration of the type of carrier and the like, and examples thereof include an aqueous ammonia solution. The concentration of the aqueous alkali solution can be determined in consideration of the type of component (D), the type of carrier, and the like, and is, for example, 0.1 to 3 mol / L.
The method of bringing the aqueous alkaline solution into contact with the primary carrier is not particularly limited, and examples thereof include a method of immersing the primary carrier in the aqueous alkaline solution and a method of applying the aqueous alkaline solution to the primary carrier by spraying.

(酸素化物合成用の製造装置)
本発明の酸素化物合成用の製造装置(以下、単に製造装置ということがある)は、本発明の触媒が充填された反応管と、混合ガスを反応管内に供給する供給手段と、反応管から生成物を排出する排出手段とを備えるものである。
(Production equipment for oxygenate synthesis)
The production apparatus for oxygenate synthesis of the present invention (hereinafter sometimes simply referred to as production apparatus) includes a reaction tube filled with the catalyst of the present invention, a supply means for supplying a mixed gas into the reaction tube, and a reaction tube. And a discharge means for discharging the product.

本発明の製造装置の一例について、図1を用いて説明する。図1は、本発明の一実施形態にかかる製造装置10を示す模式図である。製造装置10は、触媒が充填されて反応床2が形成された反応管1と、反応管1に接続された供給管3と、反応管1に接続された排出管4と、反応管1に接続された温度制御部5と、排出管4に設けられた圧力制御部6とを備えるものである。   An example of the manufacturing apparatus of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing a manufacturing apparatus 10 according to an embodiment of the present invention. The production apparatus 10 includes a reaction tube 1 filled with a catalyst to form a reaction bed 2, a supply tube 3 connected to the reaction tube 1, a discharge tube 4 connected to the reaction tube 1, and a reaction tube 1. The temperature control part 5 connected and the pressure control part 6 provided in the discharge pipe 4 are provided.

反応管1は、原料ガス及び合成された酸素化物に対して不活性な材料が好ましく、100〜500℃程度の加熱、又は10MPa程度の加圧に耐え得る形状のものが好ましい。反応管1としては、例えば、ステンレス製の略円筒形の部材が挙げられる。
供給管3は、混合ガスを反応管1内に供給する供給手段であり、例えば、ステンレス製等の配管が挙げられる。
排出管4は、反応床2で合成された酸素化物を含む合成ガス(生成物)を排出する排出手段であり、例えば、ステンレス製等の配管が挙げられる。
温度制御部5は、反応管1内の反応床2を任意の温度にできるものであればよく、例えば、電気炉等が挙げられる。
圧力制御部6は、反応管1内の圧力を任意の圧力にできるものであればよく、例えば、公知の圧力弁等が挙げられる。
また、製造装置10は、マスフロー等、ガスの流量を調整するガス流量制御部等の周知の機器を備えていてもよい。
The reaction tube 1 is preferably made of a material that is inert to the raw material gas and the synthesized oxygenate, and preferably has a shape that can withstand heating of about 100 to 500 ° C. or pressurization of about 10 MPa. An example of the reaction tube 1 is a substantially cylindrical member made of stainless steel.
The supply pipe 3 is a supply means for supplying the mixed gas into the reaction tube 1 and includes, for example, a pipe made of stainless steel or the like.
The discharge pipe 4 is a discharge means for discharging the synthesis gas (product) containing the oxygenated product synthesized in the reaction bed 2 and includes, for example, a pipe made of stainless steel or the like.
The temperature control part 5 should just be what can make the reaction bed 2 in the reaction tube 1 arbitrary temperature, for example, an electric furnace etc. are mentioned.
The pressure control part 6 should just be what can make the pressure in the reaction tube 1 arbitrary pressure, for example, a well-known pressure valve etc. are mentioned.
The manufacturing apparatus 10 may include a known device such as a gas flow rate control unit that adjusts a gas flow rate such as mass flow.

(酸素化物の製造方法)
本発明の酸素化物の製造方法は、混合ガスを触媒に接触させるものである。本発明の酸素化物の製造方法の一例について、図1の製造装置を用いて説明する。
まず、反応管1内を任意の温度及び任意の圧力とし、混合ガス20を供給管3から反応管1内に流入させる。
(Method for producing oxygenates)
The oxygenated product production method of the present invention is a method in which a mixed gas is brought into contact with a catalyst. An example of the method for producing an oxygenated product of the present invention will be described using the production apparatus of FIG.
First, the inside of the reaction tube 1 is set to an arbitrary temperature and an arbitrary pressure, and the mixed gas 20 is caused to flow into the reaction tube 1 from the supply tube 3.

混合ガス20は、水素と一酸化炭素とを含むものであれば特に限定されず、例えば、天然ガス、石炭から調製されたものであってもよいし、バイオマスをガス化して得られるバイオマスガス等であってもよい。バイオマスガスは、例えば、粉砕したバイオマスを水蒸気の存在下で加熱(例えば、800〜1000℃)する等、従来公知の方法で得られる。
混合ガス20として、バイオマスガスを用いる場合、混合ガス20を反応管1内に供給する前に、タール分、硫黄分、窒素分、塩素分、水分等の不純物を除去する目的で、ガス精製処理を施してもよい。ガス精製処理としては、例えば、湿式法、乾式法等、当該技術分野で知られる各方式を採用できる。湿式法としては、水酸化ナトリウム法、アンモニア吸収法、石灰・石膏法、水酸化マグネシウム法等が挙げられ、乾式法としては、圧力スイング吸着(PSA)法等の活性炭吸着法、電子ビーム法等が挙げられる。
The mixed gas 20 is not particularly limited as long as it contains hydrogen and carbon monoxide. For example, the mixed gas 20 may be prepared from natural gas or coal, biomass gas obtained by gasifying biomass, or the like. It may be. Biomass gas is obtained by a conventionally known method, for example, heating pulverized biomass in the presence of water vapor (for example, 800 to 1000 ° C.).
When biomass gas is used as the mixed gas 20, gas purification treatment is performed for the purpose of removing impurities such as tar, sulfur, nitrogen, chlorine, and moisture before supplying the mixed gas 20 into the reaction tube 1. May be applied. As the gas purification treatment, for example, various methods known in the technical field such as a wet method and a dry method can be adopted. Examples of wet methods include sodium hydroxide method, ammonia absorption method, lime / gypsum method, magnesium hydroxide method, and dry methods include activated carbon adsorption method such as pressure swing adsorption (PSA) method, electron beam method, etc. Is mentioned.

混合ガス20は、水素と一酸化炭素とを主成分とするもの、即ち混合ガス20中の水素と一酸化炭素との合計が、50体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることがさらに好ましく、100体積%であってもよい。水素と一酸化炭素との含有量が多いほど、酸素化物の生成量をより高められ、酸素化物をより効率的に製造できる。
水素/一酸化炭素で表される体積比(以下、H/CO比ということがある)は、0.1〜10が好ましく、0.5〜3がより好ましく、1.5〜2.5がさらに好ましい。上記範囲内であれば、混合ガスから酸素化物が生成される反応において、化学量論的に適正な範囲となり、酸素化物をより効率的に製造できる。
なお、混合ガス20は、水素及び一酸化炭素の他に、メタン、エタン、エチレン、窒素、二酸化炭素、水等を含んでいてもよい。
The mixed gas 20 is mainly composed of hydrogen and carbon monoxide, that is, the total of hydrogen and carbon monoxide in the mixed gas 20 is preferably 50% by volume or more, and 80% by volume or more. More preferably, it is more preferable that it is 90 volume% or more, and 100 volume% may be sufficient. The greater the content of hydrogen and carbon monoxide, the higher the amount of oxygenate produced and the more efficiently the oxygenate can be produced.
The volume ratio represented by hydrogen / carbon monoxide (hereinafter sometimes referred to as H 2 / CO ratio) is preferably 0.1 to 10, more preferably 0.5 to 3, and 1.5 to 2.5. Is more preferable. Within the above range, in the reaction in which oxygenates are generated from the mixed gas, the stoichiometric range is appropriate, and oxygenates can be produced more efficiently.
The mixed gas 20 may contain methane, ethane, ethylene, nitrogen, carbon dioxide, water, etc. in addition to hydrogen and carbon monoxide.

混合ガス20と触媒とを接触させる際の温度(反応温度)、即ち反応管1内の温度は、例えば、150〜450℃が好ましく、200〜400℃がより好ましく、250〜350℃がさらに好ましい。上記下限値以上であれば、触媒反応の速度を十分に高め、酸素化物の生成量を高めると共に、アルコールをより効率的に製造できる。上記上限値以下であれば、酸素化物の合成反応を主反応とし、アルコールをより効率的に製造できる。  The temperature (reaction temperature) at which the mixed gas 20 is brought into contact with the catalyst, that is, the temperature in the reaction tube 1 is, for example, preferably 150 to 450 ° C, more preferably 200 to 400 ° C, and further preferably 250 to 350 ° C. . If it is more than the said lower limit, while speed | rate of a catalyst reaction can fully be raised, the production amount of oxygenate can be raised, and alcohol can be manufactured more efficiently. If it is below the said upper limit, the synthesis reaction of oxygenate can be made into main reaction, and alcohol can be manufactured more efficiently.

混合ガス20と触媒とを接触させる際の圧力(反応圧力)、即ち反応管1内の圧力は、例えば、0.5〜10MPaが好ましく、1〜7.5MPaがより好ましく、2〜5MPaがさらに好ましい。上記下限値以上であれば、触媒反応の速度を十分に高め、酸素化物の生成量を高めると共に、アルコールをより効率的に製造できる。上記上限値以下であれば、酸素化物の合成反応を主反応とし、アルコールをより効率的に製造できる。  The pressure (reaction pressure) at the time of bringing the mixed gas 20 and the catalyst into contact, that is, the pressure in the reaction tube 1, for example, is preferably 0.5 to 10 MPa, more preferably 1 to 7.5 MPa, and further preferably 2 to 5 MPa. preferable. If it is more than the said lower limit, while speed | rate of a catalyst reaction can fully be raised, the production amount of oxygenate can be raised, and alcohol can be manufactured more efficiently. If it is below the said upper limit, the synthesis reaction of oxygenate can be made into main reaction, and alcohol can be manufactured more efficiently.

流入した混合ガス20は、反応床2の触媒と接触しながら流通し、その一部が酸素化物となる。
混合ガス20は、反応床2を流通する間、例えば、下記(1)〜(5)式で表される触媒反応により酸素化物を生成する。
3H+2CO→CHCHO+HO ・・・(1)
4H+2CO→CHCHOH+HO ・・・(2)
+CHCHO→CHCHOH ・・・(3)
2H+2CO→CHCOOH・・・(4)
2H+CHCOOH→CHCHOH+HO ・・・(5)
The inflowing mixed gas 20 flows while in contact with the catalyst in the reaction bed 2, and a part thereof becomes an oxygenate.
While the mixed gas 20 flows through the reaction bed 2, for example, an oxygenate is generated by a catalytic reaction represented by the following formulas (1) to (5).
3H 2 + 2CO → CH 3 CHO + H 2 O (1)
4H 2 + 2CO → CH 3 CH 2 OH + H 2 O (2)
H 2 + CH 3 CHO → CH 3 CH 2 OH (3)
2H 2 + 2CO → CH 3 COOH (4)
2H 2 + CH 3 COOH → CH 3 CH 2 OH + H 2 O (5)

そして、この酸素化物を含む合成ガス22は、排出管4から排出される。合成ガス22は、エタノール等の炭素数1〜3のアルコールを含むものであり、酢酸等のカルボン酸、アセトアルデヒド等のアルデヒド化合物を含んでいてもよい。合成ガス中に含まれるアルコールとしては、エタノールが好ましい。エタノールの製造方法において、本発明の触媒の効果が顕著なためである。   Then, the synthesis gas 22 containing this oxygenated product is discharged from the discharge pipe 4. The synthesis gas 22 contains an alcohol having 1 to 3 carbon atoms such as ethanol, and may contain a carboxylic acid such as acetic acid and an aldehyde compound such as acetaldehyde. As the alcohol contained in the synthesis gas, ethanol is preferable. This is because the effect of the catalyst of the present invention is remarkable in the method for producing ethanol.

混合ガス20の供給速度は、例えば、反応床2における混合ガスの空間速度(単位時間当たりガスの供給量を触媒量(体積換算)で除した値)が標準状態換算で10〜100000L/L−触媒/hとなるように調節されることが好ましい。空間速度は、目的とするアルコールの種類に適した反応圧力、反応温度、及び原料である混合ガスの組成を勘案して、適宜調整される。   As for the supply speed of the mixed gas 20, for example, the space velocity of the mixed gas in the reaction bed 2 (value obtained by dividing the supply amount of gas per unit time by the catalyst amount (volume conversion)) is 10 to 100,000 L / L- It is preferable to adjust to be catalyst / h. The space velocity is appropriately adjusted in consideration of the reaction pressure and reaction temperature suitable for the type of the target alcohol and the composition of the mixed gas as the raw material.

必要に応じ、排出管4から排出された合成ガス22を気液分離器等で処理し、未反応の混合ガス20と酸素化物とを分離してもよい。  If necessary, the synthesis gas 22 discharged from the discharge pipe 4 may be processed by a gas-liquid separator or the like to separate the unreacted mixed gas 20 and the oxygenated product.

本実施形態では、固定床の反応床2に混合ガスを接触させているが、例えば、触媒を流動床又は移動床等、固定床以外の形態とし、これに混合ガスを接触させてもよい。   In the present embodiment, the mixed gas is brought into contact with the reaction bed 2 of the fixed bed. However, for example, the catalyst may be in a form other than the fixed bed, such as a fluidized bed or a moving bed, and the mixed gas may be brought into contact therewith.

本発明では、得られた酸素化物を蒸留等によって、必要成分毎に分離してもよい。
また、本発明では、エタノール以外の生成物(例えば、酢酸、アセトアルデヒド等、エタノールを除くC2化合物)を水素化してエタノールに変換する工程(エタノール化工程)を設けてもよい。エタノール化工程としては、例えば、アセトアルデヒド、酢酸を含む酸素化物を水素化触媒に接触させてエタノールに変換する方法が挙げられる。
ここで、水素化触媒としては、当該技術分野で知られる触媒が使用でき、銅、銅−亜鉛、銅−クロム、銅−亜鉛−クロム、鉄、ロジウム−鉄、ロジウム−モリブデン、パラジウム、パラジウム−鉄、パラジウム−モリブデン、イリジウム−鉄、ロジウム−イリジウム−鉄、イリジウム−モリブデン、レニウム−亜鉛、白金、ニッケル、コバルト、ルテニウム、酸化ロジウム、酸化パラジウム、酸化白金、酸化ルテニウム等が挙げられる。これらの水素化触媒は、本発明の触媒に用いられる担体と同様の担体に担持させた担持触媒であってもよく、担持触媒としては、銅、銅−亜鉛、銅−クロム又は銅−亜鉛−クロムをシリカ系担体に担持させた銅系触媒が好適である。担持触媒である水素化触媒の製造方法としては、本発明の触媒と同様に同時法又は逐次法が挙げられる。
In the present invention, the obtained oxygenates may be separated for each necessary component by distillation or the like.
Moreover, in this invention, you may provide the process (ethanolation process) which hydrogenates products other than ethanol (for example, acetic acid, acetaldehyde, etc., C2 compounds except ethanol), and converts them into ethanol. Examples of the ethanolation step include a method in which an oxygenate containing acetaldehyde and acetic acid is brought into contact with a hydrogenation catalyst and converted to ethanol.
Here, as the hydrogenation catalyst, a catalyst known in the art can be used, and copper, copper-zinc, copper-chromium, copper-zinc-chromium, iron, rhodium-iron, rhodium-molybdenum, palladium, palladium- Examples thereof include iron, palladium-molybdenum, iridium-iron, rhodium-iridium-iron, iridium-molybdenum, rhenium-zinc, platinum, nickel, cobalt, ruthenium, rhodium oxide, palladium oxide, platinum oxide, and ruthenium oxide. These hydrogenation catalysts may be supported catalysts supported on the same support as the support used in the catalyst of the present invention, and as the supported catalyst, copper, copper-zinc, copper-chromium or copper-zinc- A copper-based catalyst in which chromium is supported on a silica-based carrier is preferable. As a method for producing a hydrogenation catalyst which is a supported catalyst, a simultaneous method or a sequential method may be used as in the catalyst of the present invention.

上述したように、本発明の触媒を用いることで、生成物である酸素化物中のアルコールの比率を高めて、アルコールを効率的に合成できる。  As described above, by using the catalyst of the present invention, the alcohol can be efficiently synthesized by increasing the ratio of alcohol in the product oxygenate.

以下に、実施例を示して本発明を説明するが、本発明は実施例によって限定されるものではない。  EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples.

(実施例1)
硝酸鉄九水和物(Fe(NO・9HO)0.0362gを含む水溶液(一次含浸液)1.08mLを、シリカゲル(比表面積:310m/g、平均細孔径:14nm、細孔容量:1.1cm/g)1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体とした(一次焼成操作,以上、一次担持工程)。塩化ロジウム(RhCl)0.061gと、塩化リチウム(LiCl)0.0017gと、塩化マンガン四水和物(MnCl・4HO)0.0159gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Fe=0.590:0.162:0.082:0.166(モル比)であった。表中、本例における触媒の製造方法を「逐次法」と記載する。
Example 1
Iron nitrate nonahydrate (Fe (NO 3) 3 · 9H 2 O) aqueous solution containing 0.0362G (primary impregnation solution) 1.08 mL, silica gel (specific surface area: 310m 2 / g, average pore diameter: 14 nm, Pore volume: 1.1 cm 3 / g) was dropped into 1.0 g and impregnated (primary impregnation step). This was dried at 110 ° C. for 3 hours (primary drying operation), and further fired at 450 ° C. for 3 hours to obtain a primary support (primary firing operation, primary support step). 1. An aqueous solution (secondary impregnation solution) containing 0.061 g of rhodium chloride (RhCl 3 ), 0.0017 g of lithium chloride (LiCl), and 0.0159 g of manganese chloride tetrahydrate (MnCl 2 .4H 2 O) 08 mL was dropped onto the primary support and impregnated (secondary impregnation step), dried at 110 ° C. for 3 hours (secondary drying operation), and further calcined at 450 ° C. for 3 hours to obtain a catalyst (secondary Firing operation, secondary support step). The obtained catalyst had a rhodium loading ratio of 3 mass% / SiO 2 , Rh: Mn: Li: Fe = 0.590: 0.162: 0.082: 0.166 (molar ratio). In the table, the catalyst production method in this example is referred to as “sequential method”.

(比較例1)
塩化ロジウム0.061gと、塩化リチウム0.0017gと、塩化マンガン四水和物0.0159gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li=0.708:0.194:0.098(モル比)であった。表中、本例における触媒の製造方法を「同時法」と記載する。
(Comparative Example 1)
1.08 mL of an aqueous solution containing 0.061 g of rhodium chloride, 0.0017 g of lithium chloride, and 0.0159 g of manganese chloride tetrahydrate was added dropwise to 1 g of silica gel, and dried at 110 ° C. for 3 hours. Further, the catalyst was obtained by calcination at 450 ° C. for 3 hours. The obtained catalyst had a rhodium loading ratio of 3 mass% / SiO 2 , Rh: Mn: Li = 0.708: 0.194: 0.098 (molar ratio). In the table, the catalyst production method in this example is described as “simultaneous method”.

(評価方法)
各例の触媒0.1gを直径2mm、長さ15cmのステンレス製の円筒型の反応管に充填して反応床を形成した。反応床に、常圧で水素を空間速度1200L/L−触媒/hで流通させながら、320℃で2.5時間加熱し、触媒に還元処理を施した。
次いで、反応温度300℃、反応圧力2MPaの条件下で、混合ガス(H/CO比=2)を表1に示す空間速度で反応床に流通させて、酸素化物を含む合成ガスの製造を行った。
混合ガスを反応床に3時間流通させ、得られた合成ガスを回収し、ガスクロマトグラフィーにより分析した。
得られたデータからCO転化率(モル%)、エタノール及びアセトアルデヒドの選択率(モル%)、エタノール及びアセトアルデヒドの生成量(g/L−触媒/h)を算出し、これらの結果を表1に示す。なお、エタノール及びアセトアルデヒドの生成量は、単位時間当たりの単位触媒体積当たりの質量として表した値である。
(Evaluation method)
A reaction bed was formed by charging 0.1 g of the catalyst of each example into a stainless steel cylindrical reaction tube having a diameter of 2 mm and a length of 15 cm. The catalyst was subjected to reduction treatment by heating at 320 ° C. for 2.5 hours while flowing hydrogen at normal pressure and a space velocity of 1200 L / L-catalyst / h.
Next, under conditions of a reaction temperature of 300 ° C. and a reaction pressure of 2 MPa, a mixed gas (H 2 / CO ratio = 2) was passed through the reaction bed at a space velocity shown in Table 1 to produce a synthesis gas containing oxygenates. went.
The mixed gas was passed through the reaction bed for 3 hours, and the resultant synthesis gas was recovered and analyzed by gas chromatography.
The CO conversion (mol%), ethanol and acetaldehyde selectivity (mol%), and ethanol and acetaldehyde production (g / L-catalyst / h) were calculated from the obtained data. These results are shown in Table 1. Show. The production amounts of ethanol and acetaldehyde are values expressed as mass per unit catalyst volume per unit time.

Figure 2013049023
Figure 2013049023

表1に示すように、本発明を適用した実施例1は、エタノールの選択率が42モル%であり、エタノールの生成量が118g/L−触媒/hであった。
これに対し、(D)成分を含まない比較例1は、エタノールの選択率が23.2モル%であり、エタノールの生成量が58g/L−触媒/hであった。
これらの結果から、本発明を適用することで、酸素化物中のアルコールの比率を特異的に高められ、アルコールを効率的に製造できることが判った。
As shown in Table 1, in Example 1 to which the present invention was applied, the selectivity of ethanol was 42 mol%, and the amount of ethanol produced was 118 g / L-catalyst / h.
On the other hand, in Comparative Example 1 not including the component (D), the ethanol selectivity was 23.2 mol%, and the amount of ethanol produced was 58 g / L-catalyst / h.
From these results, it was found that by applying the present invention, the ratio of alcohol in the oxygenate can be specifically increased, and alcohol can be produced efficiently.

1 反応管
2 反応床
3 供給管
4 排出管
5 温度制御部
6 圧力制御部
10 製造装置
20 混合ガス
22 合成ガス
1 reaction tube 2 reaction bed 3 supply tube 4 discharge tube 5 temperature control unit 6 pressure control unit 10 production apparatus 20 mixed gas 22 synthesis gas

Claims (4)

水素と一酸化炭素とを含む混合ガスから酸素化物を合成する酸素化物合成用の触媒において、
(A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:鉄とを含むことを特徴とする酸素化物合成用の触媒。
In an oxygenate synthesis catalyst for synthesizing an oxygenate from a mixed gas containing hydrogen and carbon monoxide,
A catalyst for oxygenate synthesis, comprising: (A) component: rhodium; (B) component: manganese; (C) component: alkali metal; and (D) component: iron.
下記(I)式で表されることを特徴とする請求項1に記載の酸素化物合成用の触媒。
aA・bB・cC・dD ・・・・(I)
[(I)式中、Aは(A)成分を表し、Bは(B)成分を表し、Cは(C)成分を表し、Dは(D)成分を表し、a、b、c及びdはモル分率を表し、
a+b+c+d=1、
a=0.064〜0.98、
b=0.00074〜0.67、
c=0.00069〜0.51、
d=0.0024〜0.93である。]
The catalyst for oxygenate synthesis according to claim 1, which is represented by the following formula (I).
aA ・ bB ・ cC ・ dD (I)
[In the formula (I), A represents the (A) component, B represents the (B) component, C represents the (C) component, D represents the (D) component, a, b, c and d Represents the mole fraction,
a + b + c + d = 1,
a = 0.064-0.98,
b = 0.00074-0.67,
c = 0.00069-0.51,
d = 0.024 to 0.93. ]
請求項1又は2に記載の酸素化物合成用の触媒が充填された反応管と、前記混合ガスを前記反応管内に供給する供給手段と、前記反応管から生成物を排出する排出手段とを備えることを特徴とする酸素化物の製造装置。   A reaction tube filled with the catalyst for synthesizing oxygenates according to claim 1, a supply unit that supplies the mixed gas into the reaction tube, and a discharge unit that discharges a product from the reaction tube. An apparatus for producing oxygenated products. 請求項1又は2に記載の酸素化物合成用の触媒に、水素と一酸化炭素とを含む混合ガスを接触させて酸素化物を得ることを特徴とする酸素化物の製造方法。   A method for producing an oxygenate, wherein the oxygenate synthesis catalyst according to claim 1 or 2 is contacted with a mixed gas containing hydrogen and carbon monoxide to obtain an oxygenate.
JP2011189054A 2011-08-31 2011-08-31 Catalyst for synthesizing oxygenate, and device and method for producing the oxygenate Withdrawn JP2013049023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011189054A JP2013049023A (en) 2011-08-31 2011-08-31 Catalyst for synthesizing oxygenate, and device and method for producing the oxygenate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011189054A JP2013049023A (en) 2011-08-31 2011-08-31 Catalyst for synthesizing oxygenate, and device and method for producing the oxygenate

Publications (1)

Publication Number Publication Date
JP2013049023A true JP2013049023A (en) 2013-03-14

Family

ID=48011552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011189054A Withdrawn JP2013049023A (en) 2011-08-31 2011-08-31 Catalyst for synthesizing oxygenate, and device and method for producing the oxygenate

Country Status (1)

Country Link
JP (1) JP2013049023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014097942A1 (en) * 2012-12-20 2017-01-12 積水化学工業株式会社 Catalyst for alcohol synthesis, apparatus for producing alcohol, and method for producing alcohol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014097942A1 (en) * 2012-12-20 2017-01-12 積水化学工業株式会社 Catalyst for alcohol synthesis, apparatus for producing alcohol, and method for producing alcohol
US9656931B2 (en) 2012-12-20 2017-05-23 Sekisui Chemical Co., Ltd. Catalyst for alcohol synthesis, apparatus for producing alcohol and method for producing alcohol

Similar Documents

Publication Publication Date Title
JPWO2016043209A1 (en) Butadiene production method and butadiene production apparatus
JP6093780B2 (en) Catalyst for alcohol synthesis, apparatus for producing alcohol, and method for producing alcohol
JP5999569B2 (en) C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method
JP6329286B2 (en) Method for producing catalyst for oxygenate synthesis, and method for producing oxygenate
JP6408114B2 (en) Oxygenation production system and oxygenation production method
JP6183916B2 (en) Oxygen synthesis catalyst, oxygen production apparatus, and oxygen production method
JP2013049023A (en) Catalyst for synthesizing oxygenate, and device and method for producing the oxygenate
JP5996423B2 (en) C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method
JP6037305B2 (en) C2 oxygenate synthesis catalyst, C2 oxygenate production apparatus, and C2 oxygenate production method
JP2013049024A (en) Catalyst for synthesizing oxygenate, and device and method for producing the oxygenate
JP2013063418A (en) Catalyst for synthesizing oxygenates, and apparatus and method for manufacturing the oxygenates
JP2016026864A (en) Catalyst for synthesis of ethyl acetate, device of producing ethyl acetate and method for producing ethyl acetate
JP2015163594A (en) Method of producing oxygenated product
JP2015163387A (en) Catalyst for synthesis, production method thereof, and apparatus and method for producing oxygenated product
JP2015178101A (en) Catalyst for oxygenate synthesis, method of producing catalyst for oxygenate synthesis, and apparatus and method for production of oxygenate
JP2015139770A (en) Catalyst for alcohol synthesis, method for producing the same, and apparatus and method for producing alcohol

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104