JP2007061770A - Catalyst for manufacturing hydrocarbon from synthesis gas, method for manufacturing catalyst, and method for manufacturing hydrocarbon from synthesis gas using catalyst - Google Patents

Catalyst for manufacturing hydrocarbon from synthesis gas, method for manufacturing catalyst, and method for manufacturing hydrocarbon from synthesis gas using catalyst Download PDF

Info

Publication number
JP2007061770A
JP2007061770A JP2005253719A JP2005253719A JP2007061770A JP 2007061770 A JP2007061770 A JP 2007061770A JP 2005253719 A JP2005253719 A JP 2005253719A JP 2005253719 A JP2005253719 A JP 2005253719A JP 2007061770 A JP2007061770 A JP 2007061770A
Authority
JP
Japan
Prior art keywords
catalyst
compound
iron
synthesis gas
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005253719A
Other languages
Japanese (ja)
Other versions
JP4698343B2 (en
Inventor
Kimihito Suzuki
公仁 鈴木
Kenichiro Fujimoto
健一郎 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Japan Oil Gas and Metals National Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Japan Oil Gas and Metals National Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Japan Oil Gas and Metals National Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2005253719A priority Critical patent/JP4698343B2/en
Publication of JP2007061770A publication Critical patent/JP2007061770A/en
Application granted granted Critical
Publication of JP4698343B2 publication Critical patent/JP4698343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Fischer-Tropsch (FT) synthesis catalyst having a high productivity of manufacturing a liquid C<SB>5+</SB>hydrocarbon, a method for manufacturing the catalyst, and a method for manufacturing a hydrocarbon from a synthesis gas using the catalyst. <P>SOLUTION: The FT synthesis catalyst comprises iron, magnesium, calcium, copper and potassium, and a compound comprising at least one or two element(s) selected from molybdenum, vanadium, tungsten, niobium, boron, zirconium, zinc, chromium, manganese, and titanium, or comprising at least one compound prepared by incorporating at least one compound selected from silica and alumina into the compound prepared above. A method for manufacturing the catalyst and a method for manufacturing a hydrocarbon from a synthesis gas using the catalyst are also provided in the present invention. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一酸化炭素を水素化して、合成ガスから炭化水素を製造するための触媒とその製造方法、及び該触媒を用いた合成ガスからの炭化水素を製造する方法に関する。   The present invention relates to a catalyst for producing hydrocarbons from synthesis gas by hydrogenating carbon monoxide, a method for producing the same, and a method for producing hydrocarbons from synthesis gas using the catalyst.

近年、地球温暖化等の環境問題が顕在化し、他の炭化水素燃料、石炭等と比較してH/Cが高く、地球温暖化の原因物質である二酸化炭素排出量を抑えることができ、埋蔵量も豊富な天然ガスの重要性が見直されてきており、今後ますますその需要は増加するものと予想されている。そのような状況の中、天然ガスを合成ガスに変換した後、合成ガスからFT合成反応を用いて輸送性・ハンドリング性の優れた灯・軽油等の液体炭化水素燃料に転換する技術の開発が各所で精力的に行われている。   In recent years, environmental problems such as global warming have become apparent, and H / C is higher than other hydrocarbon fuels, coal, etc., and carbon dioxide emissions that cause global warming can be suppressed. The importance of natural gas, which is abundant in volume, has been reviewed, and its demand is expected to increase in the future. Under such circumstances, after the conversion of natural gas to synthesis gas, development of technology to convert the synthesis gas into liquid hydrocarbon fuels such as kerosene and light oil with excellent transportability and handling properties using the FT synthesis reaction It is done vigorously in various places.

このFT合成反応は、1920年代、鉄系化合物存在下で進行することが発見されて以降、鉄系触媒の改良が進められ、1950年代に南アフリカのサソールで工業化(本プロセスでは100Fe/5Cu/4.2K/25SiOが触媒として用いられている(非特許文献1参照))し現在に至っている。この反応で用いられる鉄系触媒は、近年精力的に研究されているコバルト系触媒と比較して、原料として非常に広範な水素/一酸化炭素比の合成ガスにも対応することができるという特徴がある。また一部の研究機関からの報告(非特許文献2参照)では、触媒としてFe/6Mnを用いた場合、100ppm程度の硫化水素が原料中に含まれていても触媒被毒を受けにくいという結果が得られるなど硫黄被毒への耐性も高いという特徴を有する。さらに、鉄系触媒を用いたFT合成反応で得られた液体炭化水素生成物は、現在開発の主流であるコバルト系触媒を用いた場合の生成物と比較してオレフィン類が多く含まれ、従来の燃料用途のみならず化成品原料用途への展開も可能になるなど数多くの特徴を有している。 Since it was discovered that this FT synthesis reaction proceeds in the presence of iron-based compounds in the 1920s, iron-based catalysts have been improved, and in the 1950s it was industrialized in South Africa's Sasol (100Fe / 5Cu / 4 in this process). 2K / 25SiO 2 has been used as a catalyst (see Non-Patent Document 1) and has reached the present. The iron-based catalyst used in this reaction is capable of handling a wide range of hydrogen / carbon monoxide synthesis gas as a raw material compared to cobalt-based catalysts that have been energetically studied in recent years. There is. In addition, a report from some research institutions (see Non-Patent Document 2) shows that when Fe / 6Mn is used as the catalyst, even if about 100 ppm of hydrogen sulfide is contained in the raw material, it is difficult to be poisoned by the catalyst. It has a feature of high resistance to sulfur poisoning. Furthermore, the liquid hydrocarbon product obtained by the FT synthesis reaction using an iron-based catalyst contains a larger amount of olefins than the product using a cobalt-based catalyst, which is the mainstream of the current development. It has a number of features such as being able to be developed not only for fuel applications but also for chemical raw materials.

こうしたことを背景に1980年代以降、工業触媒の性能を大きく凌駕する鉄系触媒の開発が活発に進められている。これまでのところ、触媒の高活性化の指標である炭素数が5以上の液状炭化水素の生産性で工業触媒を凌ぐ開発品、例えば100Fe/10Zn/2Cu/4K(非特許文献3参照)や100Fe/1.4K/4.6Si(非特許文献4参照)など幾つか報告されてきているが、コバルト系触媒と比較して、液状炭化水素の生産性は低く、より活性の高い鉄系触媒の開発が大きな課題となっている。   Against this background, since the 1980s, the development of iron-based catalysts that greatly surpass the performance of industrial catalysts has been actively promoted. So far, development products that surpass industrial catalysts with productivity of liquid hydrocarbons having 5 or more carbon atoms, which is an indicator of high activation of the catalyst, such as 100Fe / 10Zn / 2Cu / 4K (see Non-Patent Document 3) and 100Fe / 1.4K / 4.6Si (see Non-Patent Document 4) has been reported, but compared to cobalt-based catalysts, the productivity of liquid hydrocarbons is low, and iron-based catalysts with higher activity Development has become a major issue.

また、このFT合成反応は、触媒を用いて合成ガスを炭化水素に転換する発熱反応であるが、プラントの安定操業のためには反応熱を効果的に除去することが極めて重要である。現在までに実績のある反応形式には、気相合成プロセス(固定床、噴流床、流動床)と、液相合成プロセス(スラリー床)があり、それぞれ特徴を有しているが、近年、熱除去効率が高く、生成した高沸点炭化水素の触媒上への蓄積やそれに伴う反応管閉塞が起こらないスラリー床液相合成プロセスが注目を集め、精力的に開発が進められている。   In addition, this FT synthesis reaction is an exothermic reaction in which synthesis gas is converted into hydrocarbon using a catalyst, but it is extremely important to effectively remove reaction heat for stable operation of the plant. The reaction formats that have been proven so far include gas phase synthesis processes (fixed bed, spouted bed, fluidized bed) and liquid phase synthesis processes (slurry bed), which have their respective characteristics. A slurry bed liquid phase synthesis process, which has high removal efficiency and does not cause accumulation of high-boiling hydrocarbons produced on the catalyst and accompanying reaction tube clogging, has attracted attention and is being energetically developed.

一般的にFT合成反応触媒の粒子径は、熱や物質の拡散が律速となる可能性を低くするという観点からは、小さいほど好ましい。しかし、スラリー床によるFT合成反応では、生成する炭化水素の内、高沸点炭化水素は反応容器内に蓄積されるため、触媒と生成物との固液分離操作が必ず必要になることから、触媒の粒子径が小さすぎる場合、分離操作の効率が大きく低下するという問題が発生する。よって、スラリー床用の触媒には最適な粒子径範囲が存在することになるが、以下に示すように、反応中に触媒が破壊、粉化を起こして、粒子径が小さくなることがあり、注意が必要である。   In general, the particle diameter of the FT synthesis reaction catalyst is preferably as small as possible from the viewpoint of reducing the possibility that the diffusion of heat and substances becomes rate-limiting. However, in the FT synthesis reaction using a slurry bed, high boiling point hydrocarbons of the generated hydrocarbons are accumulated in the reaction vessel, so that a solid-liquid separation operation between the catalyst and the product is necessarily required. If the particle diameter of the particles is too small, there arises a problem that the efficiency of the separation operation is greatly reduced. Therefore, there is an optimum particle size range for the catalyst for the slurry bed, but as shown below, the catalyst may be destroyed and powdered during the reaction, and the particle size may be reduced. Caution must be taken.

即ち、スラリー床でのFT合成反応では相当高い原料ガス空塔速度(0.1m/秒以上)で運転されることが多く、触媒粒子は反応中に激しく衝突するため、物理的な強度や耐摩耗性(耐粉化性)が不足すると、反応中に触媒粒径が低下して、上記分離操作に不都合をきたすことがある。さらに、鉄系触媒では主活性種が酸化鉄表面に生成する微結晶の鉄カーバイドであるとされており(非特許文献5参照)、FT合成反応中に触媒粉末自体のみならず、酸化鉄と鉄カーバイドとの界面で割れや粉化を起こしやすくなることがあり、上記と同様に分離操作に不都合をきたすことになる。
D. B. Bukur et al., Ind. Eng. Chem. Res., 38(9), 3270(1999) 山田宗慶ら、石油学会年会講演要旨、44, 128(2002) S. Li et al., J. Catal., 206, 202(2002) A. P. Raje et al., J. Catal., 180, 36(1998) A. Zhang et al., Am. Chem. Soc. Div. Pet. Chem., 44(1), 100(1999)
That is, the FT synthesis reaction in the slurry bed is often operated at a considerably high raw material gas superficial velocity (0.1 m / second or more), and the catalyst particles collide violently during the reaction. Insufficient wear (powder resistance) may reduce the catalyst particle size during the reaction, resulting in inconvenience in the separation operation. Furthermore, in the iron-based catalyst, the main active species is considered to be microcrystalline iron carbide formed on the iron oxide surface (see Non-Patent Document 5), and not only the catalyst powder itself but also iron oxide during the FT synthesis reaction. In some cases, cracking and pulverization are likely to occur at the interface with iron carbide, resulting in inconvenience in the separation operation as described above.
D. B. Bukuro et al. , Ind. Eng. Chem. Res. , 38 (9), 3270 (1999) Muneyoshi Yamada et al., Abstracts of Annual Meeting of Japan Petroleum Institute, 44, 128 (2002) S. Li et al. , J. et al. Catal. , 206, 202 (2002) A. P. Raje et al. , J. et al. Catal. , 180, 36 (1998) A. Zhang et al. , Am. Chem. Soc. Div. Pet. Chem. , 44 (1), 100 (1999)

上述したように、現状の触媒活性は未だ十分ではなく、更なる高活性触媒の開発が急務であった。   As described above, the current catalytic activity is not yet sufficient, and the development of a further highly active catalyst has been an urgent need.

そこで、本発明は、高い液状炭化水素の生産性など優れた触媒活性を有する鉄系のFT合成用触媒と触媒の製造方法及び該触媒を用いた炭化水素の製造方法を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide an iron-based FT synthesis catalyst having excellent catalytic activity such as high liquid hydrocarbon productivity, a method for producing the catalyst, and a method for producing hydrocarbons using the catalyst. To do.

また、反応中、酸化鉄表面に生成する微結晶鉄カーバイドが酸化鉄との界面で割れや粉化を起こしやすくなることがあるため、特にスラリー床で問題となることが多かった。   In addition, during the reaction, microcrystalline iron carbide produced on the iron oxide surface is likely to be cracked or pulverized at the interface with the iron oxide, which is often a problem particularly in the slurry bed.

そこで、本発明は、さらに触媒強度や耐摩耗性の高いFT合成用触媒と触媒の製造方法を提供することも目的とする。   Accordingly, an object of the present invention is to provide a catalyst for FT synthesis having higher catalyst strength and wear resistance and a method for producing the catalyst.

本発明は、高活性を有する鉄系のFT合成用触媒と触媒の製造方法及び該触媒を用いた炭化水素の製造方法に関する。更に詳しくは、以下に記す通りである。   The present invention relates to an iron-based FT synthesis catalyst having high activity, a method for producing the catalyst, and a method for producing hydrocarbons using the catalyst. Further details are as described below.

(1) 鉄、マグネシウム、カルシウム、銅、及びカリウム、並びに、モリブデン、バナジウム、タングステン、ニオブ、ホウ素、ジルコニウム、亜鉛、クロム、マンガン、チタンのうちの一種または二種以上を有する化合物からなることを特徴とする合成ガスから炭化水素を製造する触媒。   (1) It consists of a compound having one or more of iron, magnesium, calcium, copper, and potassium, and molybdenum, vanadium, tungsten, niobium, boron, zirconium, zinc, chromium, manganese, and titanium. A catalyst for producing hydrocarbons from a characteristic synthesis gas.

(2) 前記触媒にシリカ、アルミナの少なくともいずれかを含む(1)記載の合成ガスから炭化水素を製造する触媒。   (2) The catalyst which manufactures a hydrocarbon from the synthesis gas of (1) description which contains at least any one of a silica and an alumina in the said catalyst.

(3) (1)に記載の触媒を製造する方法であって、鉄、マグネシウム、及びカルシウムのイオン、並びに、モリブデン、バナジウム、タングステン、ニオブ、ホウ素、ジルコニウム、亜鉛、クロム、マンガン、チタンのうちの一種又は二種以上のイオンを含有する溶液から、沈殿法により生成した化合物をろ過、洗浄処理した後、当該処理後の化合物と銅およびカリウムのイオンを含む溶液を混合し、乾燥し、焼成した後、整粒または成型する、
又は前記ろ過、洗浄処理後の化合物を乾燥、焼成の少なくともいずれかを行った後、整粒または成型したものへ銅およびカリウムのイオンを含む溶液を含浸して更に乾燥し、焼成することを特徴とする合成ガスから炭化水素を製造する触媒の製造方法。
(3) A method for producing the catalyst according to (1), comprising iron, magnesium, and calcium ions, and molybdenum, vanadium, tungsten, niobium, boron, zirconium, zinc, chromium, manganese, and titanium. After filtering and washing the compound produced by the precipitation method from a solution containing one or more ions, the compound after treatment and a solution containing copper and potassium ions are mixed, dried, and fired. After sizing or molding,
Alternatively, the compound after filtration and washing treatment is dried and baked, and the sized or molded compound is impregnated with a solution containing copper and potassium ions and further dried and baked. A method for producing a catalyst for producing hydrocarbons from synthesis gas.

(4) (2)に記載の触媒を製造する方法であって、鉄、マグネシウム、及びカルシウムのイオン、並びに、モリブデン、バナジウム、タングステン、ニオブ、ホウ素、ジルコニウム、亜鉛、クロム、マンガン、チタンのうちの一種又は二種以上のイオンを含有する溶液から、沈殿法により生成した化合物をろ過、洗浄処理した後、当該処理後の化合物と銅及びカリウムのイオンを含む溶液を混合した混合物をスラリー化した液に、シリカゾル、アルミナゾルの少なくともいずれかを添加後、噴霧法により球状に成形することを特徴とする合成ガスから炭化水素を製造する触媒の製造方法。   (4) A method for producing the catalyst according to (2), comprising iron, magnesium, and calcium ions, and molybdenum, vanadium, tungsten, niobium, boron, zirconium, zinc, chromium, manganese, and titanium. After filtering and washing the compound produced by the precipitation method from a solution containing one or two or more kinds of ions, a mixture of the treated compound and a solution containing copper and potassium ions was slurried. A method for producing a catalyst for producing hydrocarbons from synthesis gas, characterized in that at least one of silica sol and alumina sol is added to a liquid, and then formed into a spherical shape by a spray method.

(5) (1)又は(2)記載の触媒に合成ガスを接触させて、合成ガスから炭化水素を製造する方法。   (5) A method for producing hydrocarbons from synthesis gas by bringing synthesis gas into contact with the catalyst according to (1) or (2).

本発明によれば、高い液状炭化水素生産性を発揮するなど高活性で優れた触媒活性を有する鉄系のFT合成用触媒が製造でき、該触媒に合成ガスを接触させて高効率に合成ガスから液状炭化水素を製造することができる。   According to the present invention, an iron-based FT synthesis catalyst having a high activity and excellent catalytic activity such as high liquid hydrocarbon productivity can be produced, and a synthesis gas is brought into contact with the catalyst to produce a synthesis gas with high efficiency. Liquid hydrocarbons can be produced from

以下、本発明を更に詳述する。   The present invention is described in further detail below.

本発明者らは、触媒を構成する構成元素、組成に着目して鋭意検討したところ、液状炭化水素の高い生産性レベルを大幅に向上できること、また、特定の製法を用いることで活性を損なわずに耐摩耗性の高い高強度の触媒を製造可能であることを見出し、本発明に至った。   The inventors of the present invention have intensively studied paying attention to the constituent elements and composition constituting the catalyst. As a result, the high productivity level of the liquid hydrocarbon can be greatly improved, and the activity is not impaired by using a specific production method. In addition, the inventors have found that it is possible to produce a high-strength catalyst with high wear resistance, and have reached the present invention.

すなわち、本発明の鉄系FT合成用触媒は、鉄、マグネシウム、カルシウム、銅、及びカリウムを含み、さらに鉄と化合物化し得る元素の一つまたは二つ以上を有する化合物からなる。本発明者らが鋭意検討した結果、主活性成分である鉄、従来から助触媒として有効とされている銅、カリウム以外の元素として、マグネシウム及びカルシウムはCO選択率(生成量)を抑制することに対して効果的である。これは、マグネシウム、カルシウムが主に金属酸化物として存在して塩基性を示すため、FT合成反応中に生成するCOを表面に吸着しやすく、原料ガス中の水素と二次反応を起こしてCOが消費されることにより、CO発生を抑制する機能を有するものと思われる。さらにモリブデン、バナジウム、タングステン、ニオブ、ホウ素、ジルコニウム、亜鉛、クロム、マンガン、チタンなど鉄と化合物を形成し得る金属元素は、主活性金属の鉄と化合物を形成してマトリクスである酸化鉄主体の鉄化合物相内に微細に析出し、マトリクス相を細かく分断することで、鉄化合物相から表面に析出する活性種の鉄が触媒表面に微細に分散して触媒活性が向上するものと考えられる。 That is, the iron-based FT synthesis catalyst of the present invention comprises a compound containing iron, magnesium, calcium, copper, and potassium, and further having one or more elements that can be compounded with iron. As a result of intensive studies by the present inventors, as an element other than iron, which is the main active ingredient, copper, which has been conventionally effective as a co-catalyst, and magnesium, magnesium and calcium suppress CO 2 selectivity (production amount). It is effective against that. This is because magnesium and calcium are mainly present as metal oxides and show basicity, so CO 2 produced during the FT synthesis reaction is easily adsorbed on the surface, causing a secondary reaction with hydrogen in the source gas. by CO 2 is consumed, it is considered to have a function of suppressing CO 2 generation. Furthermore, metal elements that can form a compound with iron, such as molybdenum, vanadium, tungsten, niobium, boron, zirconium, zinc, chromium, manganese, and titanium, are mainly composed of iron oxide as a matrix by forming a compound with iron as the main active metal. By finely depositing in the iron compound phase and finely dividing the matrix phase, it is considered that the active species of iron precipitated on the surface from the iron compound phase is finely dispersed on the catalyst surface and the catalytic activity is improved.

また本発明のもう一つの鉄系FT合成用触媒は、鉄、マグネシウム、カルシウム、銅、及びカリウム、並びに、前述の鉄と化合物化し得る元素の一つまたは二つ以上を有する化合物にシリカ、アルミナから選ばれる少なくとも1種類の酸化物を含む化合物である。   Further, another iron-based FT synthesis catalyst of the present invention includes iron, magnesium, calcium, copper, and potassium, and a compound having one or more elements that can be compounded with iron, silica, alumina. It is a compound containing at least 1 type of oxide chosen from these.

ここで、シリカ、アルミナの各酸化物は、これまで触媒担体として触媒反応場に利用されることが多い。しかしながら、本発明者らが鋭意検討した結果、シリカ、アルミナの各酸化物を含有することにより、さらに高い反応速度でFT合成反応が進行することを見出した。これは、シリカ、アルミナの各酸化物単独若しくは両方を上記化合物に含有することにより、シリカ、アルミナの各酸化物が鉄、マグネシウム、カルシウム、銅、及びカリウム、並びに、モリブデン、バナジウム、タングステン、ニオブ、ホウ素、ジルコニウム、亜鉛、クロム、マンガン、チタンのうちの一種または二種以上の元素を含む酸化物を中心とした化合物の結晶相をさらに細かく分断して、化合物固相中で高度に分散させること等により、各結晶相から表面に析出する活性種の鉄がより高度な分散状態になることで発現できるようになったものと推察される。   Here, silica and alumina oxides are often used in catalytic reaction fields as catalyst carriers. However, as a result of intensive studies by the present inventors, it was found that the FT synthesis reaction proceeds at a higher reaction rate by containing each oxide of silica and alumina. This is because the oxides of silica and alumina alone or both are contained in the above compound so that the oxides of silica and alumina are iron, magnesium, calcium, copper and potassium, and molybdenum, vanadium, tungsten and niobium. , Boron, zirconium, zinc, chromium, manganese, titanium, and the crystal phase of the compound centered on an oxide containing one or more elements is further finely divided and highly dispersed in the compound solid phase. From this, it is presumed that the active species of iron precipitated on the surface from each crystal phase can be expressed by a more highly dispersed state.

なお、本発明のいずれのFT合成用触媒も、主活性成分である鉄は反応前は主に酸化鉄として存在するが、一定温度の加温下、合成ガスを流通して活性化処理することによりその一部が微結晶の鉄カーバイドに変化し、触媒機能を発揮するようになると考えられる。   In any of the catalysts for FT synthesis of the present invention, iron as a main active component exists mainly as iron oxide before the reaction, but it is activated by circulating synthesis gas under a constant temperature. As a result, it is considered that a part of them changes to microcrystalline iron carbide and exhibits a catalytic function.

さらに、本発明の触媒は、化合物中(触媒中)の鉄元素の含有量が1〜60質量%であることを特徴とする酸化物、炭酸化合物、硝酸化合物、硫酸化合物のいずれか、またはこれらの化合物の混合物である。ここで鉄元素の含有量が全量に対して1質量%未満の場合には、触媒活性が十分でなく、また含有量が60質量%を超える場合には助触媒として加える他の成分の機能が十分発揮できず、CO発生量を抑制する高活性な触媒活性が十分に得られないという問題がある。また、上記化合物中の鉄元素の含有量は好ましくは5〜50質量%、さらに好ましくは10〜40質量%である。 Furthermore, the catalyst of the present invention is an oxide, a carbonic acid compound, a nitric acid compound, a sulfuric acid compound, characterized in that the iron element content in the compound (in the catalyst) is 1 to 60% by mass, or these Is a mixture of these compounds. Here, when the content of the iron element is less than 1% by mass with respect to the total amount, the catalytic activity is not sufficient, and when the content exceeds 60% by mass, the functions of other components added as a co-catalyst are present. There is a problem that the catalyst cannot be sufficiently exhibited and a highly active catalytic activity that suppresses the amount of CO 2 generated cannot be sufficiently obtained. Further, the content of the iron element in the compound is preferably 5 to 50% by mass, more preferably 10 to 40% by mass.

そして、本発明の触媒は、化合物中のマグネシウム元素の含有量が1〜50質量%であることを特徴とする。ここでマグネシウム元素の含有量が1質量%未満の場合には、マグネシウムが酸化物として塩基性を示すことにより発揮されるCO発生量抑制の機能が十分でないため好ましくない。またマグネシウム元素の含有量が50質量%を超える場合には触媒活性種の鉄の含有量が少なくなるため、触媒活性が十分でない。 And the catalyst of this invention is characterized by the content of the magnesium element in a compound being 1-50 mass%. Here, when the content of the magnesium element is less than 1% by mass, it is not preferable because the function of suppressing the amount of generated CO 2 exerted by showing the basicity of magnesium as an oxide is not sufficient. On the other hand, when the content of magnesium element exceeds 50% by mass, the content of catalytically active iron is reduced, so that the catalytic activity is not sufficient.

さらに、本発明の触媒は、化合物中のカルシウム元素の含有量が1〜50質量%であることを特徴とする。ここでカルシウム元素の含有量が1質量%未満の場合には、マグネシウムと同様に、カルシウムが酸化物として塩基性を示すことにより発揮されるCO発生量抑制の機能が十分でないため好ましくない。またカルシウム元素の含有量が50質量%を超える場合には触媒活性種の鉄の含有量が少なくなるため、触媒活性が十分でない。 Furthermore, the catalyst of the present invention is characterized in that the content of calcium element in the compound is 1 to 50% by mass. Here, when the content of the calcium element is less than 1% by mass, it is not preferable because the function of suppressing the amount of CO 2 generation exerted by the calcium being basic as an oxide is not sufficient as in the case of magnesium. On the other hand, when the content of calcium element exceeds 50% by mass, the content of catalytically active species of iron decreases, so that the catalytic activity is not sufficient.

加えて、本発明の触媒は、化合物中の銅元素の含有量が0.01〜10質量%であることを特徴とする。ここで銅元素の含有量が0.01質量%未満の場合には、化合物中で主に酸化物の状態で存在する鉄を合成ガス雰囲気下で金属鉄または鉄カーバイドへ還元するのを促進するという助触媒としての機能が十分発揮できず、触媒活性が高くならないため好ましくない。また銅元素の含有量が10質量%を超える場合には触媒活性種の鉄の含有量がその分少なくなるため、触媒活性が低下してしまう。   In addition, the catalyst of the present invention is characterized in that the content of copper element in the compound is 0.01 to 10% by mass. Here, when the content of the copper element is less than 0.01% by mass, it promotes the reduction of iron, which is mainly in an oxide state in the compound, to metallic iron or iron carbide in a synthesis gas atmosphere. The function as a co-catalyst cannot be sufficiently exhibited, and the catalytic activity does not increase. Further, when the content of the copper element exceeds 10% by mass, the content of the catalytically active species of iron is reduced accordingly, so that the catalytic activity is lowered.

そして、本発明の触媒は、化合物中のカリウム元素の含有量が0.01〜10質量%であることを特徴とする。ここでカリウム元素の含有量が0.01質量%未満の場合には、銅と同様に、化合物中で主に酸化物の状態で存在する鉄を合成ガス雰囲気下で金属鉄または鉄カーバイドへ還元するのを促進するという助触媒としての機能が十分発揮できず、触媒活性が高くならないため好ましくない。またカリウム元素の含有量が10質量%を超える場合には触媒活性種の鉄の含有量がその分少なくなるため、触媒活性が低下してしまう。   And the catalyst of this invention is 0.01-10 mass% of content of the potassium element in a compound, It is characterized by the above-mentioned. Here, when the content of potassium element is less than 0.01% by mass, as in the case of copper, iron existing mainly in an oxide state in the compound is reduced to metallic iron or iron carbide in a synthesis gas atmosphere. The function as a co-catalyst for promoting the formation of the catalyst cannot be sufficiently exhibited, and the catalytic activity does not increase. In addition, when the content of potassium element exceeds 10% by mass, the content of catalytically active species of iron is reduced accordingly, so that the catalytic activity is lowered.

また、本発明の触媒は、化合物中の前述した一種又は二種以上の鉄と化合物化し得る元素の合計含有量が1〜50質量%であることを特徴とする。ここで鉄と化合物化し得る元素の総含有量が1質量%未満の場合には、高い活性が得られない恐れがある。また鉄と化合物化し得る元素の総含有量が50質量%を超える場合には触媒活性種の鉄の含有量が少なくなり過ぎるため、触媒活性が低下してしまう。   In addition, the catalyst of the present invention is characterized in that the total content of elements that can be compounded with one or two or more kinds of iron in the compound is 1 to 50% by mass. Here, if the total content of elements that can be compounded with iron is less than 1% by mass, high activity may not be obtained. Further, when the total content of elements that can be compounded with iron exceeds 50% by mass, the content of iron as a catalytically active species becomes too small, and the catalytic activity is lowered.

尚、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わないが、触媒活性向上の面からは不純物量が少ないほど好ましく、できるだけ不純物が混入しないようにすることが望ましい。   In addition to the above elements, inevitable impurities that are mixed in the catalyst manufacturing process or the like may be included. However, from the viewpoint of improving the catalyst activity, it is preferable that the amount of impurities is small, and it is desirable that impurities are not mixed as much as possible.

また本発明の触媒は、粉体、成型体、又は成形物であって、粒子径範囲としては平均粒径で10μm〜1mmとなるように篩い分け等するのが好ましい。平均粒径が10μm未満となった場合には、触媒と生成物との固液分離操作の効率が大きく低下する恐れがある。一方、平均粒径が1mmを超える場合には、表面積が小さくなり触媒活性が十分発揮できないため好ましくない。尚、ここでの粒子径はレーザー式回折法により測定される値である。   The catalyst of the present invention is a powder, a molded product, or a molded product, and is preferably sieved so that the average particle size is 10 μm to 1 mm. When the average particle size is less than 10 μm, the efficiency of the solid-liquid separation operation between the catalyst and the product may be greatly reduced. On the other hand, when the average particle diameter exceeds 1 mm, the surface area becomes small and the catalytic activity cannot be sufficiently exhibited, which is not preferable. Here, the particle diameter is a value measured by a laser diffraction method.

そして、本発明の触媒は、その比表面積が10〜500m/gとなるよう製造されたものである。一般的に、良好な触媒活性を発現させるためには、触媒の比表面積は大きいほど有利である。しかし、比表面積が500m/gより大きくなると、触媒強度の低下を招くため好ましくない。また、比表面積が10m/gより小さくなると、活性金属の反応への寄与効率が低下するため、十分な触媒活性が得られない恐れがある。そして、さらに好ましくは20〜400m/gである。尚、ここでの比表面積は、窒素ガスの吸脱着によるBET法で求めた測定値である。 And the catalyst of this invention is manufactured so that the specific surface area may be 10-500 m < 2 > / g. In general, the larger the specific surface area of the catalyst, the more advantageous in order to develop good catalytic activity. However, if the specific surface area is larger than 500 m 2 / g, the catalyst strength is lowered, which is not preferable. On the other hand, if the specific surface area is smaller than 10 m 2 / g, the efficiency of contribution of the active metal to the reaction is lowered, so that sufficient catalytic activity may not be obtained. And more preferably, it is 20-400 m < 2 > / g. Here, the specific surface area is a measured value obtained by the BET method by adsorption / desorption of nitrogen gas.

一方、本発明のFT合成用触媒の製造方法についても本発明者らが鋭意検討した結果、上記要件を満足する製造方法であって、鉄、マグネシウム、及びカルシウム、並びに、前述した一種又は二種以上の鉄と化合物化し得る元素のイオンを含有する溶液から沈殿法により生成した化合物をろ過、洗浄したものへ銅およびカリウムのイオンを含む溶液を混合し、銅およびカリウムを前記化合物表面へ付着させるものである。尚、ここで言う沈殿法とは、目的成分イオンを含む溶液へ沈殿剤を用いてpHを制御し、溶解度積定数に達するよう調整することにより水酸化物等の状態で目的成分を含む化合物を形成させるものである。   On the other hand, as a result of intensive studies by the present inventors on the production method of the catalyst for FT synthesis of the present invention, it is a production method that satisfies the above requirements, and is iron, magnesium, calcium, and one or two of the aforementioned The solution containing the ions of the element that can be compounded with iron as described above is filtered and washed with the compound produced by the precipitation method, and then the solution containing the ions of copper and potassium is mixed to adhere the copper and potassium to the surface of the compound. Is. In addition, the precipitation method said here is a compound containing the target component in the state of hydroxide or the like by controlling the pH to the solution containing the target component ion using a precipitant and adjusting the solubility product constant. It is to be formed.

ここで沈殿により得られた化合物をろ過、洗浄するのは、沈殿液中に存在する沈殿剤成分や鉄、マグネシウム、及びカルシウム、並びに、前述した一種又は二種以上の鉄と化合物化し得る元素のイオンを溶液にする際に用いた各原料化合物中のアニオン成分を除去するためである。   Here, the compound obtained by precipitation is filtered and washed because of the precipitant component existing in the precipitation liquid, iron, magnesium, and calcium, and the elements that can be compounded with one or more kinds of iron as described above. This is because the anion component in each raw material compound used when the ions are made into a solution is removed.

またここで沈殿法により生成した化合物をろ過、洗浄したものの表面へ銅およびカリウムのイオンを含む溶液を付着するのは、沈殿工程において前述したような極めて少量の銅およびカリウムを沈殿物内部に取り込まれることなく沈殿物表面へ確実に担持させるためである。   In addition, the solution containing the copper and potassium ions is attached to the surface of the filtered and washed compound produced by the precipitation method here, taking in a very small amount of copper and potassium as described above in the precipitation process. This is to ensure that it is supported on the surface of the precipitate without being damaged.

尚、ここでいう付着とは、鉄、マグネシウム、及びカルシウム、並びに、前述した一種又は二種以上の鉄と化合物化し得る元素を含有する溶液からの沈殿物を、水分を含んだスラリー又はケーキの状態で銅およびカリウムのイオンを含む溶液と物理的に混合し、加温下で攪拌しながら水分を蒸発させる、あるいは、前記沈殿物を乾燥、焼成の少なくともいずれかを行った後、篩い分けにより整粒した粉体または必要に応じて圧縮成型器等により成型した成型体を、銅およびカリウムのイオンを含む溶液に浸し、加温下で水分を蒸発させることにより、鉄、マグネシウム、カルシウム、並びに、前述した一種又は二種以上の鉄と化合物化し得る元素からなる化合物に銅およびカリウムを担持することを意味する。   The term “adhesion” as used herein refers to precipitates from a solution containing iron, magnesium, calcium, and an element that can be compounded with one or more kinds of iron as described above, in a slurry or cake containing moisture. In a state, it is physically mixed with a solution containing copper and potassium ions, and the water is evaporated while stirring under heating, or the precipitate is dried and baked, and then sieved. By immersing the granulated powder or a molded body molded by a compression molding machine as necessary in a solution containing copper and potassium ions, and evaporating water under heating, iron, magnesium, calcium, and It means that copper and potassium are supported on the compound composed of an element that can be compounded with one or two or more kinds of iron as described above.

最終的には、ここで得られた化合物をFT合成反応の反応温度以上の温度で焼成するが、その焼成温度は200〜1200℃の範囲であるのが好ましい。焼成温度が200℃未満の場合には、温度が低すぎて焼結が進まず、高い触媒活性が得られないため好ましくない。一方、焼成温度が1200℃を超える場合には、焼結が進みすぎて得られた化合物の表面積が小さくなり、高い触媒活性を得ることができないため好ましくない。   Finally, the compound obtained here is calcined at a temperature equal to or higher than the reaction temperature of the FT synthesis reaction, and the calcining temperature is preferably in the range of 200 to 1200 ° C. A calcination temperature of less than 200 ° C. is not preferable because the temperature is too low and sintering does not proceed and high catalytic activity cannot be obtained. On the other hand, when the calcination temperature exceeds 1200 ° C., the surface area of the compound obtained by excessive sintering is reduced, and high catalytic activity cannot be obtained.

尚、本製造方法において出発原料として用いる鉄、マグネシウム、カルシウム、銅、カリウム、鉄と化合物化し得る元素との各化合物は、各成分がイオンとして水溶液化できるものであれば特に限定されるものではなく、例えば、硝酸化物、水酸化物、炭酸化物、硫酸化物、ハロゲン化物等の無機化合物や酢酸化物等の有機化合物が好適に用いられる。   In addition, each compound of iron, magnesium, calcium, copper, potassium, and an element that can be compounded with iron used as a starting material in this production method is not particularly limited as long as each component can be made into an aqueous solution as an ion. For example, inorganic compounds such as nitrates, hydroxides, carbonates, sulfates and halides, and organic compounds such as acetates are preferably used.

また上記沈殿工程において、沈殿時のpH、温度は、形成される沈殿物の細孔構造、結晶サイズ等に大きな影響を与えるため、各条件を制御、保持することにより均一な化合物を形成することが可能になることから、沈殿液のpHを6〜10、温度を室温〜90℃の範囲に制御するのが好ましく、また溶液のpHが7〜9、温度が50〜80℃の範囲がより好ましい。pHが9より大きい条件下で沈殿させる場合には、沈殿剤の種類にも依存するが、錯体化合物を形成して溶解性が増し、沈殿物が生成しにくい場合があるためあまり好ましくない。また、pHが7より小さい場合には目的成分の水への溶解度が高く沈殿が起こりにくい傾向がある。   In the precipitation step, since the pH and temperature during precipitation greatly affect the pore structure, crystal size, etc. of the formed precipitate, a uniform compound can be formed by controlling and maintaining each condition. Therefore, it is preferable to control the pH of the precipitation solution in the range of 6 to 10 and the temperature in the range of room temperature to 90 ° C, and the pH of the solution is in the range of 7 to 9 and the temperature in the range of 50 to 80 ° C. preferable. When the precipitation is carried out under a condition where the pH is greater than 9, it depends on the kind of the precipitant, but it is less preferred since it may form a complex compound to increase the solubility and hardly generate a precipitate. On the other hand, when the pH is smaller than 7, the solubility of the target component in water tends to be high and precipitation does not easily occur.

さらに温度については、50℃より低い場合には鉄、マグネシウム、カルシウム、鉄と化合物化し得る元素の各出発原料を高濃度に溶解させることが困難になる恐れがある。また80℃より高い場合には、逆に溶解度が高くなって沈殿を起こしにくく収率が低下する恐れがある。   Furthermore, when the temperature is lower than 50 ° C., it may be difficult to dissolve each starting material of elements that can be compounded with iron, magnesium, calcium, and iron at a high concentration. On the other hand, when the temperature is higher than 80 ° C., the solubility becomes high and precipitation is unlikely to occur, which may reduce the yield.

ここで沈殿剤としては、炭酸ナトリウム水溶液、アンモニア水などが好適に用いられるが、特にこれに限定されるものではない。   Here, as the precipitating agent, an aqueous sodium carbonate solution, aqueous ammonia or the like is preferably used, but is not particularly limited thereto.

さらに、本発明者らが鋭意検討した結果、触媒の反応中の粉化を防ぐ強度の高い触媒を製造する方法として、前記沈殿法で製造した化合物を含む溶液にシリカゾル、アルミナゾルの少なくともいずれかを添加した後、噴霧法により球状に成形するものである。ここで添加するシリカゾル、アルミナゾルの少なくともいずれかは、沈殿物粒子同士を結合し、球形に成形するバインダーの役割を果たすと共に、焼成後にそれぞれシリカ、アルミナに変化して前述したFT合成反応の促進効果を担う。最終的に成形した粉体を焼成した後の化合物には、加えたシリカゾル、アルミナゾルはそれぞれシリカ、アルミナとなって存在するが、成形時に沈殿法で製造した化合物を含む溶液へシリカゾル、アルミナゾルを加える割合は、焼成後に最終的に得られる化合物中のシリカ、アルミナの少なくともいずれかの含有量が1〜90質量%となるようにすることが好ましい。シリカゾル、アルミナゾルの少なくともいずれかの添加量が、焼成後の化合物のシリカ、アルミナの少なくともいずれかの含有量で1質量%未満となる場合には、添加効果がほとんど見られず好ましくない。また、シリカゾル、アルミナゾルの少なくともいずれかの添加量が、焼成後の化合物中のシリカ、アルミナの少なくともいずれかの含有量で90質量%を超えるような場合には、触媒活性種の鉄の含有量が少なくなるため、触媒活性が十分得られず好ましくない。   Furthermore, as a result of intensive studies by the present inventors, as a method for producing a high-strength catalyst that prevents pulverization during the reaction of the catalyst, at least one of silica sol and alumina sol is added to the solution containing the compound produced by the precipitation method. After the addition, it is formed into a spherical shape by a spraying method. At least one of the silica sol and the alumina sol added here functions as a binder that binds the precipitate particles to form a spherical shape, and changes to silica and alumina after firing to promote the above-described FT synthesis reaction. Take on. In the compound after the final molded powder is fired, the added silica sol and alumina sol exist as silica and alumina, respectively, but the silica sol and alumina sol are added to the solution containing the compound produced by the precipitation method at the time of molding. The ratio is preferably such that the content of at least one of silica and alumina in the compound finally obtained after firing is 1 to 90% by mass. When the addition amount of at least one of silica sol and alumina sol is less than 1% by mass in the content of at least one of silica and alumina of the compound after firing, the addition effect is hardly seen, which is not preferable. Further, when the addition amount of at least one of silica sol and alumina sol exceeds 90 mass% in the content of at least one of silica and alumina in the compound after firing, the content of iron as a catalytically active species Therefore, the catalyst activity is not sufficiently obtained, which is not preferable.

次に、本発明の鉄系FT合成用触媒を用いたFT合成反応について述べる。すなわち、前記した金属成分として鉄、マグネシウム、カルシウム、銅、カリウム、鉄と化合物化し得る元素からなる化合物またはこの化合物にシリカ、アルミナの少なくともいずれかを含む化合物を触媒として用い、これに合成ガスを接触させて、合成ガスから炭化水素を製造するものである。   Next, the FT synthesis reaction using the iron-based FT synthesis catalyst of the present invention will be described. That is, as a metal component described above, a compound comprising an element that can be compounded with iron, magnesium, calcium, copper, potassium, iron, or a compound containing at least one of silica and alumina in this compound is used as a catalyst, and synthesis gas is used for this. Contact is made to produce hydrocarbons from synthesis gas.

すなわち、反応槽に触媒を充填して合成ガスを流通することであり、反応槽の形式としては固定床、噴流床、流動床、スラリー床のいずれも好適に用いることができる。   That is, the catalyst is filled in the reaction tank and the synthesis gas is circulated, and any of a fixed bed, a spouted bed, a fluidized bed, and a slurry bed can be suitably used as the reaction tank.

ここで合成ガスとは、例えば天然ガスなどを変換して製造される水素と一酸化炭素の合計が全体の50体積%以上であるガスを指し、本発明の鉄系FT合成用触媒に対しては合成ガス中の水素と一酸化炭素のモル比(水素/一酸化炭素)が0.5〜4.0の範囲であることが望ましい。この水素と一酸化炭素のモル比が0.5未満の場合には、原料ガス中の水素の存在量が少な過ぎるため、一酸化炭素の水素化反応(FT合成反応)が進みにくく、液状炭化水素の生産性も高くならないため好ましくない。またこの水素と一酸化炭素のモル比が4.0を超える場合には、原料ガス中の一酸化炭素の存在量が少な過ぎるため、触媒活性に関わらず液状炭化水素の生産性が高くならないことから好ましくない。   Here, the synthesis gas refers to a gas in which the total of hydrogen and carbon monoxide, for example, produced by converting natural gas or the like is 50% by volume or more of the total, and for the iron-based FT synthesis catalyst of the present invention. The molar ratio of hydrogen and carbon monoxide (hydrogen / carbon monoxide) in the synthesis gas is preferably in the range of 0.5 to 4.0. When the molar ratio of hydrogen to carbon monoxide is less than 0.5, the amount of hydrogen present in the raw material gas is too small, so that the hydrogenation reaction of carbon monoxide (FT synthesis reaction) is difficult to proceed, and liquid carbonization This is not preferable because the productivity of hydrogen does not increase. When the molar ratio of hydrogen to carbon monoxide exceeds 4.0, the amount of carbon monoxide present in the raw material gas is too small, so that the productivity of liquid hydrocarbons does not increase regardless of the catalyst activity. Is not preferable.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

(実施例1)
硝酸鉄13.4gと硝酸マグネシウム25.6gと硝酸カルシウム2.4g、五酸化バナジウム0.6gを精秤し、300ccの水へ加えて加温下で混合水溶液を調製し、溶液を攪拌機で攪拌させた状態で、沈殿時の液成分(沈殿液)の温度を60℃、pHを8に維持するようアンモニア水溶液を徐々に加えて沈殿物を形成した。その後、60℃で保持したまま1時間攪拌を続けて熟成を行った後、室温で2時間静置し、沈殿物をろ過、洗浄した。その沈殿物(化合物)に対して硝酸銅0.08gと硝酸カリウム0.34gを精秤し、10ccの水へ加えて調製した混合水溶液を添加して十分混合した。そこで得られたスラリーを120℃で12時間乾燥後、空気中400℃にて4時間焼成を行い、モル比で100Fe/300Mg/30Ca/1Cu/10K/10Vの化合物(主に酸化物)を得た。
Example 1
13.4 g of iron nitrate, 25.6 g of magnesium nitrate, 2.4 g of calcium nitrate and 0.6 g of vanadium pentoxide are precisely weighed and added to 300 cc of water to prepare a mixed aqueous solution under heating, and the solution is stirred with a stirrer. In this state, an aqueous ammonia solution was gradually added so as to maintain the temperature of the liquid component (precipitation liquid) at the time of precipitation at 60 ° C. and pH of 8, thereby forming a precipitate. Thereafter, the mixture was aged by continuing stirring for 1 hour while being kept at 60 ° C., and then allowed to stand at room temperature for 2 hours, and the precipitate was filtered and washed. To the precipitate (compound), 0.08 g of copper nitrate and 0.34 g of potassium nitrate were precisely weighed, and a mixed aqueous solution prepared by adding to 10 cc of water was added and mixed well. The slurry thus obtained was dried at 120 ° C. for 12 hours and then calcined in air at 400 ° C. for 4 hours to obtain a compound (mainly oxide) having a molar ratio of 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10V. It was.

この化合物粉末を、圧縮成形器で600kg/cmでプレスした後、十分に粉砕して、22〜42メッシュ(355〜710μm)に整粒することにより、触媒を調製した。本調製品の比表面積は124m/gであった。 The compound powder was pressed at 600 kg / cm 2 with a compression molding machine, and then sufficiently pulverized to adjust the particle size to 22 to 42 mesh (355 to 710 μm) to prepare a catalyst. The specific surface area of this preparation was 124 m 2 / g.

このようにして調製した触媒0.5gを用い、溶媒として30mLのFTワックス(FT−100:日本精鑞製)と共に内容積100mLのオートクレーブへ仕込んだ後、270℃、0.1MPa(絶対圧)の条件の条件下、撹拌子を800min−1で回転させながら、合成ガス(水素67%、一酸化炭素33%、H/CO=2)を100ml/minで1h流通させて触媒を活性化処理して触媒表面上に鉄カーバイドを形成させた後、オートクレーブ内の圧力を2.0MPa−G(ゲージ圧)に昇圧し、上記合成ガスをW(触媒質量)/F(合成ガス流速)=2.5(g・h/mol)の条件に整定してFT合成反応を行った。触媒のパフォーマンスは、CO転化率、CH選択率、CO選択率、C5+の液状炭化水素生産性で判断し、それらは出口ガス中の各成分の濃度より、以下の式により算出した。 Using 0.5 g of the catalyst prepared in this manner, 30 mL of FT wax (FT-100: manufactured by Nippon Seiki) as a solvent was charged into an autoclave with an internal volume of 100 mL, and then 270 ° C. and 0.1 MPa (absolute pressure). While rotating the stir bar at 800 min −1 , the synthesis gas (67% hydrogen, 33% carbon monoxide, H 2 / CO = 2) was passed for 1 h at 100 ml / min to activate the catalyst. After processing to form iron carbide on the catalyst surface, the pressure in the autoclave is increased to 2.0 MPa-G (gauge pressure), and the synthesis gas is W (catalyst mass) / F (synthesis gas flow rate) = The FT synthesis reaction was carried out under conditions of 2.5 (g · h / mol). The performance of the catalyst was judged by CO conversion, CH 4 selectivity, CO 2 selectivity, and C 5+ liquid hydrocarbon productivity, which were calculated from the concentration of each component in the outlet gas by the following formula.

Figure 2007061770
Figure 2007061770

5+の液状炭化水素生産性(g/kg−cat.h)=[触媒単位質量、単位時間当りのCOモル数]×[CO転化率]×[1−(C〜C選択率)]×[炭化水素の平均分子量(=14)]
このような条件下でFT合成反応を行ったところ、表1に示す結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。
C 5+ liquid hydrocarbon productivity (g / kg-cat.h) = [unit mass of catalyst, number of CO moles per unit time] × [CO conversion rate] × [1- (C 1 -C 4 selectivity) ] × [Average molecular weight of hydrocarbon (= 14)]
Was subjected to FT synthesis reaction under such conditions, the results shown in Table 1 were obtained, it was confirmed that C 5+ productivity is high and CO 2 selectivity exerts a relatively low high activity performance .

(実施例2)
バナジウムの替わりに5(NHO・12WO・5HOを用いて最終的に得られる生成物のモル比が100Fe/300Mg/30Ca/1Cu/10K/10Wとなるほかは、実施例1と同様にして化合物を調製した。本調製品の比表面積は118m/gであった。本化合物を用いてFT合成反応を行ったところ、表1に示す結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。
(Example 2)
Except that the molar ratio of the product finally obtained by using 5 (NH 4 ) 2 O · 12WO 3 · 5H 2 O instead of vanadium is 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10W The compound was prepared as in 1. The specific surface area of this preparation was 118 m 2 / g. When an FT synthesis reaction was carried out using this compound, the results shown in Table 1 were obtained, and it was confirmed that the C 5+ productivity was high and the CO 2 selectivity was relatively low, exhibiting highly active performance.

(実施例3)
バナジウムの替わりにホウ酸(HBO)を用いて最終的に得られる生成物のモル比が100Fe/300Mg/30Ca/1Cu/10K/10Bとなるほかは実施例1と同様にして化合物を調製した。本調製品の比表面積は107m/gであった。本化合物を用いてFT合成反応を行ったところ、表1に示すような結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。
(Example 3)
The compound is obtained in the same manner as in Example 1 except that boric acid (H 3 BO 3 ) is used instead of vanadium and the molar ratio of the final product is 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10B. Prepared. The specific surface area of this preparation was 107 m 2 / g. When the FT synthesis reaction was carried out using this compound, the results shown in Table 1 were obtained, and it was confirmed that the C5 + productivity was high and the CO 2 selectivity was relatively low, exhibiting a highly active performance. It was.

(実施例4)
バナジウムの替わりに硝酸酸化ジルコニウム(ZrO(NO)を用いて最終的に得られる生成物のモル比が100Fe/300Mg/30Ca/1Cu/10K/10Zrとなるほかは実施例1と同様にして化合物を調製した。本調製品の比表面積は95m/gであった。本化合物を用いてFT合成反応を行ったところ、表1に示すような結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。
Example 4
The same as in Example 1 except that the molar ratio of the product finally obtained using zirconium nitrate oxide (ZrO (NO 3 ) 2 ) instead of vanadium is 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10Zr. The compound was prepared. The specific surface area of this preparation was 95 m 2 / g. When the FT synthesis reaction was carried out using this compound, the results shown in Table 1 were obtained, and it was confirmed that the C5 + productivity was high and the CO 2 selectivity was relatively low, exhibiting a highly active performance. It was.

(実施例5)
バナジウムの替わりに硝酸亜鉛(Zn(NO)を用いて最終的に得られる生成物のモル比が100Fe/300Mg/30Ca/1Cu/10K/10Znとなるほかは実施例1と同様にして化合物を調製した。本調製品の比表面積は102m/gであった。本化合物を用いてFT合成反応を行ったところ、表1に示す結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。
(Example 5)
The same as in Example 1 except that zinc nitrate (Zn (NO 3 ) 2 ) is used instead of vanadium and the molar ratio of the product finally obtained is 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10Zn. The compound was prepared. The specific surface area of this preparation was 102 m 2 / g. When an FT synthesis reaction was carried out using this compound, the results shown in Table 1 were obtained, and it was confirmed that the C 5+ productivity was high and the CO 2 selectivity was relatively low, exhibiting highly active performance.

(実施例6)
バナジウムの替わりにNHNbFを用いて最終的に得られる生成物のモル比が100Fe/300Mg/30Ca/1Cu/10K/10Nbとなるほかは実施例1と同様にして化合物を調製した。本調製品の比表面積は95m/gであった。本化合物を用いてFT合成反応を行ったところ、表1に示すような結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。
(Example 6)
A compound was prepared in the same manner as in Example 1 except that NH 4 NbF 6 was used instead of vanadium and the final product molar ratio was 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10Nb. The specific surface area of this preparation was 95 m 2 / g. When the FT synthesis reaction was carried out using this compound, the results shown in Table 1 were obtained, and it was confirmed that the C5 + productivity was high and the CO 2 selectivity was relatively low, exhibiting a highly active performance. It was.

(実施例7)
バナジウムの替わりに(NHMo24を用いて最終的に得られる生成物のモル比が100Fe/300Mg/30Ca/1Cu/10K/10Moとなるほかは実施例1と同様にして化合物を調製した。本調製品の比表面積は88m/gであった。本化合物を用いてFT合成反応を行ったところ、表1に示すような結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。
(Example 7)
Compound similar to Example 1 except that (NH 4 ) 6 Mo 7 O 24 is used instead of vanadium and the molar ratio of the product finally obtained is 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10Mo Was prepared. The specific surface area of this preparation was 88 m 2 / g. When the FT synthesis reaction was carried out using this compound, the results shown in Table 1 were obtained, and it was confirmed that the C5 + productivity was high and the CO 2 selectivity was relatively low, exhibiting a highly active performance. It was.

(実施例8)
バナジウムの替わりに硝酸クロム(III)九水和物を用いて最終的に得られる生成物のモル比が100Fe/300Mg/30Ca/1Cu/10K/10Crとなるほかは実施例1と同様にして化合物を調製した。本調製品の比表面積は90m/gであった。本化合物を用いてFT合成反応を行ったところ、表2に示すような結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。
(Example 8)
The compound obtained in the same manner as in Example 1 except that the molar ratio of the product finally obtained using chromium (III) nitrate nonahydrate instead of vanadium is 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10Cr. Was prepared. The specific surface area of this preparation was 90 m 2 / g. Was subjected to FT synthesis reaction using the present compounds, the results shown in Table 2 is obtained, it is confirmed that the C 5+ productivity is high and CO 2 selectivity exerts a relatively low high activity performance It was.

(実施例9)
バナジウムの替わりに硝酸マンガンを用いて最終的に得られる生成物のモル比が100Fe/300Mg/30Ca/1Cu/10K/10Mnとなるほかは実施例1と同様にして化合物を調製した。本調製品の比表面積は112m/gであった。本化合物を用いてFT合成反応を行ったところ、表2に示すような結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。
Example 9
A compound was prepared in the same manner as in Example 1 except that manganese nitrate was used instead of vanadium and the molar ratio of the product finally obtained was 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10Mn. The specific surface area of this preparation was 112 m 2 / g. Was subjected to FT synthesis reaction using the present compounds, the results shown in Table 2 is obtained, it is confirmed that the C 5+ productivity is high and CO 2 selectivity exerts a relatively low high activity performance It was.

(実施例10)
バナジウムの替わりに硫酸チタンを用いて最終的に得られる生成物のモル比が100Fe/300Mg/30Ca/1Cu/10K/10Tiとなるほかは実施例1と同様にして化合物を調製した。本調製品の比表面積は105m/gであった。本化合物を用いてFT合成反応を行ったところ、表2に示すような結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。
(Example 10)
A compound was prepared in the same manner as in Example 1 except that titanium sulfate was used instead of vanadium and the molar ratio of the product finally obtained was 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10Ti. The specific surface area of this preparation was 105 m 2 / g. Was subjected to FT synthesis reaction using the present compounds, the results shown in Table 2 is obtained, it is confirmed that the C 5+ productivity is high and CO 2 selectivity exerts a relatively low high activity performance It was.

(実施例11)
実施例1と同様にして100Fe/300Mg/30Ca/1Cu/10K/10Vとなるように調製したスラリーへ、シリカゾルを焼成後の触媒中のSiOが20質量%の割合になるように添加し、スラリーを調製した。その後、平均粒径が約50μmの球形になるような条件で噴霧乾燥を行い、そこで得られた粉末を空気中400℃で4時間焼成を行った。本調製品の比表面積は280m/gであった。本化合物を用いてFT合成反応を行ったところ、表2に示すような結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。本調製品に関し、反応前及び反応を500時間行った後の触媒を回収して粒度分布を測定したところ、20μm以下の粒子の占める質量割合は、反応前が0.28%、500時間反応後が0.32%とほぼ同一であり、本調製品は反応中で破壊あるいは粉化する程度が極めて小さかった。
(Example 11)
To the slurry prepared to be 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10V in the same manner as in Example 1, the silica sol was added so that the SiO 2 in the catalyst after calcination was 20% by mass, A slurry was prepared. Thereafter, spray drying was carried out under conditions such that the average particle diameter was about 50 μm, and the powder obtained was calcined at 400 ° C. in air for 4 hours. The specific surface area of this preparation was 280 m 2 / g. Was subjected to FT synthesis reaction using the present compounds, the results shown in Table 2 is obtained, it is confirmed that the C 5+ productivity is high and CO 2 selectivity exerts a relatively low high activity performance It was. Regarding this preparation, the catalyst after the reaction and after the reaction for 500 hours was collected and the particle size distribution was measured. The mass ratio of the particles of 20 μm or less was 0.28% before the reaction and after the reaction for 500 hours. Was almost the same as 0.32%, and the preparation was extremely small to be broken or pulverized in the reaction.

(実施例12)
実施例1と同様にして100Fe/300Mg/30Ca/1Cu/10K/10Vとなるように調製したスラリーへ、アルミナゾルを焼成後の触媒中のAlが20質量%の割合になるように添加し、スラリーを調製した。その後、平均粒径が約50μmの球形になるような条件で噴霧乾燥を行い、そこで得られた粉末を空気中400℃で4時間焼成を行った。本調製品の比表面積は265m/gであった。本化合物を用いてFT合成反応を行ったところ、表2に示すような結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。本調製品に関し、実施例11と同様に反応前及び反応を500時間行った後の触媒を回収して粒度分布を測定したところ、20μm以下の粒子の占める質量割合は、反応前が0.33%、500時間反応後が0.38%とほぼ同一であり、本調製品は反応中で破壊あるいは粉化する程度が極めて小さかった。
(Example 12)
Addition of alumina sol to slurry prepared to be 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10V in the same manner as in Example 1 so that Al 2 O 3 in the catalyst after calcination is 20% by mass And a slurry was prepared. Thereafter, spray drying was carried out under conditions such that the average particle diameter was about 50 μm, and the powder obtained was calcined at 400 ° C. in air for 4 hours. The specific surface area of this preparation was 265 m 2 / g. Was subjected to FT synthesis reaction using the present compounds, the results shown in Table 2 is obtained, it is confirmed that the C 5+ productivity is high and CO 2 selectivity exerts a relatively low high activity performance It was. Regarding this preparation, the catalyst before the reaction and after the reaction for 500 hours was collected and the particle size distribution was measured in the same manner as in Example 11. The mass ratio of particles of 20 μm or less was 0.33 before the reaction. %, After 500 hours of reaction, it was almost the same as 0.38%, and the preparation was extremely small to be broken or pulverized during the reaction.

(実施例13)
実施例1と同様の混合水溶液へ実施例2と同じ5(NHO・12WO・5HOを加えた水溶液を調製し、実施例1と同様にして沈殿することにより最終的に得られる生成物のモル比が100Fe/300Mg/30Ca/1Cu/10K/10V/10Wとなるほかは実施例1と同様にして化合物を調製した。本調製品の比表面積は112m/gであった。本化合物を用いてFT合成反応を行ったところ、表2に示すような結果が得られ、C5+生産性が高く且つCO選択率が比較的低い高活性な性能を発揮することが確認された。
(Example 13)
An aqueous solution obtained by adding the same 5 (NH 4 ) 2 O · 12WO 3 · 5H 2 O as in Example 2 to the same mixed aqueous solution as in Example 1 was prepared, and finally precipitated by the same manner as in Example 1. A compound was prepared in the same manner as in Example 1 except that the molar ratio of the obtained product was 100Fe / 300Mg / 30Ca / 1Cu / 10K / 10V / 10W. The specific surface area of this preparation was 112 m 2 / g. Was subjected to FT synthesis reaction using the present compounds, the results shown in Table 2 is obtained, it is confirmed that the C 5+ productivity is high and CO 2 selectivity exerts a relatively low high activity performance It was.

(比較例1)
工業触媒(100Fe/5Cu/4.2K/25SiO)相当品を以下のように調製した。すなわち、硝酸鉄、硝酸銅、テトラエトキシシランを各金属元素のモル比が100:5:25となるように精秤して、加温下で混合溶液を調製し、溶液を攪拌機で攪拌させた状態で、水溶液の温度を60℃、pHを9に維持するようアンモニア水溶液を徐々に加えて沈殿物を形成した。その後、60℃で保持したまま1時間攪拌を続けて熟成を行った後、室温で2時間静置した後、沈殿物をろ過した。その沈殿物に対して硝酸カリウム水溶液を混合した。そこで得られたスラリーを120℃で12時間乾燥後、空気中400℃にて4時間焼成を行い、上記モル比を有する化合物を得た。この化合物粉末を、圧縮成形器で600kg/cmでプレスした後、十分に粉砕して、22〜42メッシュ(355〜710μm)に整粒することにより、触媒を調製した。本化合物を用いて実施例1と同様にFT合成反応を行ったところ、表2に示すような結果が得られ、CO選択率が高くC5+の液状炭化水素生産性が低い性能にとどまることが確認された。
(Comparative Example 1)
The industrial catalysts (100Fe / 5Cu / 4.2K / 25SiO 2) equivalent was prepared as follows. That is, iron nitrate, copper nitrate, and tetraethoxysilane were precisely weighed so that the molar ratio of each metal element was 100: 5: 25, a mixed solution was prepared under heating, and the solution was stirred with a stirrer. In this state, an aqueous ammonia solution was gradually added so as to maintain the temperature of the aqueous solution at 60 ° C. and the pH at 9, thereby forming a precipitate. Thereafter, the mixture was aged by continuing stirring for 1 hour while being kept at 60 ° C., and then allowed to stand at room temperature for 2 hours, and then the precipitate was filtered. A potassium nitrate aqueous solution was mixed with the precipitate. The slurry thus obtained was dried at 120 ° C. for 12 hours and then calcined in air at 400 ° C. for 4 hours to obtain a compound having the above molar ratio. The compound powder was pressed at 600 kg / cm 2 with a compression molding machine, and then sufficiently pulverized to adjust the particle size to 22 to 42 mesh (355 to 710 μm) to prepare a catalyst. When this compound was used to carry out the FT synthesis reaction in the same manner as in Example 1, the results shown in Table 2 were obtained, and the CO 2 selectivity was high and the C 5+ liquid hydrocarbon productivity was low. Was confirmed.

(比較例2)
開発中の高活性触媒のうち、非特許文献4で示されている開発触媒(100Fe/1.4K/4.6Si)相当品を以下のように調製した。すなわち、硝酸鉄、テトラエトキシシランを各金属元素のモル比が100:4.6となるように精秤して、加温下で混合溶液を調製し、溶液を攪拌機で攪拌させた状態で、水溶液の温度を60℃、pHを9に維持するようアンモニア水溶液を徐々に加えて沈殿物を形成した。その後、60℃で保持したまま1時間攪拌を続けて熟成を行った後、室温で2時間静置した後、沈殿物をろ過した。その沈殿物に対して硝酸カリウム水溶液を混合した。そこで得られたスラリーを120℃で12時間乾燥後、空気中400℃にて4時間焼成を行い、上記モル比を有する化合物を得た。この化合物粉末を、圧縮成形器で600kg/cmでプレスした後、十分に粉砕して、22〜42メッシュ(355〜710μm)に整粒することにより、触媒を調製した。本化合物を用いて実施例1と同様にFT合成反応を行ったところ、表2に示すような結果が得られ、C5+の液状炭化水素生産性は工業触媒よりも高い性能を示したがCO選択率が非常に大きくなってしまうことが確認された。
(Comparative Example 2)
Among the highly active catalysts under development, a developed catalyst (100Fe / 1.4K / 4.6Si) equivalent product shown in Non-Patent Document 4 was prepared as follows. That is, iron nitrate and tetraethoxysilane are precisely weighed so that the molar ratio of each metal element is 100: 4.6, a mixed solution is prepared under heating, and the solution is stirred with a stirrer. Aqueous ammonia solution was gradually added so as to maintain the temperature of the aqueous solution at 60 ° C. and the pH at 9, thereby forming a precipitate. Thereafter, the mixture was aged by continuing stirring for 1 hour while being kept at 60 ° C., and then allowed to stand at room temperature for 2 hours, and then the precipitate was filtered. A potassium nitrate aqueous solution was mixed with the precipitate. The slurry thus obtained was dried at 120 ° C. for 12 hours and then calcined in air at 400 ° C. for 4 hours to obtain a compound having the above molar ratio. The compound powder was pressed at 600 kg / cm 2 with a compression molding machine, and then sufficiently pulverized to adjust the particle size to 22 to 42 mesh (355 to 710 μm) to prepare a catalyst. Using this compound, the FT synthesis reaction was carried out in the same manner as in Example 1. As a result, the results shown in Table 2 were obtained, and the C 5+ liquid hydrocarbon productivity was higher than that of the industrial catalyst. It was confirmed that 2 selectivity will become very large.

Figure 2007061770
Figure 2007061770

Figure 2007061770
Figure 2007061770

Claims (5)

鉄、マグネシウム、カルシウム、銅、及びカリウム、並びに、モリブデン、バナジウム、タングステン、ニオブ、ホウ素、ジルコニウム、亜鉛、クロム、マンガン、チタンのうちの一種または二種以上を有する化合物からなることを特徴とする合成ガスから炭化水素を製造する触媒。   It is composed of a compound having one or more of iron, magnesium, calcium, copper, and potassium, and molybdenum, vanadium, tungsten, niobium, boron, zirconium, zinc, chromium, manganese, and titanium. Catalyst that produces hydrocarbons from synthesis gas. 前記触媒にシリカ、アルミナの少なくともいずれかを含む請求項1記載の合成ガスから炭化水素を製造する触媒。   The catalyst for producing hydrocarbons from synthesis gas according to claim 1, wherein the catalyst contains at least one of silica and alumina. 請求項1記載の触媒を製造する方法であって、鉄、マグネシウム、及びカルシウムのイオン、並びに、モリブデン、バナジウム、タングステン、ニオブ、ホウ素、ジルコニウム、亜鉛、クロム、マンガン、チタンのうちの一種又は二種以上のイオンを含有する溶液から、沈殿法により生成した化合物をろ過、洗浄処理した後、当該処理後の化合物と銅およびカリウムのイオンを含む溶液を混合し、乾燥し、焼成した後、整粒又は成型する、
又は前記ろ過、洗浄処理後の化合物を乾燥、焼成の少なくともいずれかを行った後、整粒又は成型したものへ銅およびカリウムのイオンを含む溶液を含浸して更に乾燥し、焼成することを特徴とする合成ガスから炭化水素を製造する触媒の製造方法。
A method for producing the catalyst according to claim 1, wherein iron, magnesium, and calcium ions, and one or two of molybdenum, vanadium, tungsten, niobium, boron, zirconium, zinc, chromium, manganese, and titanium. After filtering and washing the compound produced by the precipitation method from a solution containing more than one species of ions, the compound after treatment and a solution containing copper and potassium ions are mixed, dried, baked, and adjusted. Grain or mold,
Alternatively, the compound after filtration and washing treatment is dried and fired, and then the sized or molded compound is impregnated with a solution containing copper and potassium ions and further dried and fired. A method for producing a catalyst for producing hydrocarbons from synthesis gas.
請求項2記載の触媒を製造する方法であって、鉄、マグネシウム、及びカルシウムのイオン、並びに、モリブデン、バナジウム、タングステン、ニオブ、ホウ素、ジルコニウム、亜鉛、クロム、マンガン、チタンのうちの一種又は二種以上のイオンを含有する溶液から、沈殿法により生成した化合物をろ過、洗浄処理した後、当該処理後の化合物と銅及びカリウムのイオンを含む溶液を混合した混合物をスラリー化した液に、シリカゾル、アルミナゾルの少なくともいずれかを添加後、噴霧法により球状に成形することを特徴とする合成ガスから炭化水素を製造する触媒の製造方法。   3. A method for producing a catalyst according to claim 2, wherein one or two of iron, magnesium and calcium ions and molybdenum, vanadium, tungsten, niobium, boron, zirconium, zinc, chromium, manganese and titanium are used. After filtering and washing the compound produced by the precipitation method from a solution containing more than one species of ions, the mixture of the compound after treatment and a solution containing copper and potassium ions is slurried into a slurry of silica sol A method for producing a catalyst for producing hydrocarbons from synthesis gas, comprising adding at least one of alumina sol and then forming a spherical shape by a spray method. 請求項1又は2記載の触媒に合成ガスを接触させて、合成ガスから炭化水素を製造する方法。   A method for producing hydrocarbons from synthesis gas by bringing synthesis gas into contact with the catalyst according to claim 1.
JP2005253719A 2005-09-01 2005-09-01 Catalyst for producing hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing hydrocarbons from synthesis gas using the catalyst Expired - Fee Related JP4698343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005253719A JP4698343B2 (en) 2005-09-01 2005-09-01 Catalyst for producing hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing hydrocarbons from synthesis gas using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005253719A JP4698343B2 (en) 2005-09-01 2005-09-01 Catalyst for producing hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing hydrocarbons from synthesis gas using the catalyst

Publications (2)

Publication Number Publication Date
JP2007061770A true JP2007061770A (en) 2007-03-15
JP4698343B2 JP4698343B2 (en) 2011-06-08

Family

ID=37924597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005253719A Expired - Fee Related JP4698343B2 (en) 2005-09-01 2005-09-01 Catalyst for producing hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing hydrocarbons from synthesis gas using the catalyst

Country Status (1)

Country Link
JP (1) JP4698343B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025222A1 (en) * 2007-08-17 2009-02-26 Biomass Energy Corporation Method and apparatus for production of hydrocarbon from biomass
JP2010024187A (en) * 2008-07-22 2010-02-04 Mitsubishi Gas Chemical Co Inc Method for producing aromatic nitrile
JP2014124628A (en) * 2012-12-27 2014-07-07 Sekisui Chem Co Ltd Catalyst for c2 oxygen compound synthesis, apparatus and method for producing c2 oxygen compound
US8791041B2 (en) 2009-06-03 2014-07-29 Rentech, Inc. Slurry bed fischer-tropsch catalysts with silica/alumina structural promoters
JP2014147868A (en) * 2013-01-31 2014-08-21 Kubota Corp Method for producing fuel synthesis catalyst, fuel synthesis catalyst, and method for producing hydrocarbons
JP2017518170A (en) * 2014-04-21 2017-07-06 武▲漢凱▼迪工程技▲術▼研究▲総▼院有限公司 Structured iron-based catalyst for the production of α-olefins from synthesis gas, and the preparation and use thereof
CN110975883A (en) * 2019-12-05 2020-04-10 东北石油大学 Preparation method of bifunctional core-shell catalyst for preparing aviation kerosene through carbon dioxide hydrogenation
CN111774060A (en) * 2019-04-03 2020-10-16 国家能源投资集团有限责任公司 Fischer-Tropsch synthesis iron-based catalyst, preparation method and application thereof, and method for preparing hydrocarbon compound by Fischer-Tropsch synthesis of synthesis gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227847A (en) * 1990-05-04 1992-08-17 Shell Internatl Res Maatschappij Bv Manufacture of alumina extruded item
JP2004322085A (en) * 2003-04-07 2004-11-18 Nippon Steel Corp Catalyst for producing hydrocarbon from synthetic gas, method for manufacturing the catalyst and method for producing hydrocarbon
JP2005537340A (en) * 2002-02-19 2005-12-08 シェブロン ユー.エス.エー. インコーポレイテッド Process for producing highly branched Fischer-Tropsch products and potassium-promoted iron catalyst
JP2006510470A (en) * 2002-05-15 2006-03-30 ジュート−ヒェミー アクチェンゲゼルシャフト Fischer-Tropsch catalyst made with high purity iron precursor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227847A (en) * 1990-05-04 1992-08-17 Shell Internatl Res Maatschappij Bv Manufacture of alumina extruded item
JP2005537340A (en) * 2002-02-19 2005-12-08 シェブロン ユー.エス.エー. インコーポレイテッド Process for producing highly branched Fischer-Tropsch products and potassium-promoted iron catalyst
JP2006510470A (en) * 2002-05-15 2006-03-30 ジュート−ヒェミー アクチェンゲゼルシャフト Fischer-Tropsch catalyst made with high purity iron precursor
JP2004322085A (en) * 2003-04-07 2004-11-18 Nippon Steel Corp Catalyst for producing hydrocarbon from synthetic gas, method for manufacturing the catalyst and method for producing hydrocarbon

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025222A1 (en) * 2007-08-17 2009-02-26 Biomass Energy Corporation Method and apparatus for production of hydrocarbon from biomass
JP2009046554A (en) * 2007-08-17 2009-03-05 Biomass Energy Kk Method and device for manufacturing hydrocarbon from biomass
CN101802134A (en) * 2007-08-17 2010-08-11 生物能源株式会社 Method and apparatus for production of hydrocarbon from biomass
JP2010024187A (en) * 2008-07-22 2010-02-04 Mitsubishi Gas Chemical Co Inc Method for producing aromatic nitrile
US8791041B2 (en) 2009-06-03 2014-07-29 Rentech, Inc. Slurry bed fischer-tropsch catalysts with silica/alumina structural promoters
US8946108B2 (en) 2009-06-03 2015-02-03 Res Usa, Llc. Slurry bed Fischer-Tropsch catalysts with silica/alumina structural promoters
JP2014124628A (en) * 2012-12-27 2014-07-07 Sekisui Chem Co Ltd Catalyst for c2 oxygen compound synthesis, apparatus and method for producing c2 oxygen compound
JP2014147868A (en) * 2013-01-31 2014-08-21 Kubota Corp Method for producing fuel synthesis catalyst, fuel synthesis catalyst, and method for producing hydrocarbons
JP2017518170A (en) * 2014-04-21 2017-07-06 武▲漢凱▼迪工程技▲術▼研究▲総▼院有限公司 Structured iron-based catalyst for the production of α-olefins from synthesis gas, and the preparation and use thereof
CN111774060A (en) * 2019-04-03 2020-10-16 国家能源投资集团有限责任公司 Fischer-Tropsch synthesis iron-based catalyst, preparation method and application thereof, and method for preparing hydrocarbon compound by Fischer-Tropsch synthesis of synthesis gas
CN110975883A (en) * 2019-12-05 2020-04-10 东北石油大学 Preparation method of bifunctional core-shell catalyst for preparing aviation kerosene through carbon dioxide hydrogenation
CN110975883B (en) * 2019-12-05 2023-03-24 东北石油大学 Preparation method of bifunctional core-shell catalyst for preparing aviation kerosene through carbon dioxide hydrogenation

Also Published As

Publication number Publication date
JP4698343B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4698343B2 (en) Catalyst for producing hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing hydrocarbons from synthesis gas using the catalyst
JP4429063B2 (en) Catalyst for producing hydrocarbon from synthesis gas, method for producing the catalyst, and method for producing hydrocarbon
JP5128526B2 (en) Fischer-Tropsch synthesis catalyst and method for producing hydrocarbons
CA2826520C (en) A method of preparing a catalyst precursor
EP2318131B1 (en) Catalyst for direct production of light olefins and preparation method thereof
JP2004000900A (en) Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
US9156022B2 (en) Attrition resistant supports for fischer-tropsch catalyst and process for making same
JP5610900B2 (en) FT synthesis catalyst production method and hydrocarbon production method using the catalyst
WO2018069759A1 (en) Copper/zinc/aluminium catalyst for the methanol synthesis prepared from a binary zinc-aluminium precursor solution
JP5129037B2 (en) Fischer-Tropsch synthesis catalyst and method for producing hydrocarbons
JP4773116B2 (en) Method for producing catalyst for producing hydrocarbons from synthesis gas, and method for producing hydrocarbons from synthesis gas using the catalyst
JP5269892B2 (en) Process for the preparation of cobalt-zinc oxide Fischer-Tropsch catalyst
JP7009294B2 (en) A catalyst for producing a hydrocarbon from carbon dioxide and hydrogen, a method for producing the catalyst, and a method for producing a hydrocarbon from carbon dioxide and hydrogen.
JP5100151B2 (en) Catalyst for producing hydrocarbons from synthesis gas, catalyst production method, method for producing hydrocarbons from synthesis gas, and catalyst regeneration method
EP2640514A1 (en) Stable slurry bed fischer-tropsch catalyst with high surface area and activity
JP2004209408A (en) Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
CA2977175A1 (en) A hydrocarbon synthesis process
JP2007105604A (en) Catalyst for manufacturing cycloolefin and its method
JP4421913B2 (en) Method for producing catalyst for producing hydrocarbons and method for producing hydrocarbons using the catalyst
JP6839602B2 (en) A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, and a method for producing a hydrocarbon for producing a hydrocarbon from a synthetic gas.
AU2012215108B2 (en) Catalysts
JP4267482B2 (en) Hydrocarbon production catalyst and method for producing hydrocarbons using the catalyst
JP5553880B2 (en) Method for producing catalyst for Fischer-Tropsch synthesis
CN105688926B (en) Fischer-Tropsch iron-based catalyst for producing more low-carbon olefins and preparation method thereof
NZ613645B2 (en) Method of preparing a catalyst precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R151 Written notification of patent or utility model registration

Ref document number: 4698343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees