JP2004000900A - Catalyst for reforming hydrocarbon and method for reforming hydrocarbon - Google Patents

Catalyst for reforming hydrocarbon and method for reforming hydrocarbon Download PDF

Info

Publication number
JP2004000900A
JP2004000900A JP2002381613A JP2002381613A JP2004000900A JP 2004000900 A JP2004000900 A JP 2004000900A JP 2002381613 A JP2002381613 A JP 2002381613A JP 2002381613 A JP2002381613 A JP 2002381613A JP 2004000900 A JP2004000900 A JP 2004000900A
Authority
JP
Japan
Prior art keywords
reforming
catalyst
hydrocarbon
oxide
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002381613A
Other languages
Japanese (ja)
Other versions
JP4222827B2 (en
Inventor
Kimihito Suzuki
鈴木 公仁
Kenichiro Fujimoto
藤本 健一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002381613A priority Critical patent/JP4222827B2/en
Priority to PCT/JP2003/017057 priority patent/WO2004060557A1/en
Priority to AU2003292717A priority patent/AU2003292717A1/en
Publication of JP2004000900A publication Critical patent/JP2004000900A/en
Application granted granted Critical
Publication of JP4222827B2 publication Critical patent/JP4222827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst and a method for reforming a hydrocarbon which are suitable for reforming the hydrocarbon at a high reaction rate and by which the hydrocarbon containing sulfur compound can be reformed with high efficiency by suppressing influence of sulfur poisoning as much as possible. <P>SOLUTION: The reforming catalyst comprises a multiple oxide having a composition expressed by the formula, aM-bNi-cMg-dO. Otherwise, the reforming catalyst comprises the multiple oxide obtained by adding at least one oxide chosen from silica, alumina and zeolite to either one or both of the multiple oxide having composition expressed by following formula and multiple oxide containing Ni and Mg. In the formula, a, b, c, and d are each a mol ratio; a+b+c=1; 0.02≤a≤0.99; 0.01≤b≤0.99; 0.01≤c≤0.97; d is the number required for oxygen to maintain electrical neutrality with a positive element, M is at least one element chosen from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd, Al and Si. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素の改質に有用な触媒及び炭化水素の改質方法に関するものである。
【0002】
【従来の技術】
従来、炭化水素の改質用触媒として最も多用されているニッケル/アルミナ系触媒(例えば、特許文献1、参照)は、アルミナ相が高温度域でα−アルミナ相に変化し、結晶成長も進行するため、比表面積が急激に低下し、これに応じて活性が低下する等の問題がある。
【0003】
また、これらの触媒は、ニッケルを多量に含み、触媒表面で炭素析出が起こりやすいので、それを防止するために、アルカリ成分としてカリウム化合物が添加されていることが多い。この場合には、使用中に、カリウム化合物が反応装置、配管その他に飛散して、腐食の発生等の問題がある。
【0004】
加えて、上記触媒は、ニッケルの担持量は多いが、分散度が低く、活性金属が粗大析出しているため、高い反応速度で改質反応を進めることが困難であることや、被毒作用のある硫黄化合物を含有した炭化水素を改質する場合には、活性金属と硫黄との間で安定な化合物を生成して、硫黄被毒の影響を大きく受けるため、触媒活性が大幅に低下する等の問題がある。
【0005】
一方、アルミナに他の成分を添加して複合酸化物とした耐熱性担体を用いる方法も報告されている。例えば、アルミナにランタン、リチウムあるいはストロンチウムを含浸して調製したもの(例えば、特許文献2〜4、参照)、また、アルミナに希土類塩からそれらの水酸化物を共沈させて調製したもの(特許文献5、参照)、さらに、アルミナにマグネシアを添加して焼成したスピネル系のもの(特許文献6、参照)等が報告されている。
【0006】
これらは、いずれも多孔質の担体を先ず調製し、その多孔体の細孔内に、ニッケル活性成分を含浸法(細孔内含浸法)により担持させることを前提としたものであって、活性成分の微細分散に限界があるため、触媒活性の面で劣るものである。また、これらの触媒においては、炭酸アルカリの高温蒸気による腐食性に対しても問題がある。
【0007】
ニッケル系以外の触媒として、アルミナ等にルテニウム、ロジウム、白金等の貴金属を担持した貴金属系触媒も知られている。この触媒は、貴金属成分の物性を利用して、炭素析出を抑制する作用を持つため、前記のニッケル系触媒と比較して、炭素の析出が少なく、活性の維持も容易である特長を有する。
【0008】
しかしながら、この触媒は、硫黄化合物により被毒されやすいという欠点を有する(非特許文献1、参照)。また、エチレン等の不飽和炭化水素を用いて、二酸化炭素改質する場合、触媒被毒以外の原因での熱的炭素析出が起こりやすく、たとえ貴金属系触媒が炭素析出抑制効果を持っていても、安定且つ効率的に反応を行うことは難しい。加えて、貴金属を用いるために高価になってしまい、経済的に不利という問題もある。
【0009】
こうした中、最近ニッケル/マグネシア系触媒が注目され、多くの報文及び特許が報告されている(例えば、特許文献7〜12、及び、非特許文献2及び3、参照)。
【0010】
このニッケル/マグネシア系触媒は、通常、ニッケル塩とマグネシウム塩の混合水溶液に沈殿剤を加えて生成させた沈殿物を、乾燥、焼成することにより調製される。この方法で得られる触媒は、MgOをマトリックスとし、一部のマグネシウムをニッケルで置換した固溶体複合酸化物を形成するものであり、その後の還元処理により、MgO中に含有された触媒活性金属種(ニッケル)が、構造内部から表面に移動して凝集し、酸化物表面に金属クラスターとして微細に分散した状態が形成される。
【0011】
従って、Niが高分散し、且つ、シンタリング耐性が高いため、高活性を示すと報告されている。しかしながら、本触媒の活性は、従来公知のニッケル/アルミナ系触媒とほぼ同等レベルにとどまっている。
【0012】
従って、さらに一層高い反応速度で炭化水素を改質することができる高性能な触媒を開発できれば、反応器の小型化やそれに伴った製造設備のコンパクト化が可能となり、合成ガスの製造コストを大幅に削減できることから、そのような高活性な触媒の開発が期待されている。
【0013】
また、ニッケル/マグネシア系触媒は、炭化水素の改質用触媒として、最も多用されているニッケル/アルミナ系触媒と同様、硫黄化合物を含有した炭化水素の改質に対しては、硫黄被毒による大幅な活性低下が起こるという致命的な欠点がある。
【0014】
しかしながら、ここで用いる原料炭化水素として、代表的なものに、油田、ガス田、炭田から採取されるメタンを主成分とする天然ガスが想定されるが、それらには、精製前の段階で硫黄化合物(主として硫化水素)が相当高濃度(例えば数千ppm程度)に含有されている。
【0015】
従って、これらの炭化水素源を原料とした場合の改質用触媒には、硫黄被毒による活性低下の小さい触媒を開発することができれば、高度な脱硫設備が不要となって、脱硫コストの削減が可能となるため、工業的に、さらに安価な合成ガスを得ることができることから、硫黄被毒耐性の高い、高性能な触媒の開発が望まれている。
【0016】
【特許文献1】
特公昭49−9312号公報
【特許文献2】
米国特許第3966391号明細書
【特許文献3】
米国特許第4021185号明細書
【特許文献4】
米国特許第4061594号明細書
【特許文献5】
特開昭63−175642号公報
【特許文献6】
特開昭55−139836号公報
【特許文献7】
特公昭46−43363号公報
【特許文献8】
特公昭55−50080号公報
【特許文献9】
特開昭63−137754号公報
【特許文献10】
特開昭63−248444号公報
【特許文献11】
特開2000−469号公報
【特許文献12】
特開2002−173304号公報
【非特許文献1】
触媒Vol.35,p.224(1993)
【非特許文献2】
触媒討論会講演予稿集Vol.52,p.38(1983)
【非特許文献3】
Stud.Surt.Sci.Catal.,Vol.119,p.
861(1998)
【0017】
【発明が解決しようとする課題】
そこで、本発明は、上記従来触媒の問題点を解決し、炭化水素の高い反応速度での改質に好適で、且つ、硫化水素や硫化カルボニル等の硫黄化合物を含有した炭化水素の改質においても、硫黄被毒の影響を極力抑制して、高効率で行える触媒及び改質方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
かかる実情において、本発明者らは、炭化水素及び硫黄化合物含有炭化水素の高速改質用触媒について鋭意検討した結果、従来公知のニッケル/マグネシア系触媒に金属元素M(Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素)を導入したNi−Mg−M系複合酸化物からなる触媒が、従来のニッケル/アルミナ系触媒、貴金属系触媒やニッケル/マグネシア系触媒と比較して、高い反応速度で高活性を示し、且つ、反応時間に伴う活性低下が小さいことを見出した。
【0019】
また、本発明者らは、炭化水素及び硫黄化合物含有炭化水素の高速改質用触媒について、さらに鋭意検討した結果、Ni、Mgを含む複合酸化物及びニッケル/マグネシア系触媒に金属元素M(Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素)を導入したNi−Mg−M系酸化物の一方又は両方へ、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えた複合酸化物からなる触媒が、さらに一層高い反応速度で高活性を示し、且つ、反応時間に対する活性低下が小さいことを見出し、本発明を完成するに至った。
【0020】
即ち、本発明の炭化水素の改質用触媒は、下記式で表される組成を有することを特徴とする複合酸化物である。
【0021】
aM・bNi・cMg・dO
(式中、a、b、c、dは、モル比であり、a+b+c=1、0.02≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.97、dは、酸素が陽性元素と電気的中性を保つのに必要な数、Mは、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素である。)
さらに、本発明の炭化水素の改質用触媒は、Ni、Mgを含む複合酸化物及び前記複合酸化物の一方又は両方に、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えてなることを特徴とする複合酸化物である。
【0022】
また、本発明者らは、硫黄化合物含有炭化水素の改質方法についても鋭意検討した結果、上記改質方法において本発明の改質用触媒を用いると、従来のニッケル/アルミナ系触媒、貴金属系触媒やニッケル/マグネシア系触媒を用いる場合と比較して、硫黄被毒による活性低下が少なく、且つ、反応時間に対する活性低下が小さいことを見出し、本発明を完成するに至った。
【0023】
即ち、本発明の炭化水素の改質方法は、炭化水素若しくは硫黄化合物含有炭化水素に対して、上記改質用触媒のいずれか1種を用いる方法であり、該改質条件においては、炭化水素若しくは硫黄化合物含有炭化水素中の炭素のモル数に対して、外部供給される水蒸気や二酸化炭素等の改質物質のモル比を0.5〜6、反応温度を500〜1300℃、若しくは反応圧力を0.1〜20MPaとすることが好ましい。
【0024】
【発明の実施の形態】
本発明につき、以下に詳細に述べる。
【0025】
本発明の炭化水素の改質用触媒は、Ni、Mg及び金属元素M(Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素)を含む複合酸化物である。
【0026】
ここで、Niは、金属の状態で改質反応の主触媒として機能し、Mgは、金属酸化物の状態で存在して塩基性を示すため、マグネシア上の二酸化炭素からの吸着酸素種がNi上で析出する炭素を一酸化炭素として脱離させることにより、炭素析出を抑制する機能を有すると思われる。
【0027】
一方、M又はその酸化物は、これまで担体として、あるいは、Mgと同様に炭素析出を抑制する機能を有した助触媒として、用いられることが多いが、主反応の反応速度や反応効率を改善する助触媒作用を発揮するという知見は、これまで報告されていなかった。
【0028】
しかしながら、本発明者らが検討した結果、その添加量に対する反応速度の向上及び活性の向上が明確に認められ、M又はその酸化物は、触媒担体若しくは炭素析出を抑制する助触媒として機能しているのではなく、Niと同様に改質反応の主触媒として機能するか、若しくは、Niの触媒機能を促進する助触媒として機能しているものと推察される。
【0029】
さらに、本発明の炭化水素の改質用触媒は、Ni、Mgを含む複合酸化物、及び、Ni、Mg及び金属元素M(Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素)を含む複合酸化物に、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えた複合酸化物である。
【0030】
ここで、シリカ、アルミナ、ゼオライトの各酸化物は、これまで触媒担体として触媒反応場に利用されたり、固体酸触媒として炭化水素のアルキル化反応等に用いられることが多いが、本系のような炭化水素の改質反応に対して、触媒機能を示すという報告は、これまで全くなされていなかった。
【0031】
しかしながら、本発明者らが鋭意検討した結果、シリカ、アルミナ、ゼオライトの各酸化物を添加することにより、さらに高い反応速度で改質反応が進行することを見出した。
【0032】
これは、シリカ、アルミナ、ゼオライトの各酸化物を複合酸化物に添加することにより、シリカ、アルミナ、ゼオライトの各酸化物が、Ni、Mgを含む酸化物、若しくは、Ni、Mg及び金属元素Mを含む酸化物の結晶相を細かく分断して、酸化物固相中で高度に分散させること等により、各結晶相から表面に析出する活性種のNiが、高度な分散状態になることで発現されたものと推察される。
【0033】
即ち、本発明の第一の炭化水素改質用触媒は、aM・bNi・cMg・dOで表される組成を有する複合酸化物である(式中、a、b、c、dはモル比であり、a+b+c=1、0.02≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.97、dは酸素が陽性元素と電気的中性を保つのに必要な数、MはTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素である。)。
【0034】
上記複合酸化物は、式中のMの含有量が、モル比で0.02〜0.99であることを必要とする酸化物である。Mの添加量が、モル比で0.02未満の場合には、添加効果がほとんど見られず、反応速度が低いため、触媒活性が十分でなく、また、Mの添加量が、モル比で0.99を超える場合には、主触媒のNi量が極端に少なくなるため、全体として十分な触媒活性が得られない。
【0035】
また、上記複合酸化物は、式中のNiの添加量が、モル比で0.01〜0.99であることを必要とする酸化物である。Niの添加量が、モル比で0.01未満の場合には、主な触媒活性成分であるNi量が極端に少なくなるため、触媒活性がほとんど得られず、また、Niの添加量が、モル比で0.99を超える場合には、反応中に炭素析出が激しく起こり、触媒寿命が短くなってしまう。
【0036】
なお、上記複合酸化物は、式中のM及びNi添加量のモル比の和(上記式におけるa+bに相当)は、0.03〜0.99である。このモル比の和が0.03未満の場合には、主な触媒活性成分であるNi又はMの量が極端に少なくなるため、触媒活性がほとんど得られず、一方、モル比の和が0.99を超える場合には、反応中に炭素析出が激しく起こり、安定に反応を進めることが困難である。また、上記複合酸化物中のM及びNiのモル比の和は、好ましくは、0.05〜0.8、より好ましくは、0.08〜0.7である。
【0037】
さらに、上記複合酸化物は、式中のMgの含有量が、モル比で0.01〜0.97であることを必要とする酸化物である。Mgの添加量が、モル比で0.01未満の場合には、マグネシアの塩基性の効果がほとんど発揮されずに、炭素析出が激しく起こり、また、Mgの添加量が、モル比で0.97を超える場合には、触媒活性種成分が少なくなるため、触媒活性がほとんど得られない。
【0038】
また、上記複合酸化物中のOの含有量は、M、Ni、Mgの陽性元素と電気的中性を保つのに必要な量であればよく、NiやMgが酸化物中で2価の陽イオンとして存在するために、基本的には、NiやMgのモル数の和に対して、モル比で1となるが、調製条件や、Mの導入により結晶構造中に空孔や格子間原子等の格子欠陥が存在する場合には、1から多少ずれを生じることがある。
【0039】
なお、本発明における複合酸化物とは、岩塩型結晶構造をとるMgOのカチオンサイトに位置するMgの一部が、Ni及びMに置換した単相の固溶体であってもよいし、各元素の単独酸化物の混合物、又は、NiとMgの固溶体酸化物とMの酸化物の混合物、若しくは、MgO母構造とは異なる結晶構造のNi−Mg−M系酸化物であってもよい。
【0040】
本発明の第二の炭化水素改質用触媒は、Ni、Mgを含む複合酸化物、及び、前述のaM・bNi・cMg・dOで表される組成を有する複合酸化物の一方又は両方に、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えてなることを特徴とする複合酸化物である。
【0041】
さらに、上記複合酸化物においては、酸化物中のシリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物の含有量が1〜90質量%であることが好ましい。シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物の添加量が、全量に対して1質量%未満の場合には、添加効果がほとんど見られず、一方、添加量が90質量%を超える場合には、主触媒のNi量が極端に少なくなるため、十分な触媒活性が得られない恐れがある。
【0042】
ここで、aM・bNi・cMg・dOで表される組成を有する複合酸化物の調製方法を以下に例示するが、特にこれらに制限されるものではない。
【0043】
(I) 含浸担持法
ニッケル化合物を水又は有機溶媒に溶解させた溶液をマグネシア、Mの酸化物粉末上に滴下する等、マグネシア及びMの酸化物粒子表面に、ニッケル化合物を、インシピエントウエットネス法、蒸発乾固法等の通常の含浸法によって、担持させ、触媒前駆体を調製する。
【0044】
このようにして調製した前駆体を50〜150℃において乾燥し、水又は有機溶媒を除去する。その際、有機溶媒を用いた場合には、経済性の面から有機溶媒を回収し、再使用することが望ましい。
【0045】
次いで、得られたニッケル化合物担持マグネシア−M系酸化物粉末からなる触媒前駆体を、空気中900℃程度で焼成し、炭化水素の改質用触媒とする。この温度は、ニッケル化合物の熱分解温度及びその速度、また、安全性の面等を考慮して決める。
【0046】
このようにして調製した酸化ニッケル担持マグネシア−M系酸化物粉末触媒は、そのまま用いてもよいが、通常の乾式成形機を用いて成形してもよい。この際の成形機としては、成形機であればいずれでもよく、例えば、打錠機、ブリケッティングマシン等の圧縮成形機等が好適に用いられる。
【0047】
また、その場合の成形体の形状は、球状、シリンダー状、リング状、小粒状等いずれでもよい。
【0048】
さらに、粒度の揃った触媒が必要な場合には、得られたタブレットを粉砕し、篩い分けして整粒する。ここでも、粉砕機は特に制約するものではなく、例えば、乾式粉砕機が好適に用いられる。
【0049】
(II) 共沈−物理混合法
ニッケル化合物、マグネシウム化合物を所定の比に混合して、混合水溶液を作成し、その中へ沈殿剤としてカリウム化合物等を滴下し、pHを上げて、水酸化物の形で沈殿物を形成させた後、加温しながら沈殿溶液を攪拌し、熟成する。その沈殿溶液を吸引ろ過した後、熱水で過剰の沈殿剤の金属成分を洗浄し、50〜150℃において十分乾燥し、水分を除去する。
【0050】
次いで、得られた沈殿物に、空気中1000℃程度の温度で固溶体化処理を施す。
【0051】
このようにして調製したニッケル/マグネシア固溶体酸化物に、Mの酸化物粉末を、Mのモル比が0.02〜0.99の範囲となるように添加し、全体が均一になるよう、例えば、乳鉢等を用いて、十分混合する。さらに、これら混合物を、空気中1000℃程度で焼成して、ニッケル/マグネシア固溶体酸化物へMの酸化物を固溶させてもよい。
【0052】
この混合物をペレットとして用いる場合には、(I)に記載の方法等で成形する。また、最終的に粒度の揃った粉末が必要な場合は、さらに、(I)と同様に粉砕し、整粒する。
【0053】
(III) 共沈法
ニッケル化合物、マグネシウム化合物、Mの化合物を所定の比に混合して、混合水溶液を作成する他は、(II)と同様にして、ニッケル、マグネシウム、Mを含んだ水酸化物の沈殿物を調製し、乾燥、焼成を行って、複合酸化物を調製する。
【0054】
また、Ni、Mgを含む複合酸化物、及び、前述のaM・bNi・cMg・dOで表される組成を有する複合酸化物の一方又は両方に、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を複合させる場合には、例えば、上記(I)の含浸担持法において、マグネシア粉末、又は、マグネシア、Mの酸化物の混合粉末へこれら酸化物を混合したものに、ニッケル化合物を含浸担持する、又は、(II)の共沈−物理混合法において、共沈法で得られたニッケル/マグネシア固溶体酸化物に、必要に応じてMの酸化物粉末と共に、これら酸化物粉末を混合する、あるいは、(III)の共沈法において得られた複合酸化物に、焼成後にシリカ、アルミナ、ゼオライトとなり得る成分を含んだスラリーを添加、混合した後に乾燥、焼成する、等の各種調製方法によって得ることができるが、特に、これらに制限されるものではない。
【0055】
この複合酸化物をペレットとして用いる場合には、(I)に記載の方法等で成形する。また、最終的に粒度の揃った粉末が必要な場合は、さらに、(I)に記載の方法と同様に粉砕し、整粒する。
【0056】
次に、本発明の炭化水素又は硫黄化合物含有炭化水素の改質方法について述べる。
【0057】
この方法は、上述した各種Ni−Mg−M複合酸化物、若しくは、該複合酸化物及びNi、Mgを含む複合酸化物の一方又は両方に、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えた複合酸化物、若しくは、上記複合酸化物中のシリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物の含有量が1〜90質量%である複合酸化物の中から少なくとも1種を触媒として用い、炭化水素又は硫黄化合物含有炭化水素から合成ガス及び水素の一方又は両方を得るものである。
【0058】
さらに、炭化水素中の炭素のモル数に対して、外部供給される改質物質のモル比が0.5〜6の雰囲気下で改質反応を行うこと、反応温度500〜1300℃で改質反応を行うこと、及び、反応圧力0.1〜20MPaの条件で改質反応を行うことが望ましい。
【0059】
ここで、炭化水素の改質に対して、Ni−Mg−M複合酸化物が高い反応速度で炭化水素を改質することができる理由は、Mの高い還元性により改質反応の主触媒として機能するか、又は、主触媒成分であるNiの還元度を高める(より金属状態に近づける)、若しくは、Niの反応進行に伴うカチオンへの酸化を防ぎ、金属状態を維持する、等の活性種であるNiの触媒機能を促進する助触媒効果が発揮されるためと推察する。
【0060】
また、硫黄化合物含有炭化水素の改質に対し、Ni−Mg−M複合酸化物が高い活性を示す理由は、複合酸化物表面に存在する活性金属であるNiが金属の状態で高分散することにより、安定且つ不活性なニッケル硫化物の形成が困難になるため、若しくは、Mの硫黄に対する反応性がNiよりも高く、ニッケル硫化物の形成を抑制する効果が発揮されるためと推察する。
【0061】
また、炭化水素中の炭素のモル数に対する外部供給される改質物質(水蒸気や二酸化炭素等)のモル比については、炭化水素又は硫黄化合物含有炭化水素が適度な濃度の改質物質と高効率に改質反応が進むことが好ましく、このモル比が0.5未満であると、炭化水素に対する改質物質の量が不足して、改質活性が高くならなかったり、炭素析出が増大する恐れがあるという問題があり、またこのモル比が6を超える場合には、過剰に加えられた改質物質により触媒自体が酸化されて、活性が劣化したり、エネルギー効率が低下してしまう恐れが高くなる。
【0062】
反応温度については、炭化水素又は硫黄化合物含有炭化水素が高効率で改質されて、高い生産性で合成ガスを製造するのが好ましく、500℃より低温で反応を進行させた場合、炭化水素の改質反応が吸熱反応であるため、平衡転化率が下がること、及び、反応速度が下がること等の理由から、触媒活性が大きく低下し、反応効率が悪くなることがある。
【0063】
また、1300℃を超える温度で反応させた場合には、触媒のシンタリングがおこる恐れがあることや、反応器を構成する材料への負担が大きく、反応器を長期にわたり安定に運転することが困難になること、及び、反応器に用いる材料が非常に高価になるという問題が生ずることがある。
【0064】
反応圧力については、炭化水素又は硫黄化合物含有炭化水素の改質反応が、高い生産性、且つ、コンパクトな装置で改質可能な加圧下で進むのが好ましいが、20MPaを超える圧力下では、平衡転化率が下がり、反応効率を高められないという問題や、炭素析出が起こりやすくなる恐れがあり、また、装置のコンパクト化は図れるものの、その圧力に備えた高圧用設備、反応器用材料が必要となり、設備費が高価になる等の恐れがある。
【0065】
一方、0.1MPa未満の圧力下では、平衡的には有利な方向ではあるものの、生産性が高くならないという問題や、高圧反応へ供給する場合には、得られた合成ガスをそのまま供給できないという問題がある。
【0066】
また、本改質反応で得られる合成ガスや水素をメタノール合成やフィッシャー−トロプシュ合成等に利用する場合には、各々の反応圧力と等しい圧力で改質するのが好ましい。
【0067】
本発明における炭化水素又は硫黄化合物含有炭化水素の改質用触媒を構成する各元素に関しては、いろいろな機能を有すると思われるが、現在のところ、主な機能として以下のように考察する。
【0068】
すなわち、Ni−Mg−M複合酸化物中の主触媒成分であるNiは、複合酸化物中に金属状態で高分散しているため、高い反応速度条件下でも改質反応を進めることが可能であり、且つ、硫黄化合物が含まれる雰囲気下であっても高い活性を発現する。
【0069】
また、Mgは、酸化物の状態で存在して高塩基性を示し、炭素析出を大幅に抑制して、触媒活性の長寿命化に大きな役割を果たす。
【0070】
また、Mは、一般的な触媒の担体や炭素析出を抑制する助触媒としての機能ではなく、改質反応の主触媒、又は、Niの触媒機能を促進する助触媒としての機能を発揮するものと考えられる。
【0071】
また、Ni−Mg複合酸化物、及び、Ni−Mg−M複合酸化物の一方又は両方に、シリカ、アルミナ、ジルコニアの各酸化物を添加した複合酸化物中のシリカ、アルミナ、ジルコニアの各酸化物は、複合酸化物固相内でNi含有酸化物相が高度に分散した状態を形成し、各Ni含有酸化物相から固相析出するNiをより高分散させることが可能になる機能を発揮するものと考えられる。
【0072】
【実施例】
(実施例1)
塩化酸化ジルコニウムと酢酸ニッケルと硝酸マグネシウムを各金属元素のモル比が10:15:75になるように精秤して、60℃の加温下で混合水溶液を調製したものに、60℃に加温した炭酸カリウム水溶液を加え、スターラーで十分に攪拌した。
【0073】
その後、60℃で保持したまま1時間攪拌を続けて熟成を行った後、吸引ろ過を行い、80℃の純水で十分に洗浄を行った。洗浄後に得られた沈殿物を120℃で12時間乾燥後、空気中950℃にて20時間焼成を行い、モル比で、0.10Zr0.15Ni0.75Mgの固溶体酸化物を得た。
【0074】
この固溶体酸化物粉末を、圧縮成形器で600kg/cmでプレスした後、十分に粉砕して、100〜300メッシュ(63〜150μm)に整粒することにより、触媒を調製した。このようにして、0.10Zr0.15Ni0.75Mg複合酸化物の触媒粉末を得た。
【0075】
予め管内部の中央位置に石英皿を取りつけた石英製反応管に、この触媒粉末約1gを充填し、反応管を流動床型反応器の所定の位置にセットした。
【0076】
改質反応を始める前に、まず、反応器を、アルゴンガス雰囲気下で900℃まで昇温した後、水素ガスを50ml/分流しながら、900℃で30分間還元処理を行った。
【0077】
メタンガス、水素ガス、アルゴンガスをメタン50モル%、水素30モル%、二酸化炭素5モル%、アルゴン15モル%になるように調整後、表1に示すような種々のガス流量になるよう、マスフローコントローラーで制御して、反応器へ導入し、又は、各種濃度の硫化水素を含有するように添加し、さらには、メタンと改質物質(水蒸気+二酸化炭素)のモル比が、以下に示す割合になるように、ウオーターポンプを調節して、反応管内に供給した。
【0078】
ここで、反応条件は、以下のとおりである。
【0079】
水蒸気改質の反応温度            :500〜1300℃
水蒸気改質の反応圧力            :0.1〜20MPa
硫化水素濃度                :0〜2000ppm
改質物質(水蒸気+二酸化炭素)/メタン比  :0.5〜6
水蒸気改質反応のW/F(触媒重量/ガス流量):0.5〜5gh/mol
反応生成ガスの成分に関しては、流動床型反応器の出口から排出された生成ガスを一旦氷温トラップに経由させた後、ガスクロマトグラフィー(ヒューレットパッカード製HP6890)に注入して分析を行った。ガスクロマトグラフィーで用いたカラムには、UnibeadsC60/80(GLサイエンス製)を、検出器にはTCDを用いた。
【0080】
改質反応の反応度合は、メタン転化率で判断し、そのメタン転化率は、出口ガス中の各成分の濃度より、以下の式により算出した。
【0081】
【数1】

Figure 2004000900
【0082】
各種条件での改質反応後のメタン転化率は、表1のようになった。
【0083】
【表1】
Figure 2004000900
【0084】
表1のNo.1、2の結果、本測定条件下では、W/Fの変化に対して活性がほとんど変化せず、高い反応速度で改質反応が行われることが判明した。また、No.4、5の結果は、改質物質/メタン比を大きく変化させても、本測定条件下では、改質反応率がほぼ一定で、改質物質量によらず、高い反応率で反応が進むことを示唆している。
【0085】
さらに、No.6、7の結果は、HSを一定濃度随伴した雰囲気下で反応温度を大きく変化させた場合、温度により反応率は変化したものの、500℃の低温でも、比較的高い反応率で改質が進むことを表している。
【0086】
また、No.5、8の結果の比較より、HSを高濃度(2000ppm程度)に随伴した雰囲気下でも、ある程度高い活性を維持したまま、改質反応が進んでいることがわかる。
【0087】
(実施例2)
塩化酸化ジルコニウム、酢酸ニッケル、硝酸マグネシウムを、表2のモル比とした以外は、実施例1と同様にして、ジルコニウム/ニッケル/マグネシウム固溶体酸化物を調製して、種々の組成の複合酸化物を得た。一連の複合酸化物粉末を用いた改質反応は、実施例1と全く同様に行った。各反応条件でのメタン転化率を表2に示す。
【0088】
【表2】
Figure 2004000900
【0089】
表2の結果、いずれの組成の触媒でも高いメタン転化率を示し、高活性な触媒であることがわかる。また、特に、No.11〜13と14、15の結果を比較すると、Zrの添加量の増加と共にメタン転化率が向上し、Zrの助触媒としての添加効果が明確に認められる。
【0090】
(実施例3)
塩化酸化ジルコニウムの代わりにモリブデン酸アンモニウムを用いた以外は、実施例1と同様にしてモリブデン/ニッケル/マグネシウム固溶体酸化物を調製し、0.10Mo0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を用いた改質反応は、実施例1と全く同様に行った。各反応条件でのメタン転化率を表3に示す。
【0091】
【表3】
Figure 2004000900
【0092】
表3より、Mo−Ni−Mgの複合酸化物は、Zr−Ni−Mgの複合酸化物と比較して、全体的に活性がやや低いものの、それぞれの傾向はほぼ同じであり、高い反応速度で、且つ、硫黄化合物を高濃度に含有した炭化水素雰囲気下でも、ある程度高い活性を維持したまま改質反応を進めることが可能であるため、本複合酸化物触媒は炭化水素の改質用触媒として非常に有望である。
【0093】
(実施例4)
塩化酸化ジルコニウムの代わりに酢酸マンガンを用いた以外は、実施例1と同様にして、マンガン/ニッケル/マグネシウム固溶体酸化物を調製し、0.10Mn0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“A”とする。
【0094】
また、塩化酸化ジルコニウムの代わりに硝酸亜鉛を用いて固溶体酸化物を調製し、0.10Zn0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“B”とする。
【0095】
同様に、塩化バナジウムを用いて固溶体酸化物を調製し、0.10V0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“C”とする。
【0096】
さらに、塩化タンタルを用いて固溶体酸化物を調製し、0.10Ta0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“D”とする。
【0097】
また、塩化チタンを用いて固溶体酸化物を調製し、0.10Ti0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“E”とする。
【0098】
同様に、酸化ハフニウムを用いて固溶体酸化物を調製し、0.10Hf0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“F”とする。
【0099】
これら一連の複合酸化物粉末を用いた改質反応は、実施例1と全く同様に行った。各反応条件でのメタン転化率を表4に示す。
【0100】
【表4】
Figure 2004000900
【0101】
表4より、触媒A〜Fの各複合酸化物は、Zr−Ni−Mgの複合酸化物に近い触媒活性を示し、高い反応速度で改質反応を進めることが可能であるため、本複合酸化物触媒は、炭化水素の改質用触媒として、非常に有望である。
【0102】
(実施例5)
塩化酸化ジルコニウムの代わりに塩化ニオブを用いた以外は、実施例1と同様にして、ニオブ/ニッケル/マグネシウム固溶体酸化物を調製し、0.10Nb0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“G”とする。
【0103】
また、塩化酸化ジルコニウムの代わりに、硝酸クロムを用いて固溶体酸化物を調製し、0.10Cr0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“H”とする。
【0104】
同様に、タングステン酸アンモニウムを用いて固溶体酸化物を調製し、0.10W0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“I”とする。
【0105】
さらに、硝酸銅を用いて固溶体酸化物を調製し、0.10Cu0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“J”とする。
【0106】
また、硝酸カドミウムを用いて固溶体酸化物を調製し、0.10Cd0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“K”とする。
【0107】
同様に、硝酸アルミニウムを用いて固溶体酸化物を調製し、0.10Al0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“L”とする。
【0108】
さらに、酢酸ケイ素を用いて固溶体酸化物を調製し、0.10Si0.15Ni0.75Mg複合酸化物を得た。この複合酸化物粉末を触媒“M”とする。
【0109】
これら一連の複合酸化物粉末を用いた改質反応は、実施例1と全く同様に行った。各反応条件でのメタン転化率を表5に示す。
【0110】
【表5】
Figure 2004000900
【0111】
表5より、触媒G〜Lの各複合酸化物は、Zr−Ni−Mgの複合酸化物に近い触媒活性を示し、高い反応速度で改質反応を進めることが可能であるため、本複合酸化物触媒は、炭化水素の改質用触媒として非常に有望である。
【0112】
(実施例6)
酢酸ニッケルと硝酸マグネシウムを、ニッケルとマグネシウムの原子比が1:9になるように精秤する以外は、実施例1と同様にして、ニッケル/マグネシウム固溶体酸化物を得た。
【0113】
この固溶体酸化物粉末に、同じ質量精秤した高純度シリカ粉末を添加し、十分に混合し、圧縮成形器を用いて、この混合物を600kg/cmでプレスした後、十分に粉砕して、100〜300メッシュ(63〜150μm)に整粒することにより、触媒を調製した。
【0114】
このようにして得られた複合酸化物粉末を用いた改質反応は、実施例1と全く同様に行った。各反応条件でのメタン転化率を表6に示す。
【0115】
【表6】
Figure 2004000900
【0116】
表6より、Ni−Mg−Siの複合酸化物は、炭化水素及び硫黄化合物含有炭化水素に対して、メタンの水蒸気改質反応によるメタン転化率が非常に高いことがわかる。
【0117】
(実施例7)
実施例6と同様にして、ニッケルとマグネシウムを含んだ沈殿物を調製した後、シリカゾルを焼成後の触媒中のSiOが20質量%、50質量%、70質量%の割合になるように添加し、スラリーを調製した。同様に、Alを50質量%、ゼオライトを50質量%の割合になるように添加してスラリーを調製した。
【0118】
その後、平均粒径が約50μmになるような条件で噴霧乾燥を行い、そこで得られた粉末を、空気中950℃で20時間、焼成した。さらに、得られた固溶体酸化物を粉砕して、100〜300メッシュ(63〜150μm)に整粒した。各々の複合酸化物粉末を触媒“N”、“O”、“P”、“Q”、“R”とする。
【0119】
このようにして得られた複合酸化物粉末を用いた改質反応は、実施例1と全く同様に行った。各反応条件でのメタン転化率を表7に示す。
【0120】
【表7】
Figure 2004000900
【0121】
表7より、Ni−Mg−Siの複合酸化物は、シリカの添加量により多少メタン転化率が変化するが、上記のいずれの触媒でもその転化率の値は非常に高い。また、炭化水素及び硫黄化合物含有炭化水素の改質反応に対するシリカの触媒活性の向上効果が明確に認められる。
【0122】
また、アルミナ、ゼオライトを添加した場合にも、同様に触媒活性の向上効果が認められる。したがって、本複合酸化物触媒は、炭化水素の改質用触媒として非常に有望である。
【0123】
(実施例8)
実施例1で得られたジルコニウム/ニッケル/マグネシウム複合酸化物に対して、シリカ粉末を1質量%となるように秤量して、乳鉢で十分混合してシリカ含有Zr−Ni−Mg複合酸化物を得た。この複合酸化物粉末を触媒“S”とする。
【0124】
同様に、シリカ50質量%混合物、シリカ90質量%混合物、Y型ゼオライト10質量%混合物、γ−アルミナ40質量%混合物、シリカ30質量%及びγ−アルミナ20質量%を混合して得た各酸化物粉末を、各々触媒“T”、“U”、“V”、“W”、“X”とする。
【0125】
このようにして得られた複合酸化物粉末を用いた改質反応は、実施例1と全く同様に行った。各反応条件でのメタン転化率を表8に示す。
【0126】
【表8】
Figure 2004000900
【0127】
表8より、シリカ、アルミナ、ゼオライトを混合したZr−Ni−Mg複合酸化物は、シリカ、アルミナ、ゼオライトの添加量により多少メタン転化率が変化するが、上記のいずれの触媒でも、添加しない系と比べて、その転化率の値は向上し、シリカ、アルミナ、ゼオライトの添加効果が明確に認められる。
【0128】
(比較例1)
酢酸ニッケルと硝酸マグネシウムを各金属元素のモル比が1:9になるように精秤した他は、実施例1と同様にして、ニッケル/マグネシウム固溶体酸化物を調製し、0.10Ni0.90Mg複合酸化物を得た。この複合酸化物粉末を用いた改質反応は、実施例1と全く同様に行った。各反応条件でのメタン転化率を表9に示す。
【0129】
【表9】
Figure 2004000900
【0130】
表9のNo.56、59より、ニッケル/マグネシウム系固溶体触媒は、硫化水素を含有しない炭化水素の系では、比較的高い活性を示すものの、本発明の実施例に比べるとメタン転化率は低く、しかも、W/Fが小さくなる(No.57)、又は、反応圧力が高くなる(No.58)に従って、メタン転化率が大幅に低下し、高い反応速度で改質反応を進めることができないことがわかる。
【0131】
また、硫化水素を含有した炭化水素では、No.60〜62より、硫化水素濃度が高くなるにつれて大幅な活性低下が起こることから、ニッケル/マグネシウム固溶体触媒は、硫化水素を含有した炭化水素の改質では高い活性を得ることができない。
【0132】
(比較例2)
塩化酸化ジルコニウムと酢酸ニッケルと硝酸マグネシウムを、各金属元素のモル比が、0.1:0.3:9.6になるように精秤する以外は、実施例1と同様にして、ジルコニウム/ニッケル/マグネシウム固溶体酸化物を調製し、0.01Zr0.03Ni0.96Mg複合酸化物を得た。この複合酸化物粉末を用いた改質反応は、実施例1と全く同様に行った。各反応条件でのメタン転化率を表10に示す。
【0133】
【表10】
Figure 2004000900
【0134】
表10より、ジルコニウムの添加量が少ない0.01Zr0.03Ni0.96Mg複合酸化物触媒は、硫化水素が含有されている炭化水素では、表9の結果と比べて、比較的高いメタン転化率を示し、硫化水素共存下でもやや高い活性を示すものの、本発明の実施例に比べると十分なものではない。また、硫化水素を含まない炭化水素に対しては、ジルコニウムの添加による活性向上効果がほとんど見られず、低いメタン転化率にとどまった。
【0135】
【発明の効果】
本発明は、高い反応速度での炭化水素の改質に有用な触媒及びこれを用いた炭化水素又は硫黄化合物を含んだ炭化水素の改質方法を提供するものであり、本発明により、以下の効果が顕著に認められる。
【0136】
(a) 炭化水素の改質に対して高い反応速度での改質が可能であり、改質ガスの生産性が高い。
【0137】
(b) 硫黄化合物を高濃度に含有する硫黄被毒の過酷な条件下であっても高い改質活性を発現する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst useful for hydrocarbon reforming and a hydrocarbon reforming method.
[0002]
[Prior art]
Conventionally, a nickel / alumina catalyst (see, for example, Patent Document 1), which is most frequently used as a hydrocarbon reforming catalyst, changes its alumina phase to an α-alumina phase at a high temperature range, and crystal growth also proceeds. Therefore, there is a problem that the specific surface area rapidly decreases and the activity decreases accordingly.
[0003]
In addition, these catalysts contain a large amount of nickel, and carbon deposition is likely to occur on the catalyst surface. Therefore, in order to prevent this, a potassium compound is often added as an alkali component. In this case, during use, the potassium compound scatters to the reaction apparatus, piping, etc., and there is a problem such as the occurrence of corrosion.
[0004]
In addition, the catalyst has a large amount of nickel supported, but the degree of dispersion is low, and the active metal is coarsely precipitated. Therefore, it is difficult to proceed the reforming reaction at a high reaction rate, and the poisoning action When reforming hydrocarbons containing certain sulfur compounds, a stable compound is generated between the active metal and sulfur, which is greatly affected by sulfur poisoning, resulting in a significant decrease in catalytic activity. There are problems such as.
[0005]
On the other hand, a method of using a heat-resistant support made of a composite oxide by adding other components to alumina has also been reported. For example, those prepared by impregnating lanthanum, lithium or strontium into alumina (see, for example, Patent Documents 2 to 4), and those prepared by co-precipitation of hydroxides from rare earth salts in alumina (patents) In addition, a spinel system obtained by adding magnesia to alumina and firing (refer to Patent Document 6) has been reported.
[0006]
These are based on the premise that a porous carrier is first prepared, and a nickel active component is supported in the pores of the porous body by the impregnation method (intrapore impregnation method). Since there is a limit to the fine dispersion of the components, the catalyst activity is inferior. In addition, these catalysts have a problem with respect to the corrosiveness of alkali carbonate due to high-temperature steam.
[0007]
As catalysts other than nickel-based catalysts, noble metal-based catalysts in which noble metals such as ruthenium, rhodium and platinum are supported on alumina or the like are also known. Since this catalyst has the effect of suppressing carbon deposition by utilizing the physical properties of the noble metal component, it has the characteristics that the carbon deposition is less and the activity can be easily maintained as compared with the nickel-based catalyst.
[0008]
However, this catalyst has a drawback that it is easily poisoned by sulfur compounds (see Non-Patent Document 1). In addition, when carbon dioxide reforming is performed using unsaturated hydrocarbons such as ethylene, thermal carbon deposition is likely to occur due to causes other than catalyst poisoning, even if the noble metal catalyst has a carbon deposition inhibiting effect. It is difficult to carry out the reaction stably and efficiently. In addition, since noble metals are used, they become expensive, and there is a problem that it is economically disadvantageous.
[0009]
Under these circumstances, nickel / magnesia-based catalysts have recently attracted attention, and many reports and patents have been reported (for example, see Patent Documents 7 to 12 and Non-Patent Documents 2 and 3).
[0010]
This nickel / magnesia catalyst is usually prepared by drying and calcining a precipitate formed by adding a precipitant to a mixed aqueous solution of nickel salt and magnesium salt. The catalyst obtained by this method forms a solid solution composite oxide in which MgO is used as a matrix and a part of magnesium is substituted with nickel, and the catalytically active metal species contained in MgO ( Nickel) moves from the inside of the structure to the surface and aggregates to form a finely dispersed state as metal clusters on the oxide surface.
[0011]
Accordingly, it is reported that Ni is highly dispersed and has high sintering resistance, and therefore exhibits high activity. However, the activity of the present catalyst is almost the same as that of conventionally known nickel / alumina-based catalysts.
[0012]
Therefore, if a high-performance catalyst capable of reforming hydrocarbons at an even higher reaction rate can be developed, it will be possible to reduce the size of the reactor and the production equipment associated therewith, greatly increasing the production cost of synthesis gas. Therefore, development of such a highly active catalyst is expected.
[0013]
In addition, nickel / magnesia-based catalysts, as the most commonly used catalysts for hydrocarbon reforming, are sulfur poisoning for reforming hydrocarbons containing sulfur compounds. There is a fatal disadvantage that a significant decrease in activity occurs.
[0014]
However, as a typical raw material hydrocarbon used here, natural gas mainly composed of methane collected from oil fields, gas fields, and coal fields is assumed. A compound (mainly hydrogen sulfide) is contained in a considerably high concentration (for example, about several thousand ppm).
[0015]
Therefore, if a catalyst with a small decrease in activity due to sulfur poisoning can be developed as a reforming catalyst when these hydrocarbon sources are used as raw materials, advanced desulfurization equipment becomes unnecessary, and desulfurization costs are reduced. Therefore, since it is possible to obtain a cheaper synthesis gas industrially, development of a high-performance catalyst having high resistance to sulfur poisoning is desired.
[0016]
[Patent Document 1]
Japanese Patent Publication No.49-9912
[Patent Document 2]
US Pat. No. 3,966,391
[Patent Document 3]
U.S. Pat. No. 4,021,185
[Patent Document 4]
US Pat. No. 4,061,594
[Patent Document 5]
JP-A 63-175642
[Patent Document 6]
Japanese Patent Application Laid-Open No. 55-139836
[Patent Document 7]
Japanese Examined Patent Publication No. 46-43363
[Patent Document 8]
Japanese Patent Publication No. 55-5080
[Patent Document 9]
JP-A-63-137754
[Patent Document 10]
JP-A-63-248444
[Patent Document 11]
JP 2000-469 A
[Patent Document 12]
JP 2002-173304 A
[Non-Patent Document 1]
Catalyst Vol. 35, p. 224 (1993)
[Non-Patent Document 2]
Proceedings of the Catalyst Discussion Meeting Vol. 52, p. 38 (1983)
[Non-Patent Document 3]
Stud. Surt. Sci. Catal. , Vol. 119, p.
861 (1998)
[0017]
[Problems to be solved by the invention]
Therefore, the present invention solves the problems of the above conventional catalyst, is suitable for reforming hydrocarbons at a high reaction rate, and in reforming hydrocarbons containing sulfur compounds such as hydrogen sulfide and carbonyl sulfide. It is another object of the present invention to provide a catalyst and a reforming method that can suppress the influence of sulfur poisoning as much as possible and can perform it with high efficiency.
[0018]
[Means for Solving the Problems]
Under such circumstances, the present inventors have conducted extensive studies on hydrocarbon and sulfur compound-containing hydrocarbon high-speed reforming catalysts. As a result, the conventionally known nickel / magnesia-based catalysts have been converted to metal elements M (Ti, Zr, Hf, V Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd, Al, and a catalyst made of a Ni—Mg—M complex oxide into which a conventional compound is introduced. As compared with nickel / alumina-based catalysts, noble metal-based catalysts and nickel / magnesia-based catalysts, the present inventors have found high activity at a high reaction rate and small decrease in activity with reaction time.
[0019]
In addition, as a result of further intensive studies on catalysts for high-speed reforming of hydrocarbons and sulfur compound-containing hydrocarbons, the present inventors have found that metal elements M (Ti and Ni / Mg-containing composite oxides and nickel / magnesia catalysts are used. , Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd, Al, or Si-based oxides introduced with Ni) Or, a catalyst comprising a composite oxide in which at least one oxide selected from silica, alumina and zeolite is added to both exhibits high activity at an even higher reaction rate, and the decrease in activity with respect to the reaction time is small. As a result, the present invention has been completed.
[0020]
That is, the hydrocarbon reforming catalyst of the present invention is a composite oxide having a composition represented by the following formula.
[0021]
aM ・ bNi ・ cMg ・ dO
(In the formula, a, b, c and d are molar ratios; a + b + c = 1, 0.02 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0. 97 and d are the numbers necessary for oxygen to remain electrically neutral with positive elements, and M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd And at least one element selected from Al, Si.)
Furthermore, the hydrocarbon reforming catalyst of the present invention is obtained by adding at least one oxide selected from silica, alumina, and zeolite to one or both of a composite oxide containing Ni and Mg and the composite oxide. A composite oxide characterized by
[0022]
In addition, as a result of intensive studies on the method for reforming sulfur compound-containing hydrocarbons, the present inventors have found that when the reforming catalyst of the present invention is used in the above reforming method, a conventional nickel / alumina catalyst, noble metal catalyst As compared with the case where a catalyst or a nickel / magnesia catalyst is used, the present inventors have found that the decrease in activity due to sulfur poisoning is small and that the decrease in activity with respect to the reaction time is small.
[0023]
That is, the hydrocarbon reforming method of the present invention is a method in which any one of the above reforming catalysts is used for hydrocarbons or sulfur compound-containing hydrocarbons. Alternatively, the molar ratio of reforming substances such as steam and carbon dioxide supplied externally to the number of moles of carbon in the sulfur compound-containing hydrocarbon is 0.5 to 6, the reaction temperature is 500 to 1300 ° C., or the reaction pressure Is preferably 0.1 to 20 MPa.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0025]
The catalyst for reforming hydrocarbons of the present invention includes Ni, Mg and metal elements M (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd, Al, Si. A complex oxide containing at least one selected element).
[0026]
Here, Ni functions as a main catalyst for the reforming reaction in a metal state, and Mg exists in a metal oxide state and exhibits basicity. Therefore, the adsorbed oxygen species from carbon dioxide on magnesia is Ni. It seems that it has a function of suppressing carbon deposition by desorbing the carbon deposited above as carbon monoxide.
[0027]
On the other hand, M or its oxide is often used as a support or as a co-catalyst having a function of suppressing carbon deposition like Mg, but it improves the reaction rate and reaction efficiency of the main reaction. The knowledge of exerting a cocatalyst action has not been reported so far.
[0028]
However, as a result of the study by the present inventors, an improvement in reaction rate and an improvement in activity with respect to the added amount are clearly recognized, and M or its oxide functions as a catalyst support or a co-catalyst for suppressing carbon deposition. It is presumed that it functions as the main catalyst of the reforming reaction as in the case of Ni, or functions as a promoter for promoting the catalytic function of Ni.
[0029]
Furthermore, the hydrocarbon reforming catalyst of the present invention includes a composite oxide containing Ni and Mg, and Ni, Mg and a metal element M (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W , Mn, Cu, Zn, Cd, Al, Si) to a composite oxide containing at least one oxide selected from silica, alumina, and zeolite. .
[0030]
Here, silica, alumina, and zeolite oxides have been used in catalytic reaction fields as catalyst carriers, and are often used in hydrocarbon alkylation reactions as solid acid catalysts. Until now, no report has been made to show catalytic function for the reforming reaction of hydrocarbons.
[0031]
However, as a result of intensive studies by the present inventors, it was found that the reforming reaction proceeds at a higher reaction rate by adding each oxide of silica, alumina, and zeolite.
[0032]
This is because the oxides of silica, alumina, and zeolite are added to the composite oxide so that the oxides of silica, alumina, and zeolite contain oxides of Ni and Mg, or Ni, Mg, and metal element M. The active phase Ni precipitated on the surface from each crystal phase is expressed in a highly dispersed state by finely dividing the oxide crystal phase containing oxide and dispersing it in the oxide solid phase. It is inferred that
[0033]
That is, the first hydrocarbon reforming catalyst of the present invention is a composite oxide having a composition represented by aM · bNi · cMg · dO (wherein a, b, c and d are molar ratios). Yes, a + b + c = 1, 0.02 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0.97, and d keeps electrical neutrality with positive elements M is at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd, Al, and Si).
[0034]
The complex oxide is an oxide that requires the M content in the formula to be 0.02 to 0.99 in molar ratio. When the addition amount of M is less than 0.02 in terms of molar ratio, the effect of addition is hardly observed and the reaction rate is low, so that the catalytic activity is not sufficient, and the addition amount of M is in molar ratio. If it exceeds 0.99, the amount of Ni in the main catalyst becomes extremely small, so that sufficient catalytic activity as a whole cannot be obtained.
[0035]
Moreover, the said complex oxide is an oxide which requires that the addition amount of Ni in a formula is 0.01-0.99 by molar ratio. When the addition amount of Ni is less than 0.01 in terms of molar ratio, the amount of Ni as the main catalytic active component is extremely reduced, so that almost no catalytic activity is obtained, and the addition amount of Ni is When the molar ratio exceeds 0.99, carbon deposition occurs vigorously during the reaction, resulting in a short catalyst life.
[0036]
In the composite oxide, the sum of the molar ratios of M and Ni added in the formula (corresponding to a + b in the formula) is 0.03 to 0.99. When the sum of the molar ratios is less than 0.03, the amount of the main catalytically active component Ni or M is extremely small, so that almost no catalytic activity is obtained, while the sum of the molar ratios is 0. If it exceeds .99, carbon deposition occurs vigorously during the reaction, making it difficult to proceed the reaction stably. The sum of the molar ratios of M and Ni in the composite oxide is preferably 0.05 to 0.8, more preferably 0.08 to 0.7.
[0037]
Furthermore, the composite oxide is an oxide that requires the Mg content in the formula to be 0.01 to 0.97 in molar ratio. When the added amount of Mg is less than 0.01 in terms of molar ratio, the basic effect of magnesia is hardly exhibited and carbon precipitation occurs vigorously. If it exceeds 97, the catalytically active species component decreases, so that almost no catalytic activity is obtained.
[0038]
Further, the content of O in the composite oxide may be an amount necessary to maintain electrical neutrality with positive elements of M, Ni, and Mg, and Ni and Mg are divalent in the oxide. Since it exists as a cation, the molar ratio is basically 1 with respect to the sum of the number of moles of Ni and Mg. When lattice defects such as atoms are present, a slight deviation from 1 may occur.
[0039]
The composite oxide in the present invention may be a single-phase solid solution in which a part of Mg located at the cation site of MgO having a rock salt type crystal structure is substituted with Ni and M, or each element It may be a mixture of single oxides, a mixture of solid solution oxides of Ni and Mg and an oxide of M, or a Ni—Mg—M oxide having a crystal structure different from the MgO base structure.
[0040]
The second hydrocarbon reforming catalyst of the present invention includes a composite oxide containing Ni and Mg, and one or both of the composite oxides having the composition represented by aM · bNi · cMg · dO. A composite oxide comprising at least one oxide selected from silica, alumina, and zeolite.
[0041]
Furthermore, in the composite oxide, the content of at least one oxide selected from silica, alumina, and zeolite in the oxide is preferably 1 to 90% by mass. When the addition amount of at least one oxide selected from silica, alumina, and zeolite is less than 1% by mass with respect to the total amount, the addition effect is hardly observed, while the addition amount exceeds 90% by mass. In some cases, the amount of Ni in the main catalyst becomes extremely small, so that sufficient catalytic activity may not be obtained.
[0042]
Here, although the preparation method of the complex oxide which has a composition represented by aM * bNi * cMg * dO is illustrated below, it does not restrict | limit in particular to these.
[0043]
(I) Impregnation support method
A solution of nickel compound dissolved in water or organic solvent is dropped onto magnesia and M oxide powder, and so on. The catalyst precursor is prepared by a general impregnation method such as a method.
[0044]
The precursor thus prepared is dried at 50 to 150 ° C. to remove water or the organic solvent. At that time, when an organic solvent is used, it is desirable to recover and reuse the organic solvent from the economical aspect.
[0045]
Next, the obtained catalyst precursor made of the nickel compound-supported magnesia-M-based oxide powder is fired at about 900 ° C. in the air to obtain a hydrocarbon reforming catalyst. This temperature is determined in consideration of the thermal decomposition temperature and speed of the nickel compound, the safety aspect, and the like.
[0046]
The nickel oxide-supported magnesia-M-based oxide powder catalyst thus prepared may be used as it is, but may be molded using a normal dry molding machine. As the molding machine at this time, any molding machine may be used. For example, a compression molding machine such as a tableting machine or a briquetting machine is preferably used.
[0047]
In addition, the shape of the molded body in that case may be any of a spherical shape, a cylindrical shape, a ring shape, a small granular shape, and the like.
[0048]
Further, when a catalyst having a uniform particle size is required, the obtained tablet is pulverized, sieved, and sized. Here, the pulverizer is not particularly limited, and for example, a dry pulverizer is preferably used.
[0049]
(II) Coprecipitation-physical mixing method
A nickel compound and a magnesium compound are mixed at a predetermined ratio to create a mixed aqueous solution, and a potassium compound or the like is dropped as a precipitant into the mixture, and the pH is raised to form a precipitate in the form of a hydroxide. Thereafter, the precipitation solution is stirred and aged while heating. The precipitate solution is subjected to suction filtration, and then the excess metal component of the precipitant is washed with hot water, and sufficiently dried at 50 to 150 ° C. to remove moisture.
[0050]
Next, the obtained precipitate is subjected to a solid solution treatment at a temperature of about 1000 ° C. in air.
[0051]
To the nickel / magnesia solid solution oxide thus prepared, M oxide powder is added so that the molar ratio of M is in the range of 0.02 to 0.99. Mix thoroughly using a mortar or the like. Furthermore, these mixtures may be fired at about 1000 ° C. in the air so that the oxide of M is dissolved in the nickel / magnesia solid solution oxide.
[0052]
When this mixture is used as pellets, it is molded by the method described in (I). Further, when a powder having a uniform particle size is finally required, it is further pulverized and sized in the same manner as in (I).
[0053]
(III) Coprecipitation method
Prepare a precipitate of hydroxide containing nickel, magnesium, and M in the same manner as in (II), except that a mixed aqueous solution is prepared by mixing nickel compound, magnesium compound, and M compound at a predetermined ratio. Then, drying and firing are performed to prepare a composite oxide.
[0054]
One or both of the composite oxide containing Ni and Mg and the composite oxide having the composition represented by aM · bNi · cMg · dO described above may be at least one selected from silica, alumina, and zeolite. In the case of compounding oxides, for example, in the impregnation and supporting method of (I) above, a nickel compound is impregnated and supported in magnesia powder or a mixed powder of magnesia and M oxides. Or in the coprecipitation-physical mixing method of (II), these oxide powders are mixed with the nickel / magnesia solid solution oxide obtained by the coprecipitation method, together with an oxide powder of M, if necessary. Alternatively, a slurry containing components that can become silica, alumina, and zeolite after calcination is added to the composite oxide obtained by the coprecipitation method of (III), mixed and dried. , Baked, it can be obtained by various preparation methods and the like, in particular, but is not limited thereto.
[0055]
When this composite oxide is used as pellets, it is molded by the method described in (I). In addition, when a powder having a uniform particle size is finally required, the powder is further pulverized and sized in the same manner as described in (I).
[0056]
Next, the method for reforming hydrocarbons or sulfur compound-containing hydrocarbons of the present invention will be described.
[0057]
In this method, at least one kind of oxidation selected from silica, alumina, and zeolite is applied to one or both of the various Ni-Mg-M composite oxides or the composite oxides containing Ni and Mg. Or a composite oxide in which the content of at least one oxide selected from silica, alumina, and zeolite in the composite oxide is 1 to 90% by mass. Is used as a catalyst to obtain one or both of synthesis gas and hydrogen from hydrocarbons or hydrocarbons containing sulfur compounds.
[0058]
Furthermore, the reforming reaction is performed in an atmosphere in which the molar ratio of the reforming substance supplied externally is 0.5 to 6 with respect to the number of moles of carbon in the hydrocarbon, and reforming is performed at a reaction temperature of 500 to 1300 ° C. It is desirable to carry out the reaction and to carry out the reforming reaction under a reaction pressure of 0.1 to 20 MPa.
[0059]
Here, the reason why the Ni-Mg-M composite oxide can reform the hydrocarbon at a high reaction rate with respect to the reforming of the hydrocarbon is the main catalyst of the reforming reaction due to the high reducibility of M. An active species that functions or increases the reduction degree of Ni as a main catalyst component (closer to a metallic state) or prevents oxidation to a cation accompanying the progress of Ni reaction and maintains the metallic state This is presumed to be because the promoter effect of promoting the catalytic function of Ni is.
[0060]
The reason why the Ni-Mg-M composite oxide exhibits high activity for reforming sulfur compound-containing hydrocarbons is that Ni, which is an active metal present on the surface of the composite oxide, is highly dispersed in the metal state. Therefore, it is assumed that the formation of stable and inert nickel sulfide is difficult, or the reactivity of M with respect to sulfur is higher than that of Ni and the effect of suppressing the formation of nickel sulfide is exhibited.
[0061]
In addition, regarding the molar ratio of reformed substances (steam, carbon dioxide, etc.) supplied externally with respect to the number of moles of carbon in the hydrocarbon, hydrocarbons or sulfur compound-containing hydrocarbons have a moderate concentration and high efficiency. It is preferable that the reforming reaction proceeds, and if this molar ratio is less than 0.5, the amount of the reforming substance relative to the hydrocarbon is insufficient, and the reforming activity may not be increased or the carbon deposition may increase. If the molar ratio exceeds 6, the catalyst itself is oxidized by the excessively added reforming material, and the activity may be deteriorated or the energy efficiency may be lowered. Get higher.
[0062]
Regarding the reaction temperature, it is preferable that hydrocarbon or sulfur compound-containing hydrocarbon is reformed with high efficiency to produce synthesis gas with high productivity, and when the reaction proceeds at a temperature lower than 500 ° C., Since the reforming reaction is an endothermic reaction, the catalytic activity may be greatly reduced and the reaction efficiency may be deteriorated due to a decrease in the equilibrium conversion rate and a decrease in the reaction rate.
[0063]
In addition, when the reaction is performed at a temperature exceeding 1300 ° C., there is a possibility that the sintering of the catalyst may occur, the burden on the material constituting the reactor is large, and the reactor can be operated stably over a long period of time. Problems can arise which can be difficult and the materials used in the reactor can be very expensive.
[0064]
Regarding the reaction pressure, it is preferable that the reforming reaction of hydrocarbons or hydrocarbons containing sulfur compounds proceeds under pressure that can be reformed with high productivity and a compact apparatus. There is a possibility that the conversion rate is lowered and the reaction efficiency cannot be increased, and carbon deposition is likely to occur. In addition, although the equipment can be made compact, high-pressure equipment and reactor materials for the pressure are required. There is a risk that the equipment cost becomes expensive.
[0065]
On the other hand, under a pressure of less than 0.1 MPa, the equilibrium is advantageous, but the problem is that the productivity does not increase, and when the product is supplied to a high-pressure reaction, the obtained synthesis gas cannot be supplied as it is. There's a problem.
[0066]
In addition, when the synthesis gas or hydrogen obtained by this reforming reaction is used for methanol synthesis, Fischer-Tropsch synthesis, or the like, it is preferable to reform at a pressure equal to each reaction pressure.
[0067]
Each element constituting the hydrocarbon or sulfur compound-containing hydrocarbon reforming catalyst in the present invention is considered to have various functions, but at present, the main functions are considered as follows.
[0068]
That is, Ni, which is the main catalyst component in the Ni-Mg-M composite oxide, is highly dispersed in a metal state in the composite oxide, so that the reforming reaction can proceed even under high reaction rate conditions. And high activity is exhibited even in an atmosphere containing a sulfur compound.
[0069]
Further, Mg is present in an oxide state and exhibits high basicity, significantly suppresses carbon deposition, and plays a major role in extending the life of catalyst activity.
[0070]
M does not function as a general catalyst carrier or co-catalyst for suppressing carbon deposition, but functions as a main catalyst for reforming reaction or a co-catalyst for promoting the catalytic function of Ni. it is conceivable that.
[0071]
Also, each oxidation of silica, alumina and zirconia in a composite oxide obtained by adding each oxide of silica, alumina and zirconia to one or both of Ni-Mg composite oxide and Ni-Mg-M composite oxide. The product forms a state in which the Ni-containing oxide phase is highly dispersed in the solid phase of the complex oxide, and exhibits a function that makes it possible to more highly disperse Ni that is solid-phase precipitated from each Ni-containing oxide phase. It is thought to do.
[0072]
【Example】
Example 1
Zirconium chloride oxide, nickel acetate, and magnesium nitrate are precisely weighed so that the molar ratio of each metal element is 10:15:75, and a mixed aqueous solution is prepared under heating at 60 ° C. A warm potassium carbonate aqueous solution was added, and the mixture was sufficiently stirred with a stirrer.
[0073]
Thereafter, the mixture was aged by continuing stirring for 1 hour while being kept at 60 ° C., and then subjected to suction filtration and sufficiently washed with pure water at 80 ° C. The precipitate obtained after washing was dried at 120 ° C. for 12 hours and then fired in air at 950 ° C. for 20 hours to obtain a solid solution oxide of 0.10Zr0.15Ni0.75Mg in molar ratio.
[0074]
This solid solution oxide powder is compressed to 600 kg / cm with a compression molding machine. 2 Then, the catalyst was prepared by sufficiently pulverizing and regulating the particle size to 100 to 300 mesh (63 to 150 μm). In this way, a catalyst powder of 0.10Zr0.15Ni0.75Mg composite oxide was obtained.
[0075]
About 1 g of this catalyst powder was filled in a quartz reaction tube in which a quartz dish was previously attached at the center position inside the tube, and the reaction tube was set at a predetermined position of the fluidized bed reactor.
[0076]
Before starting the reforming reaction, the reactor was first heated to 900 ° C. under an argon gas atmosphere, and then reduced at 900 ° C. for 30 minutes while flowing hydrogen gas at 50 ml / min.
[0077]
After adjusting methane gas, hydrogen gas, and argon gas to 50 mol% methane, 30 mol% hydrogen, 5 mol% carbon dioxide, and 15 mol% argon, the mass flow is adjusted so that various gas flow rates as shown in Table 1 are obtained. Controlled by the controller, introduced into the reactor, or added to contain various concentrations of hydrogen sulfide, and the molar ratio of methane and reforming material (steam + carbon dioxide) is the ratio shown below The water pump was adjusted so as to be supplied into the reaction tube.
[0078]
Here, the reaction conditions are as follows.
[0079]
Steam reforming reaction temperature: 500-1300 ° C
Steam reforming reaction pressure: 0.1 to 20 MPa
Hydrogen sulfide concentration: 0 to 2000 ppm
Reforming substance (steam + carbon dioxide) / methane ratio: 0.5-6
Steam reforming reaction W / F (catalyst weight / gas flow rate): 0.5 to 5 gh / mol
The components of the reaction product gas were analyzed by passing the product gas discharged from the outlet of the fluidized bed reactor once through an ice temperature trap and then injecting it into gas chromatography (HP 6890 manufactured by Hewlett-Packard). Unibeads C60 / 80 (manufactured by GL Sciences) was used for the column used in gas chromatography, and TCD was used for the detector.
[0080]
The degree of reaction of the reforming reaction was judged by the methane conversion rate, and the methane conversion rate was calculated by the following equation from the concentration of each component in the outlet gas.
[0081]
[Expression 1]
Figure 2004000900
[0082]
Table 1 shows the methane conversion after the reforming reaction under various conditions.
[0083]
[Table 1]
Figure 2004000900
[0084]
No. in Table 1 As a result of 1 and 2, it was found that under this measurement condition, the activity hardly changed with respect to the change in W / F, and the reforming reaction was carried out at a high reaction rate. No. The results of 4 and 5 show that even if the reforming substance / methane ratio is greatly changed, the reforming reaction rate is almost constant under the present measurement conditions, and the reaction proceeds at a high reaction rate regardless of the amount of the reforming substance. Suggests that.
[0085]
Furthermore, no. The results of 6 and 7 are H 2 When the reaction temperature is greatly changed in an atmosphere accompanied by a certain concentration of S, the reaction rate changes depending on the temperature, but the reforming proceeds at a relatively high reaction rate even at a low temperature of 500 ° C.
[0086]
No. From the comparison of the results of 5 and 8, H 2 It can be seen that the reforming reaction proceeds while maintaining high activity to some extent even in an atmosphere accompanied by S at a high concentration (about 2000 ppm).
[0087]
(Example 2)
A zirconium / nickel / magnesium solid solution oxide was prepared in the same manner as in Example 1 except that zirconium chloride, nickel acetate, and magnesium nitrate were used in the molar ratio shown in Table 2, and composite oxides having various compositions were prepared. Obtained. The reforming reaction using a series of complex oxide powders was performed in the same manner as in Example 1. Table 2 shows the methane conversion rate under each reaction condition.
[0088]
[Table 2]
Figure 2004000900
[0089]
As a result of Table 2, it can be seen that any catalyst of any composition shows a high methane conversion and is a highly active catalyst. In particular, No. When the results of 11 to 13 and 14, 15 are compared, the methane conversion improves with an increase in the amount of Zr added, and the effect of adding Zr as a promoter is clearly recognized.
[0090]
(Example 3)
A molybdenum / nickel / magnesium solid solution oxide was prepared in the same manner as in Example 1 except that ammonium molybdate was used in place of zirconium chloride oxide to obtain a 0.10Mo0.15Ni0.75Mg composite oxide. The modification reaction using this composite oxide powder was carried out in the same manner as in Example 1. Table 3 shows the methane conversion rate under each reaction condition.
[0091]
[Table 3]
Figure 2004000900
[0092]
From Table 3, although the Mo—Ni—Mg composite oxide is slightly lower in overall activity than the Zr—Ni—Mg composite oxide, each tendency is almost the same, and the high reaction rate. In addition, even in a hydrocarbon atmosphere containing a high concentration of sulfur compounds, the reforming reaction can proceed while maintaining a certain level of high activity. As very promising.
[0093]
(Example 4)
A manganese / nickel / magnesium solid solution oxide was prepared in the same manner as in Example 1 except that manganese acetate was used instead of zirconium chloride oxide to obtain a 0.10Mn0.15Ni0.75Mg composite oxide. This composite oxide powder is designated as catalyst “A”.
[0094]
Further, a solid solution oxide was prepared using zinc nitrate instead of zirconium chloride oxide to obtain a 0.10Zn0.15Ni0.75Mg composite oxide. This composite oxide powder is designated as catalyst “B”.
[0095]
Similarly, a solid solution oxide was prepared using vanadium chloride to obtain a 0.10V0.15Ni0.75Mg composite oxide. This composite oxide powder is designated as catalyst “C”.
[0096]
Further, a solid solution oxide was prepared using tantalum chloride to obtain a 0.10Ta0.15Ni0.75Mg composite oxide. This composite oxide powder is designated as catalyst “D”.
[0097]
Further, a solid solution oxide was prepared using titanium chloride to obtain a 0.10Ti0.15Ni0.75Mg composite oxide. This composite oxide powder is designated as catalyst “E”.
[0098]
Similarly, a solid solution oxide was prepared using hafnium oxide to obtain a 0.10Hf0.15Ni0.75Mg composite oxide. This composite oxide powder is designated as catalyst “F”.
[0099]
The reforming reaction using these series of complex oxide powders was carried out in the same manner as in Example 1. Table 4 shows the methane conversion rate under each reaction condition.
[0100]
[Table 4]
Figure 2004000900
[0101]
From Table 4, each composite oxide of catalysts A to F exhibits catalytic activity close to that of the composite oxide of Zr—Ni—Mg, and can advance the reforming reaction at a high reaction rate. The product catalyst is very promising as a catalyst for reforming hydrocarbons.
[0102]
(Example 5)
A niobium / nickel / magnesium solid solution oxide was prepared in the same manner as in Example 1 except that niobium chloride was used instead of zirconium chloride oxide to obtain a 0.10Nb0.15Ni0.75Mg composite oxide. This composite oxide powder is designated as catalyst “G”.
[0103]
Further, a solid solution oxide was prepared using chromium nitrate instead of zirconium chloride oxide to obtain a 0.10Cr0.15Ni0.75Mg composite oxide. This composite oxide powder is designated as catalyst “H”.
[0104]
Similarly, a solid solution oxide was prepared using ammonium tungstate to obtain a 0.10 W 0.15 Ni0.75 Mg composite oxide. This composite oxide powder is designated as catalyst “I”.
[0105]
Further, a solid solution oxide was prepared using copper nitrate to obtain a 0.10Cu0.15Ni0.75Mg composite oxide. This composite oxide powder is designated as catalyst “J”.
[0106]
Moreover, solid solution oxide was prepared using cadmium nitrate, and 0.10Cd0.15Ni0.75Mg composite oxide was obtained. This composite oxide powder is designated as catalyst “K”.
[0107]
Similarly, a solid solution oxide was prepared using aluminum nitrate to obtain a 0.10Al0.15Ni0.75Mg composite oxide. This composite oxide powder is referred to as catalyst “L”.
[0108]
Furthermore, a solid solution oxide was prepared using silicon acetate to obtain a 0.10Si0.15Ni0.75Mg composite oxide. This composite oxide powder is designated as catalyst “M”.
[0109]
The reforming reaction using these series of complex oxide powders was carried out in the same manner as in Example 1. Table 5 shows the methane conversion rate under each reaction condition.
[0110]
[Table 5]
Figure 2004000900
[0111]
From Table 5, each composite oxide of the catalysts G to L exhibits catalytic activity close to that of the Zr—Ni—Mg composite oxide, and can advance the reforming reaction at a high reaction rate. Product catalysts are very promising as hydrocarbon reforming catalysts.
[0112]
(Example 6)
A nickel / magnesium solid solution oxide was obtained in the same manner as in Example 1 except that nickel acetate and magnesium nitrate were precisely weighed so that the atomic ratio of nickel to magnesium was 1: 9.
[0113]
To this solid solution oxide powder, a high-purity silica powder precisely weighed in the same mass is added, mixed thoroughly, and this mixture is mixed with a compression molding machine at 600 kg / cm. 2 Then, the catalyst was prepared by sufficiently pulverizing and regulating the particle size to 100 to 300 mesh (63 to 150 μm).
[0114]
The reforming reaction using the composite oxide powder thus obtained was carried out in the same manner as in Example 1. Table 6 shows the methane conversion rate under each reaction condition.
[0115]
[Table 6]
Figure 2004000900
[0116]
From Table 6, it can be seen that the Ni—Mg—Si composite oxide has a very high methane conversion rate by the steam reforming reaction of methane with respect to hydrocarbon and sulfur compound-containing hydrocarbon.
[0117]
(Example 7)
In the same manner as in Example 6, after preparing a precipitate containing nickel and magnesium, the silica sol was calcined with SiO in the catalyst after calcination. 2 Was added in a proportion of 20% by mass, 50% by mass, and 70% by mass to prepare a slurry. Similarly, Al 2 O 3 Was added at a ratio of 50% by mass and zeolite at a rate of 50% by mass to prepare a slurry.
[0118]
Thereafter, spray drying was carried out under conditions such that the average particle size was about 50 μm, and the powder obtained there was calcined at 950 ° C. for 20 hours in air. Furthermore, the obtained solid solution oxide was pulverized and sized to 100 to 300 mesh (63 to 150 μm). Each composite oxide powder is designated as catalyst “N”, “O”, “P”, “Q”, “R”.
[0119]
The reforming reaction using the composite oxide powder thus obtained was carried out in the same manner as in Example 1. Table 7 shows the methane conversion rate under each reaction condition.
[0120]
[Table 7]
Figure 2004000900
[0121]
From Table 7, the Ni-Mg-Si composite oxide slightly changes in methane conversion depending on the amount of silica added, but the conversion value is very high in any of the above catalysts. Moreover, the improvement effect of the catalytic activity of silica with respect to the reforming reaction of hydrocarbon and sulfur compound-containing hydrocarbon is clearly recognized.
[0122]
Similarly, when alumina or zeolite is added, the effect of improving the catalytic activity is recognized. Therefore, this composite oxide catalyst is very promising as a hydrocarbon reforming catalyst.
[0123]
(Example 8)
The zirconium / nickel / magnesium composite oxide obtained in Example 1 was weighed so that the silica powder would be 1% by mass, and thoroughly mixed in a mortar to obtain a silica-containing Zr—Ni—Mg composite oxide. Obtained. This composite oxide powder is designated as catalyst “S”.
[0124]
Similarly, each oxidation obtained by mixing 50% by mass of silica, 90% by mass of silica, 10% by mass of Y-type zeolite, 40% by mass of γ-alumina, 30% by mass of silica and 20% by mass of γ-alumina. The product powders are referred to as catalysts “T”, “U”, “V”, “W”, and “X”, respectively.
[0125]
The reforming reaction using the composite oxide powder thus obtained was carried out in the same manner as in Example 1. Table 8 shows the methane conversion rate under each reaction condition.
[0126]
[Table 8]
Figure 2004000900
[0127]
From Table 8, the Zr—Ni—Mg composite oxide in which silica, alumina, and zeolite are mixed has a methane conversion rate that slightly changes depending on the amount of silica, alumina, and zeolite added. As compared with the above, the conversion value is improved, and the addition effect of silica, alumina and zeolite is clearly recognized.
[0128]
(Comparative Example 1)
A nickel / magnesium solid solution oxide was prepared in the same manner as in Example 1 except that nickel acetate and magnesium nitrate were precisely weighed so that the molar ratio of each metal element was 1: 9, and a 0.10Ni0.90Mg composite was prepared. An oxide was obtained. The modification reaction using this composite oxide powder was carried out in the same manner as in Example 1. Table 9 shows the methane conversion rate under each reaction condition.
[0129]
[Table 9]
Figure 2004000900
[0130]
No. in Table 9 From Nos. 56 and 59, the nickel / magnesium solid solution catalyst shows a relatively high activity in the hydrocarbon system containing no hydrogen sulfide, but the methane conversion is lower than that of the examples of the present invention, and W / It can be seen that as F becomes smaller (No. 57) or the reaction pressure becomes higher (No. 58), the methane conversion rate decreases significantly, and the reforming reaction cannot proceed at a high reaction rate.
[0131]
In the case of hydrocarbons containing hydrogen sulfide, no. From 60 to 62, as the hydrogen sulfide concentration increases, the activity decreases significantly. Therefore, the nickel / magnesium solid solution catalyst cannot obtain high activity in reforming hydrocarbons containing hydrogen sulfide.
[0132]
(Comparative Example 2)
In the same manner as in Example 1 except that zirconium chloride, nickel acetate, and magnesium nitrate were precisely weighed so that the molar ratio of each metal element was 0.1: 0.3: 9.6, zirconium / A nickel / magnesium solid solution oxide was prepared to obtain a 0.01Zr0.03Ni0.96Mg composite oxide. The modification reaction using this composite oxide powder was carried out in the same manner as in Example 1. Table 10 shows the methane conversion rate under each reaction condition.
[0133]
[Table 10]
Figure 2004000900
[0134]
From Table 10, the 0.01Zr0.03Ni0.96Mg composite oxide catalyst with a small amount of zirconium added shows a relatively high methane conversion rate for hydrocarbons containing hydrogen sulfide compared to the results of Table 9. Although it shows a slightly higher activity even in the presence of hydrogen sulfide, it is not sufficient as compared with the examples of the present invention. In addition, for hydrocarbons not containing hydrogen sulfide, the activity improvement effect due to the addition of zirconium was hardly observed, and the methane conversion rate remained low.
[0135]
【The invention's effect】
The present invention provides a catalyst useful for reforming hydrocarbons at a high reaction rate and a method for reforming hydrocarbons containing hydrocarbons or sulfur compounds using the same. The effect is noticeable.
[0136]
(A) The reforming of hydrocarbons can be performed at a high reaction rate, and the productivity of reformed gas is high.
[0137]
(B) High reforming activity is exhibited even under the severe conditions of sulfur poisoning containing a high concentration of sulfur compounds.

Claims (8)

下記式で表される組成を有する複合酸化物からなることを特徴とする炭化水素の改質用触媒。
aM・bNi・cMg・dO
(式中、a、b、c、dは、モル比であり、a+b+c=1、0.02≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.97、dは、酸素が陽性元素と電気的中性を保つのに必要な数、Mは、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素である。)
A hydrocarbon reforming catalyst comprising a composite oxide having a composition represented by the following formula:
aM ・ bNi ・ cMg ・ dO
(In the formula, a, b, c and d are molar ratios; a + b + c = 1, 0.02 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0. 97 and d are the numbers necessary for oxygen to remain electrically neutral with positive elements, and M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd And at least one element selected from Al, Si.)
Ni、Mgを含む複合酸化物、及び、下記式で表される組成を有する複合酸化物の一方又は両方に、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えてなることを特徴とする炭化水素の改質用触媒。
aM・bNi・cMg・dO
(式中、a、b、c、dは、モル比であり、a+b+c=1、0.02≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.97、dは、酸素が陽性元素と電気的中性を保つのに必要な数、Mは、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素である。)
At least one oxide selected from silica, alumina, and zeolite is added to one or both of a composite oxide containing Ni and Mg and a composite oxide having a composition represented by the following formula: Hydrocarbon reforming catalyst.
aM ・ bNi ・ cMg ・ dO
(In the formula, a, b, c and d are molar ratios; a + b + c = 1, 0.02 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0. 97 and d are the numbers necessary for oxygen to remain electrically neutral with positive elements, and M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd And at least one element selected from Al, Si.)
前記シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物の含有量が1〜90質量%であることを特徴とする請求項2に記載の炭化水素の改質用触媒。The hydrocarbon reforming catalyst according to claim 2, wherein the content of at least one oxide selected from silica, alumina, and zeolite is 1 to 90% by mass. 請求項1〜3のいずれか1項に記載の炭化水素の改質用触媒の少なくとも1種を用いて、炭化水素と改質物質から、合成ガス及び水素の一方又は両方を得ることを特徴とする炭化水素の改質方法。Using at least one of the hydrocarbon reforming catalysts according to any one of claims 1 to 3, obtaining one or both of synthesis gas and hydrogen from a hydrocarbon and a reforming material, A method for reforming hydrocarbons. 請求項1〜3のいずれか1項に記載の炭化水素の改質用触媒の少なくとも1種を用いて、硫黄化合物含有炭化水素と改質物質から、合成ガス及び水素の一方又は両方を得ることを特徴とする炭化水素の改質方法。Using at least one of the hydrocarbon reforming catalysts according to any one of claims 1 to 3, to obtain one or both of synthesis gas and hydrogen from a sulfur compound-containing hydrocarbon and a reforming material. A method for reforming hydrocarbons. 前記炭化水素中の炭素のモル数に対して、外部供給される改質物質のモル比が0.5〜6であることを特徴とする請求項4又は5に記載の炭化水素の改質方法。The hydrocarbon reforming method according to claim 4 or 5, wherein the molar ratio of the reforming substance supplied externally is 0.5 to 6 with respect to the number of moles of carbon in the hydrocarbon. . 前記炭化水素の改質反応の温度が500〜1300℃であることを特徴とする請求項4又は5に記載の炭化水素の改質方法。The hydrocarbon reforming method according to claim 4 or 5, wherein a temperature of the hydrocarbon reforming reaction is 500 to 1300 ° C. 前記炭化水素の改質反応の圧力が0.1〜20MPaであることを特徴とする請求項4又は5に記載の炭化水素の改質方法。The hydrocarbon reforming method according to claim 4 or 5, wherein the pressure of the hydrocarbon reforming reaction is 0.1 to 20 MPa.
JP2002381613A 2002-03-25 2002-12-27 Hydrocarbon reforming method Expired - Fee Related JP4222827B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002381613A JP4222827B2 (en) 2002-03-25 2002-12-27 Hydrocarbon reforming method
PCT/JP2003/017057 WO2004060557A1 (en) 2002-12-27 2003-12-26 Catalyst and method for reforming hydrocarbon
AU2003292717A AU2003292717A1 (en) 2002-12-27 2003-12-26 Catalyst and method for reforming hydrocarbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002084014 2002-03-25
JP2002381613A JP4222827B2 (en) 2002-03-25 2002-12-27 Hydrocarbon reforming method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008024459A Division JP5207755B2 (en) 2002-03-25 2008-02-04 Method for producing hydrocarbon reforming catalyst

Publications (2)

Publication Number Publication Date
JP2004000900A true JP2004000900A (en) 2004-01-08
JP4222827B2 JP4222827B2 (en) 2009-02-12

Family

ID=30445918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381613A Expired - Fee Related JP4222827B2 (en) 2002-03-25 2002-12-27 Hydrocarbon reforming method

Country Status (1)

Country Link
JP (1) JP4222827B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237066A (en) * 2006-03-08 2007-09-20 Nippon Steel Corp Reforming catalyst of hydrocarbon
JP2007275756A (en) * 2006-04-06 2007-10-25 Nippon Steel Corp Reforming catalyst of hydrocarbon
JP2007313496A (en) * 2006-01-16 2007-12-06 Toda Kogyo Corp Porous carrier for steam reforming catalyst, steam reforming catalyst and reaction mixed gas production method
JP2007326756A (en) * 2006-06-09 2007-12-20 Toda Kogyo Corp Porous body material for honeycomb, porous body material mixture, suspension to be supported on honeycomb, catalytic body, and method of manufacturing mixed reaction gas using the catalytic body
JP2008018414A (en) * 2005-08-11 2008-01-31 Toda Kogyo Corp Catalyst for decomposing hydrocarbon, methods for decomposing hydrocarbon and for producing hydrogen using the same, and system for generating electricity
JP2008161868A (en) * 2002-03-25 2008-07-17 Nippon Steel Corp Method of producing catalyst for reforming hydrocarbon
JP2008194549A (en) * 2007-02-08 2008-08-28 Univ Of Tokyo Catalyst for producing hydrogen for fuel cell and dss operation-correspondence fuel cell
JP2009045597A (en) * 2007-08-22 2009-03-05 Nippon Steel Corp Tar reforming catalyst, manufacturing method thereof, and steam reforming method for tar using the catalyst
WO2009084736A1 (en) 2007-12-27 2009-07-09 Nippon Steel Corporation Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
WO2010010857A1 (en) * 2008-07-23 2010-01-28 石油資源開発株式会社 Complex oxide for hydrocarbon reforming catalyst, method for producing the same, and method for producing synthetic gas using the same
WO2010035430A1 (en) * 2008-09-24 2010-04-01 新日本製鐵株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
WO2010134326A1 (en) * 2009-05-19 2010-11-25 新日本製鐵株式会社 Catalyst for reforming tar-containing gas, method for producing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar-containing gas, and method for regenerating catalyst for reforming tar-containing gas
JP2011212551A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Reforming catalyst for tar-containing gas, method for manufacturing the reforming catalyst, and method for reforming tar-containing gas
JP2011212553A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Reforming catalyst for tar-containing gas, method for manufacturing the reforming catalyst, and method for reforming tar-containing gas
JP2011212535A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Reforming catalyst for tar-containing gas, manufacturing method therefor, and method for reforming tar-containing gas
JP2012115728A (en) * 2010-11-29 2012-06-21 Gunma Univ Catalyst and method of manufacturing the same
JP2012170938A (en) * 2011-02-24 2012-09-10 Nachi Fujikoshi Corp Nickel chromium alloy catalyst and manufacturing method thereof
JP2012187495A (en) * 2011-03-10 2012-10-04 Toshiba Corp Catalyst, and method for producing the same
KR20140099472A (en) * 2011-11-09 2014-08-12 바스프 에스이 Catalyst composition for the steam reforming of methane in fuel cells
WO2016047504A1 (en) * 2014-09-24 2016-03-31 三井金属鉱業株式会社 Steam reforming catalyst composition and steam reforming catalyst
JP2016153368A (en) * 2015-02-13 2016-08-25 新日鐵住金株式会社 Method for producing hydrogen by reforming hydrocarbon, apparatus for producing hydrogen, operation method for fuel battery, and operation device for fuel battery
JP2017029970A (en) * 2014-12-24 2017-02-09 新日鐵住金株式会社 Method for producing hydrocarbon reforming catalyst, and method for reforming light hydrocarbon
JP2018135262A (en) * 2017-02-21 2018-08-30 新日鐵住金株式会社 Method of producing hydrogen, and cerium oxide catalyst for producing hydrogen
CN111921546A (en) * 2020-07-30 2020-11-13 绍兴贝斯美化工股份有限公司 Surface-hydrophobically-modified ketone alkylation catalyst and preparation method and application thereof
KR20210032498A (en) * 2018-08-03 2021-03-24 가부시키가이샤 르네상스 에너지 리서치 Steam reforming catalyst

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161868A (en) * 2002-03-25 2008-07-17 Nippon Steel Corp Method of producing catalyst for reforming hydrocarbon
JP2008018414A (en) * 2005-08-11 2008-01-31 Toda Kogyo Corp Catalyst for decomposing hydrocarbon, methods for decomposing hydrocarbon and for producing hydrogen using the same, and system for generating electricity
JP2007313496A (en) * 2006-01-16 2007-12-06 Toda Kogyo Corp Porous carrier for steam reforming catalyst, steam reforming catalyst and reaction mixed gas production method
JP2007237066A (en) * 2006-03-08 2007-09-20 Nippon Steel Corp Reforming catalyst of hydrocarbon
JP2007275756A (en) * 2006-04-06 2007-10-25 Nippon Steel Corp Reforming catalyst of hydrocarbon
JP2007326756A (en) * 2006-06-09 2007-12-20 Toda Kogyo Corp Porous body material for honeycomb, porous body material mixture, suspension to be supported on honeycomb, catalytic body, and method of manufacturing mixed reaction gas using the catalytic body
JP2008194549A (en) * 2007-02-08 2008-08-28 Univ Of Tokyo Catalyst for producing hydrogen for fuel cell and dss operation-correspondence fuel cell
JP2009045597A (en) * 2007-08-22 2009-03-05 Nippon Steel Corp Tar reforming catalyst, manufacturing method thereof, and steam reforming method for tar using the catalyst
WO2009084736A1 (en) 2007-12-27 2009-07-09 Nippon Steel Corporation Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
EP2236204A4 (en) * 2007-12-27 2012-08-08 Nippon Steel Corp Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
EP2236204A1 (en) * 2007-12-27 2010-10-06 Nippon Steel Corporation Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
KR101203229B1 (en) 2007-12-27 2012-11-20 신닛테츠스미킨 카부시키카이샤 Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
WO2010010857A1 (en) * 2008-07-23 2010-01-28 石油資源開発株式会社 Complex oxide for hydrocarbon reforming catalyst, method for producing the same, and method for producing synthetic gas using the same
JP2010022983A (en) * 2008-07-23 2010-02-04 Japan Petroleum Exploration Co Ltd Catalyst for hydrocarbon reforming, its production method, and method for producing synthetic gas using the same
US8475684B2 (en) 2008-07-23 2013-07-02 Japan Petroleum Exploration Co., Ltd. Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
JP4639247B2 (en) * 2008-07-23 2011-02-23 石油資源開発株式会社 Hydrocarbon reforming catalyst, process for producing the same, and process for producing synthesis gas using the same
RU2476267C2 (en) * 2008-07-23 2013-02-27 Джапан Петролеум Эксплорейшн Ко., Лтд. Composite oxide of catalyst of reforming of hydrocarbons, method of its obtaining and method of obtaining synthesis-gas with its application
WO2010035430A1 (en) * 2008-09-24 2010-04-01 新日本製鐵株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
JPWO2010035430A1 (en) * 2008-09-24 2012-02-16 新日本製鐵株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar, and method for regenerating catalyst for reforming tar-containing gas
US9090465B2 (en) 2008-09-24 2015-07-28 Nippon Steel & Sumitomo Metal Corporation Method for producing catalyst reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
JP5009419B2 (en) * 2008-09-24 2012-08-22 新日本製鐵株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar, and method for regenerating catalyst for reforming tar-containing gas
CN102159313A (en) * 2008-09-24 2011-08-17 新日本制铁株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
KR101274314B1 (en) * 2008-09-24 2013-06-13 신닛테츠스미킨 카부시키카이샤 Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
WO2010134326A1 (en) * 2009-05-19 2010-11-25 新日本製鐵株式会社 Catalyst for reforming tar-containing gas, method for producing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar-containing gas, and method for regenerating catalyst for reforming tar-containing gas
JP4897112B2 (en) * 2009-05-19 2012-03-14 新日本製鐵株式会社 Tar-containing gas reforming catalyst, method for producing tar-containing gas reforming catalyst, tar-containing gas reforming method using tar-containing gas reforming catalyst, and method for regenerating tar-containing gas reforming catalyst
US9393551B2 (en) 2009-05-19 2016-07-19 Nippon Steel & Sumitomo Metal Corporation Catalyst for reforming tar-containing gas, method for preparing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar containing gas, and method for regenerating catalyst for reforming tar-containing gas
JP2011212553A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Reforming catalyst for tar-containing gas, method for manufacturing the reforming catalyst, and method for reforming tar-containing gas
JP2011212535A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Reforming catalyst for tar-containing gas, manufacturing method therefor, and method for reforming tar-containing gas
JP2011212551A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Reforming catalyst for tar-containing gas, method for manufacturing the reforming catalyst, and method for reforming tar-containing gas
JP2012115728A (en) * 2010-11-29 2012-06-21 Gunma Univ Catalyst and method of manufacturing the same
JP2012170938A (en) * 2011-02-24 2012-09-10 Nachi Fujikoshi Corp Nickel chromium alloy catalyst and manufacturing method thereof
JP2012187495A (en) * 2011-03-10 2012-10-04 Toshiba Corp Catalyst, and method for producing the same
KR20140099472A (en) * 2011-11-09 2014-08-12 바스프 에스이 Catalyst composition for the steam reforming of methane in fuel cells
JP2015504356A (en) * 2011-11-09 2015-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Catalyst composition for methane steam reforming in fuel cells
KR102068732B1 (en) * 2011-11-09 2020-01-21 바스프 에스이 Catalyst composition for the steam reforming of methane in fuel cells
WO2016047504A1 (en) * 2014-09-24 2016-03-31 三井金属鉱業株式会社 Steam reforming catalyst composition and steam reforming catalyst
JPWO2016047504A1 (en) * 2014-09-24 2017-04-27 三井金属鉱業株式会社 Steam reforming catalyst composition and steam reforming catalyst
JP2017029970A (en) * 2014-12-24 2017-02-09 新日鐵住金株式会社 Method for producing hydrocarbon reforming catalyst, and method for reforming light hydrocarbon
JP2016153368A (en) * 2015-02-13 2016-08-25 新日鐵住金株式会社 Method for producing hydrogen by reforming hydrocarbon, apparatus for producing hydrogen, operation method for fuel battery, and operation device for fuel battery
JP2018135262A (en) * 2017-02-21 2018-08-30 新日鐵住金株式会社 Method of producing hydrogen, and cerium oxide catalyst for producing hydrogen
JP7069805B2 (en) 2017-02-21 2022-05-18 日本製鉄株式会社 Hydrogen production method and cerium oxide catalyst for hydrogen production
KR20210032498A (en) * 2018-08-03 2021-03-24 가부시키가이샤 르네상스 에너지 리서치 Steam reforming catalyst
KR102499222B1 (en) 2018-08-03 2023-02-10 가부시키가이샤 르네상스 에너지 리서치 steam reforming catalyst
CN111921546A (en) * 2020-07-30 2020-11-13 绍兴贝斯美化工股份有限公司 Surface-hydrophobically-modified ketone alkylation catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP4222827B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4222827B2 (en) Hydrocarbon reforming method
EP2311560B1 (en) Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
JP4355047B2 (en) Reforming catalyst and method for producing synthesis gas using the same
JP4335356B2 (en) Nickel-based catalyst for reforming and production method of synthesis gas using the same
JP4222839B2 (en) Hydrocarbon reforming method
US8178003B2 (en) Hydrocarbon-reforming catalyst and process for producing synthesis gas using the same
JP4505126B2 (en) Reforming catalyst manufacturing method
JP6631245B2 (en) Method for producing catalyst for reforming hydrocarbon and method for reforming light hydrocarbon
JP5207755B2 (en) Method for producing hydrocarbon reforming catalyst
JP4505127B2 (en) Production method of reforming catalyst and production method of synthesis gas using the same
JP4262798B2 (en) Cobalt catalyst for reforming and synthesis gas production method using the same
JP2002126528A (en) Method for preparing reforming catalyst
KR101594901B1 (en) Cokes oven gas reforming catalyst for manufacturing synthesis gas, method for preparing the same and method for manufacturing synthesis gas from cokes oven gas using the same
JP4776403B2 (en) Hydrocarbon reforming catalyst
JP2006341206A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
WO2004060557A1 (en) Catalyst and method for reforming hydrocarbon
JP4767738B2 (en) Hydrocarbon reforming catalyst
JP4505123B2 (en) Reforming catalyst manufacturing method
WO2022249616A1 (en) Oxidative dehydrogenation catalyst
JP4505122B2 (en) Method for producing reforming catalyst
JP4421913B2 (en) Method for producing catalyst for producing hydrocarbons and method for producing hydrocarbons using the catalyst
JP2004330106A (en) Catalyst for modifying carbon monoxide and method for modifying carbon monoxide using it
JP4505124B2 (en) Reforming catalyst manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R151 Written notification of patent or utility model registration

Ref document number: 4222827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees