JPS61191634A - Method for producing ethanol - Google Patents

Method for producing ethanol

Info

Publication number
JPS61191634A
JPS61191634A JP60017723A JP1772385A JPS61191634A JP S61191634 A JPS61191634 A JP S61191634A JP 60017723 A JP60017723 A JP 60017723A JP 1772385 A JP1772385 A JP 1772385A JP S61191634 A JPS61191634 A JP S61191634A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
rhodium
hydrogen
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60017723A
Other languages
Japanese (ja)
Other versions
JPS6210486B2 (en
Inventor
Satoshi Arimitsu
有光 聰
Katsumi Yanagi
柳 勝美
Takakazu Fukushima
福島 貴和
Hitomi Hosono
細野 仁美
Toshihiro Saito
寿広 斉藤
Kazuo Takada
和夫 高田
Kazuaki Tanaka
和明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60017723A priority Critical patent/JPS61191634A/en
Priority to GB08602390A priority patent/GB2171925B/en
Publication of JPS61191634A publication Critical patent/JPS61191634A/en
Priority to US06/941,072 priority patent/US4758600A/en
Publication of JPS6210486B2 publication Critical patent/JPS6210486B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled compound economically in high selectivity, by reacting carbon monoxide with hydrogen using a catalyst system consisting of rhodium supported on a carrier and palladium, iron, etc., supported on a carrier. CONSTITUTION:The objective compound can be produced by reacting carbon monoxide with hydrogen preferably under 0-250kg/cm<2>G pressure at 180-350 deg.C using a catalyst system consisting of (A) a catalyst selected from A1 a catalyst obtained by supporting rhodium on a carrier, A2 a catalyst obtained by supporting rhodium, lithium or manganese on a carrier, and A3 a catalyst obtained by supporting rhodium, manganese, iridium and/or lithium on a carrier and (B) a catalyst obtained by supporting palladium, iron and/ or molybdenum on a carrier. The catalysts A and B are used in the form of a mixture, or by setting the catalyst A at the upper layer and the catalyst B at the lower layer.

Description

【発明の詳細な説明】 〔発明の目的〕 本発明はエタノールの製造方法に関する。更に詳しくは
、(イ)ロジウムを担体担持してなる触媒、(ロ)ロジ
ウム及びリチウム又はマンガンを担体担持してなる触媒
、(ハ)ロジウム、マンガン、イリジウム及び/又はリ
チウムを担体担持してなる触媒のいずれかとに)パラジ
ウム、鉄及び/又はモリプデ′ンを担体担持してなる触
媒との存在下、一酸化炭素と水素とを反応させることか
らなる、エタノールの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a method for producing ethanol. More specifically, (a) a catalyst comprising rhodium supported on a carrier, (b) a catalyst comprising rhodium and lithium or manganese supported on a support, and (c) a catalyst comprising rhodium, manganese, iridium and/or lithium supported on a support. The present invention relates to a process for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst comprising palladium, iron and/or molypdenoid supported on a carrier.

〔従来の技術及び発明が解決しようとする問題点〕エタ
ノール、アセトアルデヒド等の炭素数2の含酸素化合物
は従来ナフサを原料とする石油化学的方法によって製造
されてきた。しかし、近年の原油の亮騰によシ、製造価
格の著しい上昇が起り、原料転換の必要性が生じている
。 一方、豊富で且つ安価に入手可能な一酸化炭素及び
水素の混合ガスよシ炭素数2の含酸素化合物を製造する
方法が種々検討されている。則ち、一酸化炭素と水素の
混合ガスを、ロジウムを主成分とし、マンガン、チタン
、ジルコニウム、タングステンなどの金属もしくは金属
酸化物より成る触媒の存在下に反応させて、炭素数2の
含酸素化合物を選択的に製造する方法は公知でろる。
[Prior art and problems to be solved by the invention] Oxygen-containing compounds having two carbon atoms, such as ethanol and acetaldehyde, have conventionally been produced by a petrochemical method using naphtha as a raw material. However, due to the rise in crude oil prices in recent years, manufacturing prices have risen markedly, necessitating a change in raw materials. On the other hand, various methods of producing an oxygen-containing compound having two carbon atoms using a mixed gas of carbon monoxide and hydrogen, which are abundant and available at low cost, have been studied. In other words, a mixed gas of carbon monoxide and hydrogen is reacted with rhodium as the main component in the presence of a catalyst made of a metal or metal oxide such as manganese, titanium, zirconium, or tungsten to form an oxygen-containing gas containing 2 carbon atoms. Methods for selectively producing compounds are known.

しかしながら、かかる方法も副生する炭化水素、例えば
メタン等の量が多く、含酸素化合物の選択率が低いもの
や含酸素化合物の選択率が高い場合には主生成物の選択
性が低いものでめった。更に高価な貴金属でろ、るロジ
ウムあた)の目的化合物の生成量がまだまだ少、<、経
済的にもプロセス的にも完成された技術が提供されてい
ないのが実情でδるO 更に炭素数2の含酸素化合物を高収量で高選択的に製造
することを目的としたロジウムにマンガンを添加した触
媒及びその改良法(特開昭52−14706.56−4
333.56−8334号)が提案されているが、いず
れの方法もアセトアルデヒド、酢酸を主生成物とするも
のでアリ、エタノールの収率、選択性などは著しく低い
欠点を有している。
However, this method also produces a large amount of by-product hydrocarbons such as methane, and when the selectivity of oxygen-containing compounds is low or the selectivity of oxygen-containing compounds is high, the selectivity of the main product is low. Rarely. Furthermore, the amount of target compounds produced using rhodium, which is a more expensive precious metal, is still small, and the reality is that no technology has been developed that has been completed economically or in terms of process. Catalyst in which manganese is added to rhodium and its improvement method for the purpose of producing the oxygen-containing compound No. 2 in high yield and with high selectivity (Japanese Patent Application Laid-Open No. 52-14706.56-4
No. 333.56-8334) has been proposed, but both methods use acetaldehyde and acetic acid as the main products and have the disadvantage that the yield and selectivity of ethanol and ethanol are extremely low.

以上述べた如<1.、−a化戻素及び水素を含有する気
体よりエタノールを主成分とする含酸素化合物を効率よ
く経済性よく製造する方法は提供されていない。
As stated above <1. There has not been provided a method for efficiently and economically producing an oxygen-containing compound containing ethanol as a main component from a gas containing hydrogen, -a-returning element, and hydrogen.

本発明者らはエタノールを選択的に製造する方法につい
て鋭意検討を重ねた結果、前述した如くアセトアルデヒ
ドや酢酸の製造用触媒として知られていたc1ンウム触
媒やc1ジウムーマンガン触媒と鉄及び/又はモリブテ
ンを含有するバ2ジウム触媒とを組合せることによジェ
タノールを高選択的に製造できることを見出し本発明を
完成した。
As a result of intensive studies on the method for selectively producing ethanol, the inventors of the present invention found that, as mentioned above, the Cl-Nium catalyst and the Cl-Dium-Mn catalyst, which were known as catalysts for the production of acetaldehyde and acetic acid, and iron and/or The present invention was completed by discovering that jetanol can be produced with high selectivity by combining it with a batidium catalyst containing molybdenum.

〔発明の概要〕[Summary of the invention]

本発明は前記した如く(イ)〜(ハ)のいずれかの触媒
と、に)の触媒との存在下、一酸化炭素及び水素を反応
させエタノールを製造するものである。
As described above, the present invention produces ethanol by reacting carbon monoxide and hydrogen in the presence of any one of the catalysts (a) to (c) and the catalyst (b).

る三者の触媒を主たる構成成分とする。両者の触媒は各
々別途にrA製したものを部用することが必要でめシ、
使用に際しては混合あるいは、(イ)〜(ハ)の触媒を
上層にに)の触媒を下層に充填して使用することができ
る。
The main constituents are three types of catalysts. It is necessary to use separate catalysts manufactured by rA for both catalysts.
When used, they can be used by mixing them or by filling the catalysts (a) to (c) in the upper layer and the catalyst in (c) in the lower layer.

触媒の14製にあたっては通常、貴金属触媒において行
われる如く、担体上に上記の成分を分散された触媒を用
いる。
In preparing the catalyst, a catalyst in which the above-mentioned components are dispersed on a carrier is usually used, as is the case with noble metal catalysts.

本発明において用いられる触媒は貴金属常法を用いて調
製することができる。例えば含浸法、浸漬法、イオン交
換法、共沈法、混練法等によって調製できる。
The catalyst used in the present invention can be prepared using conventional noble metal methods. For example, it can be prepared by an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, a kneading method, etc.

前記触媒を構成する鎖成分の原料化合物としては、酸化
物、塩化物、硝酸塩、炭酸塩等の無機塩、酢酸塩、シ為
つ酸塩、アセチルアセトナート塩、ジメチルグリオキシ
ム塩、エチレンジアミン酢酸塩等有機塩又はキレート化
物、カルボニル化合物、シクロペンタジェニル化合物、
アンミン錯体、金属アルコキシド化合物、アル午ル金属
化合物等通常貴金属触媒を調製する際に用いられる化合
物を使用することができる。
The raw material compounds for the chain components constituting the catalyst include oxides, chlorides, inorganic salts such as nitrates and carbonates, acetates, cymetates, acetylacetonate salts, dimethylglyoxime salts, and ethylenediamine acetate salts. organic salts or chelates, carbonyl compounds, cyclopentadienyl compounds,
Compounds commonly used in preparing noble metal catalysts, such as ammine complexes, metal alkoxide compounds, and aluminum metal compounds, can be used.

以下に含浸法に例をとり触媒の調製法を説明する。The method for preparing the catalyst will be explained below by taking the impregnation method as an example.

上記の金属化合物を水、メタノール、エタノール、テト
ラヒドロフ2ン、ジオキサン、ノルマルへ中サン、ベン
ゼン、トルエン等の溶媒に溶解シ、その溶液に担体を加
え浸漬し、溶媒を留去、乾燥し、必要とめれば加熱等の
処理を行い、担体に金属化合物を担持する。
The above metal compound is dissolved in a solvent such as water, methanol, ethanol, tetrahydrofene, dioxane, normal hexanes, benzene, toluene, etc., a carrier is added to the solution and immersed, the solvent is distilled off, and the mixture is dried. If necessary, treatment such as heating is performed to support the metal compound on the carrier.

担持の手法としては、原料化合物を同一溶媒に同時に溶
解した混合溶液を作り、担体に同時に担持する方法、各
成分を逐次的に担体に担持する方法、あるいは各成分を
必JsK応じて還元、熱処理等の処理を行いながら逐次
的、段階的に担持する方法などの各手法を用いることが
できる。
Supporting methods include preparing a mixed solution in which the raw material compounds are simultaneously dissolved in the same solvent and supporting them on the carrier at the same time, supporting each component on the carrier sequentially, or reducing and heat-treating each component according to the required JsK. It is possible to use various techniques such as a method of sequentially or stepwise loading while performing processing such as the following.

同、前記し九如く三者の触媒はそれぞれ別個にこれらの
手法を用いて調製する。
As described above, the three catalysts are prepared separately using these methods.

その他の調製法、例えば担体のイオン交換能を利用した
イオン交換によって金属を担持する方法、共沈法により
て触媒を調製する方法なども本発明方法に用いられる触
媒の調製手法として採用できるO 上述の手法によって調製された触媒は通常還元処理を行
うことKより活性化し次いで反応に供せられる。還元を
行うには水素を含有する気体によシ昇温下で行うことが
簡便であって好ましい。この際還元温度として、ロジウ
ムの還元される温度、即ち100℃程度・温度条件下で
も還元処理ができるのであるが、好ましくは200υ〜
600℃の温度下で還元処理を行う。この際触媒の各成
分の分散を十分に行わせる目的で低温よシ徐々にあるい
は段階的に昇温しながら水素還元を行ってもよい。
Other preparation methods, such as a method of supporting a metal by ion exchange utilizing the ion exchange ability of a carrier, a method of preparing a catalyst by a coprecipitation method, etc., can also be adopted as a method of preparing the catalyst used in the method of the present invention. The catalyst prepared by the above method is usually activated by K by reduction treatment and then subjected to the reaction. It is convenient and preferable to carry out the reduction using a hydrogen-containing gas at an elevated temperature. At this time, the reduction temperature can be the temperature at which rhodium is reduced, that is, about 100°C, but preferably 200υ~
Reduction treatment is performed at a temperature of 600°C. At this time, hydrogen reduction may be carried out from a low temperature while gradually or stepwise raising the temperature in order to sufficiently disperse each component of the catalyst.

また還元剤を用いて、化学的に還元を行うこともできる
。たとえば、一酸化炭素と水を用いたシ、ヒト2ジン、
水素化ホウ素化合物、水素化アルミニウム化合物などの
還元剤を用いた還元処理を行ってもよい。
Further, reduction can also be carried out chemically using a reducing agent. For example, using carbon monoxide and water,
Reduction treatment may be performed using a reducing agent such as a boron hydride compound or an aluminum hydride compound.

本発明において用いられる担体は好ましくは比表面積I
 L) 〜10 Q Orn2/g、細孔径10′A以
上を有するものでめれば通常担体として知られているも
のを使用することができる。具体的な担体としては、り
u、fiMrll塩、シリカグル、モレー?−2−7−
プ、クイック士等のシリカ系担体、アルミナ、活性炭な
どが多げられるがシリカ系の担体が好ましい。
The carrier used in the present invention preferably has a specific surface area of I
L) to 10 Q Orn2/g and a carrier having a pore diameter of 10'A or more and is generally known as a carrier can be used. Specific carriers include Riu, fiMrll salt, silica glu, Moley? -2-7-
Examples include silica-based carriers such as Copper, Quick Carbon, etc., alumina, activated carbon, etc., but silica-based carriers are preferred.

触媒(→〜(ハ)いずれの場合も触媒中の各成分の濃度
と組成比は広い範囲でかえることができる。
Catalyst (→ - (c) In either case, the concentration and composition ratio of each component in the catalyst can be varied within a wide range.

ロジウム、パ″)′)クムの担体に対する比率は、担体
の比表面積を考慮して重量比で0.0001〜0.5 
、好4 L、 < ハ0,001−0.3−16ル。1
&、(()〜(ハ)触媒において、助触媒金属の比率は
ロジウムに対して原子比で各々0.001〜lO1好ま
しくは0.O1〜5の範囲でろる。更にに)触媒におい
て、鉄及びそリプテ゛ンの比率はパラジウムに対し原子
比で各々0.L) 01〜10.好ましくは0.01〜
5の範囲でるる。
The ratio of rhodium and cum to the carrier is 0.0001 to 0.5 by weight considering the specific surface area of the carrier.
, 4 L, < 0,001-0.3-16 L. 1
&, (() to (c) In the catalysts, the ratio of the cocatalyst metal to rhodium is in the range of 0.001 to 1 O1, preferably 0.01 to 5, respectively in atomic ratio.Further) In the catalyst, iron The ratio of the atomic ratio of the salt and the salt to the palladium is 0. L) 01-10. Preferably 0.01~
Ruru in the range of 5.

本発明は、たとえば固定床の流通式反応装置に適用する
ことができる。すなわち反応器内に触媒を充填し、原料
ガスを送入して反応を行わせる。
The present invention can be applied to, for example, a fixed bed flow reactor. That is, a reactor is filled with a catalyst, and a raw material gas is introduced to cause a reaction.

生成物は分離し、未反応の原料ガスは精製し九のちに循
環再使用することも可能である。
It is also possible to separate the product and purify the unreacted raw material gas and recycle it for later use.

また、本発明は流動床式の反応装置にも適用できる。す
なわち原料ガスと流動化した触媒を同伴させて反応を行
わせることもできる。更には本発明は溶媒中に触媒を分
散させ、原料ガスを送入し反応を行うことからなる液相
不均一反応にも適用できる。
Further, the present invention can also be applied to a fluidized bed type reactor. That is, the reaction can also be carried out by bringing the raw material gas and the fluidized catalyst together. Furthermore, the present invention can also be applied to a liquid phase heterogeneous reaction in which a catalyst is dispersed in a solvent and a raw material gas is introduced to carry out the reaction.

本発明を実施するに際して採用される条件は、エタノー
ルを主成分とする含酸素化合物を高収率・高選択率で製
造することを目的として種々の反応条件の因子をM磯釣
に組合せて選択される。反応圧力は常圧(すなわちOk
4/ctn”ゲージ)でも当該目的化合物を高選択率・
高収率で製造できるので6るが、空時収率を高める目的
で加圧下において反応を行うことができる。
The conditions adopted in carrying out the present invention are selected by combining various reaction condition factors with the aim of producing oxygen-containing compounds containing ethanol as the main component with high yield and high selectivity. be done. The reaction pressure is normal pressure (i.e. Ok
4/ctn” gauge) with high selectivity for the target compound.
The reaction can be carried out under pressure in order to increase the space-time yield.

従って反応圧力としてはOkg/cmゲージ〜350に
9/αゲージ、好ましくは0榴/12ゲージ〜250匈
/2   。
Therefore, the reaction pressure is Okg/cm gauge to 350 to 9/α gauge, preferably 0 kg/cm gauge to 250 hog/cm gauge.

傭ゲージの圧力下で行う。反応温度は150υ〜45L
)℃、好ましくは18U’Q〜350℃である。反応温
度が高い場合には、炭化水素の副生量が増加するため原
料の送入速度を早くする必要がろる。従って、空間速度
(原料ガス送入量×触媒容積)は、標準状態(0°0.
1気圧)5!A算でl Oh=〜10’h−’の範囲よ
シ、反応圧力と反応温度、原料ガス組成との関係よシ適
宜選択される。
Do it under pressure from a mercenary. Reaction temperature is 150υ~45L
)°C, preferably 18U'Q to 350°C. When the reaction temperature is high, the amount of hydrocarbon by-product increases, so it is necessary to increase the feed rate of the raw material. Therefore, the space velocity (raw material gas feed amount x catalyst volume) is under the standard condition (0°0.
1 atm) 5! It is selected as appropriate in the range of 1 Oh=~10'h-' in terms of A and the relationship between the reaction pressure, reaction temperature, and raw material gas composition.

当該原料ガスの組成は、主として一酸化炭素と水素を含
有しているガスであって、窒素、アルゴン、ヘリウム、
メタン等の不活性ガスあるいは反応条件下において気体
の状態であれば炭化水素や炭酸ガスや水を含有していて
もよい。一酸化炭素と水素の混合比はCO/H2比で0
.1〜lO1好ましくは0.2〜5(容積比)でるる。
The composition of the raw material gas is a gas mainly containing carbon monoxide and hydrogen, and nitrogen, argon, helium,
It may contain an inert gas such as methane, or a hydrocarbon, carbon dioxide gas, or water as long as it is in a gaseous state under the reaction conditions. The mixing ratio of carbon monoxide and hydrogen is 0 in terms of CO/H2 ratio.
.. 1 to 1O1, preferably 0.2 to 5 (volume ratio).

以下実施例によって本発明を更に詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

実施例1 塩化ロジウム(Mel、・3H2U) 0.48 L)
 g (1,82mmoりを溶解させたエタノール溶液
中に、予め3t)0℃で2時間高真空下で焼成脱気した
クリカゲA/ (Day i sonφ57.Davi
son社製)3.7g(10aZ)を加え浸漬した。次
いでロータリーエバポレーターを用いてエタノールを留
去し乾固し死後、更に真空乾燥した。その後、パイレッ
クス反応管に充填し、常圧で水素及び窒素の混合ガス(
H2: 6utd/分、N、:60就/分)の通気下、
400℃で4時間活性化処理を行い、Rh/ 8102
触媒を調製した。次いで、塩化パラジウム(PdC12
)0.162 g、塩化第一鉄(FeC1z・4H20
) 0.109 gを溶解嘔せた水溶液中に焼成脱気し
たシリカゲル3.7g(10ag)を加え浸漬した。上
記と同様の調製法及び活性化処理を用いてPd −Fe
/8i0□触媒を調製した。このようにして得られ九几
h/8i 0□触媒(触媒7m)、Pd−Fe触媒(3
1)を高圧流通式反応装置の反応管(チタンm1)K上
層、下層になる様に充填し、常圧水素ガスの流通下(2
00i17分)、300℃で2時間程度再還元処理した
後、一酸化炭素と水素の混合ガスを送入し、所定の反応
条件下で反応を行った。反応生成物の分析は、液状生成
物については水に溶解し捕集し、気体生成物については
直接ガス採取し、ガスクロ分析を行い、定性及び定量分
析し、生成物の分布を求めた。結果を表1に示した。
Example 1 Rhodium chloride (Mel, 3H2U) 0.48 L)
Kurikage A/ (Day i sonφ57. Davi
3.7 g (10aZ) (manufactured by Son Co., Ltd.) was added and immersed. Next, ethanol was distilled off to dryness using a rotary evaporator, and after death, the body was further vacuum-dried. After that, the Pyrex reaction tube is filled with a mixed gas of hydrogen and nitrogen (
H2: under ventilation of 6 utd/min, N: 60 utd/min),
Activation treatment was performed at 400℃ for 4 hours, and Rh/8102
A catalyst was prepared. Then, palladium chloride (PdC12
) 0.162 g, ferrous chloride (FeC1z・4H20
) 0.109 g of silica gel was dissolved in the aqueous solution, and 3.7 g (10 g) of calcined and degassed silica gel was added and immersed. Pd-Fe was prepared using the same preparation method and activation treatment as above.
/8i0□ catalyst was prepared. Nine h/8i 0□ catalysts (catalyst 7m) and Pd-Fe catalyst (3m) were obtained in this way.
1) was filled in the reaction tube (titanium m1) K of the high-pressure flow reactor so that it formed the upper and lower layers, and was heated under normal pressure hydrogen gas flow (2).
After re-reduction treatment at 300° C. for about 2 hours, a mixed gas of carbon monoxide and hydrogen was introduced to carry out a reaction under predetermined reaction conditions. For analysis of the reaction products, the liquid products were dissolved in water and collected, and the gaseous products were collected directly and subjected to gas chromatography analysis, qualitative and quantitative analysis, and the distribution of the products was determined. The results are shown in Table 1.

実−例2 塩化ロジウム0.4[1g、塩化リチウム(LiC1・
H2O) 0.022 gを溶解させたエタノール溶液
を300℃焼成説気したシリカゲル10−に浸漬した麦
、実施例1と同様の処理によりRh −Li /S 7
02触媒を調製した。lもh−L t /S i 02
触媒(7m)、実施例1で調製したPd −F e/8
 i02触4%(3aZ)を高圧流通式反応装置の反応
管に上層、下層に充填し、実施例1と同様の方法で活性
試験を行った。
Practical example 2 Rhodium chloride 0.4 [1 g, lithium chloride (LiC1.
Rh-Li/S 7 was obtained by immersing 0.022 g of ethanol solution in which 0.022 g of Rh-Li/S 7
02 catalyst was prepared. l also h-L t /S i 02
Catalyst (7m), Pd-Fe/8 prepared in Example 1
The reaction tube of a high-pressure flow reactor was filled with 4% i02 (3aZ) in the upper and lower layers, and an activity test was conducted in the same manner as in Example 1.

結果を表1に示した。The results are shown in Table 1.

実施例3 塩化ロジウム0.480 g s塩化マンガン(Bi[
nC12・4H20) 0.361 gを溶解させ九エ
タノール溶液を300°C焼成説気クリカlシリに浸漬
し良。他方、塩化パラジウム0.162 gs塩塩化モ
リブチノンMoC1s )0.075 gを溶解させた
水溶液を300℃焼成脱気シリカ10MIK浸漬した。
Example 3 Rhodium chloride 0.480 g s Manganese chloride (Bi[
Dissolve 0.361 g of nC12・4H20) and immerse the ethanol solution in a 300°C fired oven. On the other hand, degassed silica calcined at 300°C was immersed in an aqueous solution in which 0.162 gs of palladium chloride and 0.075 g of molybutynone chloride (MoCls) were dissolved at 10 MIK.

各々を実施例1と同様の処理により、Rh−Mn/8i
0z、Pd −Mo/8 t O2を調製した。Rh 
−M n/S s 02触媒(6d)とPd−Mo/8
i02(2ml )を高圧流通式反応装置の反応管に上
層・下層に充填し、実施例1と同様の方法で活性試験を
行った。結果を表1に示した。
Rh-Mn/8i
0z, Pd-Mo/8tO2 was prepared. Rh
-M n/S s 02 catalyst (6d) and Pd-Mo/8
i02 (2 ml) was filled into the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1.

実施例4 塩化ロジクム0.480g、塩化マンガンυ、012 
g。
Example 4 Logicum chloride 0.480g, manganese chloride υ, 012
g.

塩化リチウム0.033 gを溶解させたエタノール溶
液と、塩化パラジウム0.177 g s塩化第一鉄0
、I O9gを溶解させた水溶液を300℃焼成説気シ
リカゲルlO畔に各々を浸漬した後、実施例1と同様の
処理によりRh −Mn −L i/S 102、Pd
−Fe/8102触媒を調製した。Rh −M n −
L s /S t 02触媒(6R1)、I r−Fe
/8i02(2ia/)を高圧流通式反応装置の反応管
に上層・下層に充填し、実施例1と同様の方法で活性試
験を行った。結果を表1VC示した。
An ethanol solution containing 0.033 g of lithium chloride and 0.177 g of palladium chloride and 0.0 g of ferrous chloride.
, IO dissolved in an aqueous solution of 9 g was immersed in the 300°C calcined aerated silica gel lO, and then subjected to the same treatment as in Example 1 to obtain Rh -Mn -Li/S 102, Pd.
-Fe/8102 catalyst was prepared. Rh −M n −
L s /S t 02 catalyst (6R1), I r-Fe
/8i02 (2ia/) was filled into the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1VC.

実施例5 塩化パラジウム0.089 g 、塩化モリプゲ“ンu
、035gt#解させた水溶液を300℃焼成鋭気した
シリカゲル10aZに浸漬した。実施例1と同様の処理
によりP d −M o/8 i 02を調製した。実
施例4で調製したR h −Mn −L t /8 i
02触媒(6−)と上記P d −Mo/8 t O2
触媒(2−)を高圧流通式反応装置の反応管に上層・下
層に充填し、実施例1と同様の方法で活性試験を行りた
。結果を表1に示した。
Example 5 Palladium chloride 0.089 g, molybogen chloride u
, 035gt# dissolved aqueous solution was immersed in silica gel 10aZ which had been fired at 300°C. P d -Mo/8 i 02 was prepared by the same treatment as in Example 1. R h -Mn -L t /8 i prepared in Example 4
02 catalyst (6-) and the above P d -Mo/8 t O2
Catalyst (2-) was filled in the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1.

実施例6 塩化ロジウム0.480 g 、塩化マンガン0.03
6 g 。
Example 6 Rhodium chloride 0.480 g, manganese chloride 0.03
6g.

塩化イリジウb (IrC14−H2O)0.128g
 ′t−溶解させたエタノール溶液と、塩化パラジウム
0.177 g1塩化第一鉄0.109 g 、塩化モ
リブチ°ン0.05 gを溶解させ大水溶液を300℃
焼成説気したシリカゲル10dK各々を浸漬した後、実
施例1と同様の処理によル几h −Mu −1r/S 
io2、P d −F e −NLo/8102を調製
した。R,h −Mn −I r/8i0□触媒(6d
)とPd−Fe−Mo/8i0□触媒(2d)を高圧流
通式反応装置の反応管に上層・下層に充填し、実施例1
と同様の方法で活性試験を行った。結果を表1に示し六
Iridium chloride b (IrC14-H2O) 0.128g
The dissolved ethanol solution, 0.177 g of palladium chloride, 0.109 g of ferrous chloride, and 0.05 g of molybutin chloride were dissolved in a large aqueous solution at 300°C.
After immersing each 10 dK of calcined silica gel, the same treatment as in Example 1 was carried out to obtain 10 dK of silica gel.
io2, Pd-Fe-NLo/8102 was prepared. R,h -Mn-I r/8i0□Catalyst (6d
) and Pd-Fe-Mo/8i0□ catalyst (2d) were filled in the upper and lower layers of a reaction tube of a high-pressure flow reactor, and Example 1
The activity test was conducted in the same manner as above. The results are shown in Table 1.

実施例7 塩化ロジウムU、480 g 1塩化マンガン0.01
8 g。
Example 7 Rhodium chloride U, 480 g 1 Manganese chloride 0.01
8g.

塩化イリジウム0.064 g 、塩化リチウム0.0
22 gを溶解させたエタノール溶液と、塩化パラジウ
ム0.266 g 、塩化第一鉄0.163gを溶解さ
せた水溶液を300℃焼成脱気したシリカゲル10−に
各々を浸漬した後、実施例1と同様の処理によシ几h−
Mn−Ir−Li/5i02、Pd−Fe/8i02を
調製し友。
Iridium chloride 0.064 g, lithium chloride 0.0
An ethanol solution containing 22 g of palladium chloride and an aqueous solution containing 0.266 g of palladium chloride and 0.163 g of ferrous chloride were immersed in silica gel 10-, which had been calcined and degassed at 300°C. Similar treatment
Mn-Ir-Li/5i02 and Pd-Fe/8i02 were prepared.

Rh −Mn−Ir−Li/8i0□触媒(7N)とP
d−re/実施例1で調製したRh/j9 t O2触
媒(10iu)を高圧流通式反応装置の反応管Kyc、
填し、実施例1と同様の方法で活性試験を行った。結果
を表1に示した。
Rh -Mn-Ir-Li/8i0□Catalyst (7N) and P
d-re/Rh/j9t O2 catalyst (10 iu) prepared in Example 1 was transferred to the reaction tube Kyc of the high-pressure flow reactor.
The activity test was conducted in the same manner as in Example 1. The results are shown in Table 1.

比較例2 実施例2で調製したRh −L t /8 t 02触
媒(10*/)を高圧流通式反応装置の反応管に充填し
、実施例1と同様の方法で活性試験を行った。結果を表
1K示した。
Comparative Example 2 The Rh -L t /8 t 02 catalyst (10*/) prepared in Example 2 was filled into a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1K.

比較例3 実施例3で調製したR h −M n/8 i 02触
媒(10#t/)を高圧流通式反応装置の反応管に充填
し、実施例1と同様の方法で活性試験を行った。結果を
表IK示し九。
Comparative Example 3 The R h -M n/8 i 02 catalyst (10#t/) prepared in Example 3 was packed into a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. Ta. Show the results in Table 9.

手続補正書(自発) 昭和61年 3月1′&日 特許庁長官 宇 賀 道 部 殿 1、事件の表示 昭和60年特許願第  17723  号2、発明の名
称 エタノールを製造する方法 3、補正をする者 事件との関係     特許出願人 明細書の「発明の詳細な説明」の欄 5、補正の内容 1)本願明細書第12頁13行のrPd−FeJをrP
d−Fe/S 1otjに訂正する。
Procedural amendment (voluntary) March 1', 1985 Michibe Uga, Commissioner of the Patent Office1, Indication of the case Patent Application No. 17723 of 19852, Name of the invention Process for producing ethanol3, Amendment Relationship with the case of the person who made the amendment Contents of the amendment in column 5 of “Detailed Description of the Invention” of the specification of the patent applicant 1) rPd-FeJ on page 12, line 13 of the specification of the present application was changed to rP
Corrected to d-Fe/S 1otj.

2)同第15頁2行のr I r−Fe/S io、J
を’Pd  Fe/510g1に訂正する。
2) r I r-Fe/S io, J on page 15, line 2
Corrected to 'Pd Fe/510g1.

3)同第18頁3行の「実施例・・・5iOxJを「実
施例4で調製したRh−Mn−Li/S i OzJに
訂正する。
3) "Example...5iOxJ" on page 18, line 3 of the same page is corrected to "Rh-Mn-Li/S i OzJ prepared in Example 4.

以上that's all

Claims (3)

【特許請求の範囲】[Claims] (1)ロジウムを担体担持してなる触媒と、パラジウム
、鉄及び/又はモリブデンを担体担持してなる触媒との
存在下、一酸化炭素と水素とを反応させることからなる
、エタノールを製造する方法。
(1) A method for producing ethanol comprising reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium supported on a carrier and a catalyst comprising palladium, iron and/or molybdenum supported on a support. .
(2)ロジウム及びリチウム又はマンガンを担体担持し
てなる触媒と、パラジウム、鉄及び/又はモリブデンを
担体担持してなる触媒との存在下、一酸化炭素と水素と
を反応させることからなる、エタノールを製造する方法
(2) Ethanol consisting of reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium and lithium or manganese supported on a carrier and a catalyst comprising palladium, iron and/or molybdenum supported on a support. How to manufacture.
(3)ロジウム、マンガン、イリジウム及び/又はリチ
ウムを担体担持してなる触媒と、パラジウム、鉄及び/
又はモリブデンを担体担持してなる触媒の存在下、一酸
化炭素と水素とを反応させることからなる、エタノール
を製造する方法。
(3) A catalyst comprising rhodium, manganese, iridium and/or lithium supported on a carrier, palladium, iron and/or
Or a method for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst comprising molybdenum supported on a carrier.
JP60017723A 1985-02-02 1985-02-02 Method for producing ethanol Granted JPS61191634A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60017723A JPS61191634A (en) 1985-02-02 1985-02-02 Method for producing ethanol
GB08602390A GB2171925B (en) 1985-02-02 1986-01-31 Process for the manufacture of ethanol based, oxygen-containing carbon compounds
US06/941,072 US4758600A (en) 1985-02-02 1986-12-12 Process for the manufacture of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017723A JPS61191634A (en) 1985-02-02 1985-02-02 Method for producing ethanol

Publications (2)

Publication Number Publication Date
JPS61191634A true JPS61191634A (en) 1986-08-26
JPS6210486B2 JPS6210486B2 (en) 1987-03-06

Family

ID=11951664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017723A Granted JPS61191634A (en) 1985-02-02 1985-02-02 Method for producing ethanol

Country Status (1)

Country Link
JP (1) JPS61191634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131833A (en) * 2009-02-12 2012-07-12 Ichikawa Office Inc Production method of methanol and ethanol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131833A (en) * 2009-02-12 2012-07-12 Ichikawa Office Inc Production method of methanol and ethanol

Also Published As

Publication number Publication date
JPS6210486B2 (en) 1987-03-06

Similar Documents

Publication Publication Date Title
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS61191634A (en) Method for producing ethanol
JPS61191635A (en) Production of ethanol
JPS6341373B2 (en)
JPS61178935A (en) Production of ethanol
JPS63412B2 (en)
JPS6259228A (en) Production of ethanol
JPH07188096A (en) Production of acetic acid
JPS63162637A (en) Production of ethanol
JPS6233215B2 (en)
JPS6353169B2 (en)
JPS6238343B2 (en)
JPS63416B2 (en)
JPS6049616B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS643857B2 (en)
JPS6238340B2 (en)
JPS6259230A (en) Production of ethanol
JPS6119611B2 (en)
JPS6039655B2 (en) Method for producing oxygen-containing compound consisting of 2 carbon atoms
JPS6238333B2 (en)
JPS61178936A (en) Production of ethanol
JPS6218530B2 (en)
JPS63415B2 (en)
JPS61191633A (en) Production of ethanol
JPS6049618B2 (en) Method for producing oxygen-containing compounds containing ethyl alcohol as the main component

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term