JPS62104029A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62104029A
JPS62104029A JP24335185A JP24335185A JPS62104029A JP S62104029 A JPS62104029 A JP S62104029A JP 24335185 A JP24335185 A JP 24335185A JP 24335185 A JP24335185 A JP 24335185A JP S62104029 A JPS62104029 A JP S62104029A
Authority
JP
Japan
Prior art keywords
semiconductor device
sheet resistance
resistance characteristic
semiconductor substrate
contacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24335185A
Other languages
Japanese (ja)
Inventor
Akiyoshi Omichi
大道 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24335185A priority Critical patent/JPS62104029A/en
Publication of JPS62104029A publication Critical patent/JPS62104029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To readily obtain a semiconductor device having preferable contacting resistance characteristic and sheet resistance characteristic by specifying injecting condition of BE2<+> and the size of a contacting hole. CONSTITUTION:BE2<+> ions 2 are implanted to a predetermined region of a silicon semiconductor substrate 1 under the conditions of 43kV or higher of accelerating voltage and 3X10<-2> or higher of dosage to form a P-type diffused region 3, and step of foring a contacting hole of 1.5mum square or less communicating with the P-type diffused region is provided. Thus, a semiconductor device which has preferable contacting resistance characteristic and sheet resistance characteristic can be readily obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing a semiconductor device.

〔発明の技術的背景〕[Technical background of the invention]

従来、半導体装置を構成するPチャネルMO8素子のソ
ース・ドレインの形成やP型ポリシリコン配線の形成等
のために、BF2  をシリコン半導体基板にイオン注
入することが行われている。
Conventionally, BF2 is ion-implanted into a silicon semiconductor substrate in order to form the source/drain of a P-channel MO8 element constituting a semiconductor device, to form a P-type polysilicon wiring, and the like.

このようなりF2  イオノ注入技術は、次のような利
点を有している。
This F2 ion implantation technique has the following advantages.

■ 容易に浅い接合を形成することができる。■ Shallow junctions can be easily formed.

■ イオン注入時の飛程を短く設定して、r−ト直下へ
の突き抜けを回避できる。
■ By setting the range short during ion implantation, it is possible to avoid penetration directly below the r-t.

而して、イオン注入によって形成される拡散領域の拡散
深さくX、)の設定は、一義的に等価な換算加速エネル
ギー情報を用いて行い、シート抵抗(ρ、)の設定は、
一義的にはドーズ量の大小をもって制御することにより
行なっていた。
The diffusion depth (X,) of the diffusion region formed by ion implantation is set using uniquely equivalent converted acceleration energy information, and the sheet resistance (ρ,) is set as follows.
Primarily, this has been done by controlling the magnitude of the dose.

すなわち、かかる技術は、B+イオンの注入技術をその
まま利用するものであった。
That is, this technique utilizes the B+ ion implantation technique as is.

〔背景技術の問題点〕[Problems with background technology]

このため従来のBF2+イオン注入技術を用いた半導体
装置の製造方法には、次のような問題があった。
Therefore, the conventional method of manufacturing a semiconductor device using the BF2+ ion implantation technique has the following problems.

■ 最小導通コンタクト孔の寸法が急激に大きくなる。■ The size of the minimum conductive contact hole increases rapidly.

このような現象は、As  +Bの注入の際には見られ
ない。
Such a phenomenon is not observed during As+B implantation.

■ BF2+をイオン注入して形成したP+領域のシー
ト抵抗(ρ、)は、酸化時に急激に高くなる。
(2) The sheet resistance (ρ, ) of the P+ region formed by ion implantation of BF2+ increases rapidly during oxidation.

〔発明の目的〕[Purpose of the invention]

本発明は、良好なコンタクト抵抗特性及びシート抵抗特
性を有する半導体装置を容易に得ることができる半導体
装置の製造方法を提供することをその目的とするもので
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that can easily produce a semiconductor device having good contact resistance characteristics and sheet resistance characteristics.

〔発明の概要〕[Summary of the invention]

本発明は、シリコン半導体基板の所定領域に加速電圧4
3 keV以上、ドーズ量3 X 10” crrt−
2以上の条件でBF2  イオンを注入してP型拡散領
域を形成し、このP型拡散領域に通じる1、5μm口以
下のコンタクト孔を形成する工程を設けたことにより、
良好なコンタクト抵抗特性及びシート抵抗特性を有する
半導体装置を容易に得ることができる半導体装置の製造
方法である。
The present invention provides an acceleration voltage of 4
3 keV or more, dose 3 x 10” crrt-
By providing a step of implanting BF2 ions under two or more conditions to form a P-type diffusion region, and forming a contact hole of 1.5 μm or less in size leading to this P-type diffusion region,
The present invention is a method for manufacturing a semiconductor device that can easily obtain a semiconductor device having good contact resistance characteristics and sheet resistance characteristics.

〔発明の実施例〕 以下、本発明の実施例について図面を参照して説明する
。第1図に示す如く、面方位(100)のN型シリコン
半導体基板1の所定領域に、BF2+イオン2を加速電
圧50に・V、ドーズ量1×10cIrL  の条件で
注入し、P型拡散領域3を形成した。次いで、これに9
oo℃の温度下で30分間熱処理を施した。このように
して得た試料AのP型拡散領域3のシート抵抗(ρS)
を測定したところ、55Ω/口であった。また、このP
型拡散領域3に通じるコンタクト孔を想定し、コンタク
ト寸法を変化させて夫々のコンタクト孔の抵抗値(Re
)を測定して最小コンタクト孔の寸法を調べたところ、
1.0μm口であった。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, BF2+ ions 2 are implanted into a predetermined region of an N-type silicon semiconductor substrate 1 with a plane orientation of (100) at an acceleration voltage of 50.V and a dose of 1×10 cIrL. 3 was formed. Then add 9 to this
Heat treatment was performed for 30 minutes at a temperature of oo°C. Sheet resistance (ρS) of the P-type diffusion region 3 of sample A obtained in this way
When measured, it was 55Ω/mouth. Also, this P
Assuming contact holes leading to the type diffusion region 3, the resistance value (Re
) to determine the minimum contact hole dimensions.
The opening was 1.0 μm.

これと比較するためにBF2+イオンの加速電圧を35
 keVとした以外は実施例のものと同様にしてN型シ
リコン半導体基板の所定領域にP型拡散領域を形成した
試料Bを得た。
To compare with this, the acceleration voltage of BF2+ ions was set to 35
Sample B in which a P-type diffusion region was formed in a predetermined region of an N-type silicon semiconductor substrate was obtained in the same manner as in the example except that the temperature was set to keV.

また、BF2+イオンのドーズ量をI X 10’ ”
cyn−2とした以外は試料Bと同様の条件にして、N
型シリコン半導体基板の所定領域にP型拡散領域を形成
した試料Cを得た。
In addition, the dose of BF2+ ions is I x 10'
Under the same conditions as sample B except that cyn-2 was used, N
A sample C was obtained in which a P-type diffusion region was formed in a predetermined region of a type silicon semiconductor substrate.

実施例の試料Aと同様に試料B1試料Cについて、P型
拡散領域のシート抵抗(ρ、)、最小コンタクト孔の寸
法を調べた。試料Bの場合、シート抵抗(ρ、)は、1
40Ω/口であったが酸化時には320Ω/口と急激に
大きくなった。また、最小コンタクト孔の寸法は1,8
μm口であった。試料Cの場合、シート抵抗(ρ、)は
250Ω/口であり、最小コンタクト孔の寸法は2,6
μm口という大きな値であった。
Similarly to sample A in the example, for sample B1 and sample C, the sheet resistance (ρ, ) of the P-type diffusion region and the size of the minimum contact hole were investigated. In the case of sample B, the sheet resistance (ρ, ) is 1
The resistance was 40Ω/mouth, but it suddenly increased to 320Ω/mouth during oxidation. Also, the minimum contact hole size is 1.8
It was μm mouth. For sample C, the sheet resistance (ρ, ) is 250Ω/hole, and the minimum contact hole size is 2.6
It was a large value of μm.

このように試料A、B、Cの結果から明らかなように本
発明方法によるもの(試料(A))では、良好なコンタ
クト抵抗特性及びシート抵抗特性を得ることができる。
As is clear from the results of samples A, B, and C, good contact resistance characteristics and sheet resistance characteristics can be obtained with the method of the present invention (sample (A)).

このような効果を得ることができる理由を、電流の流れ
を妨げる欠陥分布領域と電流が実際に流れる?ロン分布
領域とを分離制御することによって得た解析結果に基づ
いて説明する。
Why can such an effect be obtained, when the defect distribution area that obstructs the current flow and the current actually flows? The explanation will be based on the analysis results obtained by separately controlling the Ron distribution region.

第2図は、本発明らが開発した高精度シミュレータによ
るBF2粒子の飛跡を示す説明図である。同図に示すよ
うにBF2分子粒は一体となってシリコン半導体基板内
を衝突しながら進行している。そして、BF2分子粒が
ある一定の散乱角(B0)を得ると、この分子粒は構成
3粒子に分解し、その後の飛跡挙動は3体とも独立に飛
行するものとなる。エネルギ配分は、分解解離直前のエ
ネルギを質量数を用いて比例配分した。
FIG. 2 is an explanatory diagram showing the trajectory of BF2 particles by a high-precision simulator developed by the present inventors. As shown in the figure, the BF2 molecular particles move in unison within the silicon semiconductor substrate while colliding with each other. When the BF2 molecular particle obtains a certain scattering angle (B0), this molecular particle decomposes into three constituent particles, and the subsequent trajectory behavior is such that all three particles fly independently. For energy distribution, the energy immediately before decomposition and dissociation was proportionally distributed using mass number.

これによってシミュレータが充分高精度に不純物分布や
欠陥分布を求めることができるからである。
This is because the simulator can obtain the impurity distribution and defect distribution with sufficiently high accuracy.

シミュレータを用いて求め九BF2のイオン注入の不純
物分布及び残留蓄積エネルギの分布を第3図及び第4図
に示す。第3図(A)は、本発明の条件外の範囲でBF
2注入時の加速電圧をパラメータとしてB+の最終静止
位置を求めたものである。第3図(B) ((’lは、
本発明の条件内の範囲でBF2注入時の加速電圧をパラ
メータとしてB+の最終静止位置を求めたものである。
The impurity distribution and residual storage energy distribution of 9BF2 ion implantation determined using a simulator are shown in FIGS. 3 and 4. FIG. 3(A) shows BF within the range outside the conditions of the present invention.
The final resting position of B+ was determined using the acceleration voltage during the second injection as a parameter. Figure 3 (B) (('l is
The final resting position of B+ was determined using the acceleration voltage at the time of BF2 injection as a parameter within the range of the conditions of the present invention.

第4図は、各BF2注入時にシリコン半導体基板内に与
える残留蓄積エネルギを示している。残留エネルギの分
布は、本発明の条件外の30 keVの場合には、シリ
コン半導体基板の表層部、すなわち、30X以下のとこ
ろにピークを有しているが、本発明の条件内の50 k
eV及び70 keVの場合には、やや深く150〜2
50X近傍にピークを有することが判った。このピーク
の位置の加速電圧に対する依存性は、第3図(局に示す
B+の分布の様と異なっていることが判る。すなわち、
残留蓄積エネルギの分布は、加速電圧の増大とともに深
く移動するが、その移動はBの分布に比べて小さく、従
って加速電圧が大きい場合は、B+のピークと残留蓄積
エネルギのピークとはかなシ大きく分離する。
FIG. 4 shows the residual stored energy imparted into the silicon semiconductor substrate during each BF2 implant. In the case of 30 keV, which is outside the conditions of the present invention, the distribution of residual energy has a peak at the surface layer of the silicon semiconductor substrate, that is, below 30X, but at 50 keV, which is outside the conditions of the present invention,
eV and 70 keV, it is slightly deeper at 150~2
It was found that there was a peak near 50X. It can be seen that the dependence of this peak position on the accelerating voltage is different from the distribution of B+ shown in Figure 3 (station).
The distribution of residual stored energy moves deeper as the accelerating voltage increases, but this movement is smaller than the distribution of B. Therefore, when the accelerating voltage is large, the peak of B+ and the peak of residual stored energy are fleetingly large. To separate.

以上の結果をもとにコンタクト抵抗(R,りとシート抵
抗(ρ、)の実測値の結果について説明する。下記表は
、BF2+イオンの加速電圧が35keVと50 ks
Vの場合でN2アニール処理とDryO2処理の場合の
最小導通コンタクト寸法を示している。
Based on the above results, we will explain the actual measured values of contact resistance (R) and sheet resistance (ρ).The table below shows that the accelerating voltage of BF2+ ions is 35 keV and 50 ks.
In the case of V, the minimum conductive contact dimensions are shown for N2 annealing treatment and DryO2 treatment.

表 (y−ilを入) 同表から50 keVの場合の方が最小導通コンタクト
寸法がかな9小さいことが判る。これは、加速電圧が高
くなれば、残留蓄積エネルギ(欠陥分布)が比較的s 
17ht界面から深い位置にあるので81の異常析出の
核が少なく、最小導通コンタクト寸法が小さくなること
を示している。
Table (insert y-il) From the same table, it can be seen that the minimum conductive contact dimension is kana 9 smaller in the case of 50 keV. This means that the higher the accelerating voltage, the more the residual accumulated energy (defect distribution) becomes relatively s.
Since it is located deep from the 17ht interface, there are fewer abnormally precipitated nuclei of 81, indicating that the minimum conductive contact dimension is small.

また、第5図は、シート抵抗(ρ、)の評価結果を示し
たものである。ここでも、加速電圧が高い方がシート抵
抗は若干低く、又N2アニールでもDry 02でも比
較的安定していることが判る。
Further, FIG. 5 shows the evaluation results of the sheet resistance (ρ, ). Here again, it can be seen that the sheet resistance is slightly lower when the accelerating voltage is higher, and is relatively stable in both N2 annealing and Dry 02.

これも欠陥分布のピーク位置とBのピーク位置の関連に
よるものである。加速電圧が低いと不安定なのは、欠陥
ピーク位置とB+のピーク位置が近く、又、それが表層
部に存在するためだと考えられる。すなわち、キャリア
が散乱され、さらに酸化時ではBが失われシート抵抗(
ρ8)が不安定になることが判りた。
This is also due to the relationship between the peak position of the defect distribution and the peak position of B. The reason for the instability when the accelerating voltage is low is considered to be that the defect peak position and the B+ peak position are close to each other, and that they are present in the surface layer. That is, carriers are scattered, and B is lost during oxidation, resulting in sheet resistance (
It was found that ρ8) becomes unstable.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係る半導体装置の製造方法
によれば、良好なコンタクト抵抗特性及びシート抵抗特
性を有する半導体装置を容易に得ることができるもので
ある。
As explained above, according to the method for manufacturing a semiconductor device according to the present invention, a semiconductor device having good contact resistance characteristics and sheet resistance characteristics can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の要部の断面図、第2図は
、BF2粒子の飛跡を示す説明図、第3図は、BF2注
入時の加速電圧をパラメータとして求め九B+の最終静
止位置を示す説明図、第4図は、各BF2注入時にシリ
コン半導体基板内に与える残留蓄積エネルギを示す説明
図、第5図は、シート抵抗の評価結果を示す説明図であ
る。 1・・・シリコン半導体基板、2・・・BFz+イオン
、3・・・P型拡散領域。 出願人代理人  弁理士 鈴 江 武 彦第1図 I′ 第2図 r t\−よ殆4 シ
Fig. 1 is a sectional view of the main part of an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the trajectory of BF2 particles, and Fig. 3 is a 9B+ FIG. 4 is an explanatory diagram showing the final resting position, FIG. 4 is an explanatory diagram showing the residual stored energy given in the silicon semiconductor substrate at the time of each BF2 implantation, and FIG. 5 is an explanatory diagram showing the evaluation results of sheet resistance. DESCRIPTION OF SYMBOLS 1... Silicon semiconductor substrate, 2... BFz+ ion, 3... P-type diffusion region. Applicant's agent Patent attorney Takehiko Suzue Figure 1 I' Figure 2 r t\-yo mostly 4

Claims (1)

【特許請求の範囲】 シリコン半導体基板の所定領域に加速電圧 43keV以上、ドーズ量3×10^1^5cm^−^
2以上の条件でBF_2^+イオンを注入してP型拡散
領域を形成する工程と、該P型拡散領域に通じる1.5
μm口以下のコンタクト孔を形成する工程とを具備する
ことを特徴とする半導体装置の製造方法。
[Claims] An accelerating voltage of 43 keV or more and a dose of 3 x 10^1^5 cm^-^ are applied to a predetermined region of a silicon semiconductor substrate.
A step of implanting BF_2^+ ions under conditions of 2 or more to form a P-type diffusion region, and a step of forming a P-type diffusion region of 1.5
1. A method of manufacturing a semiconductor device, comprising the step of forming a contact hole with a diameter of μm or less.
JP24335185A 1985-10-30 1985-10-30 Manufacture of semiconductor device Pending JPS62104029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24335185A JPS62104029A (en) 1985-10-30 1985-10-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24335185A JPS62104029A (en) 1985-10-30 1985-10-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62104029A true JPS62104029A (en) 1987-05-14

Family

ID=17102537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24335185A Pending JPS62104029A (en) 1985-10-30 1985-10-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62104029A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096125B2 (en) 2011-10-19 2015-08-04 Jtekt Corporation Driving force transmission apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096125B2 (en) 2011-10-19 2015-08-04 Jtekt Corporation Driving force transmission apparatus

Similar Documents

Publication Publication Date Title
TW507298B (en) Method of manufacturing semiconductor device having shallow junction
JPS62130522A (en) Manufacture of semiconductor device
US3548269A (en) Resistive layer semiconductive device
JP2004289154A (en) Complementary implant for narrowing junction for ultra-shallow junction
TW200529435A (en) Method for manufacturing a semiconductor device
JPS62104029A (en) Manufacture of semiconductor device
WO2017086018A1 (en) Semiconductor device and method for manufacturing semiconductor device
Evans et al. Optimization of polysilicon emitters for BiCMOS transistor design
JPH04252078A (en) Manufacture of switching semiconductor device
JPS55102227A (en) Ion implantation
Gao et al. The modification of SIMOX (separated by implantation of oxygen) material to improve the total-dose irradiation hardness
Runge Modification of the theory of threshold voltage shift of MOS transistors by ion implantation
JPS6472523A (en) Manufacture of semiconductor device
JPH0766258A (en) Method for evaluation of carrier in semiconductor and reference sample forming method
JPS60195928A (en) Manufacture of semiconductor device
Runge Threshold voltage shift of p-channel MOS-transistors by implantation of donors
JPH0494545A (en) Bipolar transistor
JPS60219764A (en) Manufacture of semiconductor device
JPH02203523A (en) Semiconductor device and manufacture thereof
JPS5910051B2 (en) How to measure ion implantation amount
JPH08167639A (en) Contamination evaluation method in ion implantation and manufacture of semiconductor device
JPH01207928A (en) Manufacture of semiconductor device
JPS6321355B2 (en)
MARTIN JR EFFECTS OF ULTRA-THIN GERMANIUM LAYERS AT THE SILICON-OXIDE INTERFACE DURING OXIDATION REACTIONS ON INJECTION OF INTERSTITIALS
JPH03152935A (en) Manufacture of semiconductor device