JPS6321355B2 - - Google Patents

Info

Publication number
JPS6321355B2
JPS6321355B2 JP2465279A JP2465279A JPS6321355B2 JP S6321355 B2 JPS6321355 B2 JP S6321355B2 JP 2465279 A JP2465279 A JP 2465279A JP 2465279 A JP2465279 A JP 2465279A JP S6321355 B2 JPS6321355 B2 JP S6321355B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
concentration
impurity
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2465279A
Other languages
Japanese (ja)
Other versions
JPS55117284A (en
Inventor
Kyokazu Inoe
Makio Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2465279A priority Critical patent/JPS55117284A/en
Publication of JPS55117284A publication Critical patent/JPS55117284A/en
Publication of JPS6321355B2 publication Critical patent/JPS6321355B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes

Description

【発明の詳細な説明】 本発明はツエナー降伏電圧の経時変化の少ない
定電圧ダイオードを有する半導体装置の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device having a constant voltage diode whose Zener breakdown voltage changes little over time.

従来、半導体集積回路における定電圧ダイオー
ドを形成する方法として、例えば第1図の如くP
型半導体基板1にN型エピタキシヤル層2を成長
させ、選択拡散法によりP型絶縁分離層3を設け
た後、エピタキシヤル層2内にP型及びN型不純
物層を順次拡散して、トランジスタ構造のベース
領域5及びエミツタ領域6を各々形成する。該ベ
ース領域5とエミツタ領域6が接することにより
形成されてなる接合(以下エミツタ接合と称す)
により定電圧ダイオードが構成される。
Conventionally, as a method for forming a constant voltage diode in a semiconductor integrated circuit, for example, as shown in FIG.
After growing an N-type epitaxial layer 2 on a type semiconductor substrate 1 and providing a P-type insulating separation layer 3 by a selective diffusion method, P-type and N-type impurity layers are sequentially diffused into the epitaxial layer 2 to form a transistor. A base region 5 and an emitter region 6 of the structure are respectively formed. A junction formed by the contact between the base region 5 and the emitter region 6 (hereinafter referred to as an emitter junction)
A constant voltage diode is constructed.

一方、該構成になる定電圧ダイオードはその降
伏電圧の経時変化を調べる為の加速試験として、
高温雰囲気中(例えば125℃)において逆方向降
伏電流を所定時間(例えば3mAで30分)流した
後、高温雰囲気(例えば150℃)中に放置する試
験(以下H・T・O・R試験と称す)により、上
記定電圧ダイオードの降伏電圧が該H・T・O・
R試験前後において著しく変化する不安定性を有
している事が確かめられた。又該不安定性はある
種の樹脂によりモールドする事により増加される
事も確められた。例えば上記ベース領域の形成法
として選択拡散法により980℃でP型不純物とし
てボロンをデポジツトした後、1050℃で50分間、
水蒸気雰囲気中で拡散した場合、例えば6.8Vの
定電圧ダイオードに於て、上記H・T・O・R試
験によりモールド前において約50〜200mV、モ
ールド後で約200〜500mVの降伏電圧の変化を生
じた。また一般に降伏電圧の経時変化の少ないと
考えられているグラフト・ベース法を用いて形成
された定電圧ダイオードに於ても上記H・T・
O・R試験により、モールド前で約20〜100mV、
モールド後では約50〜300mVの降伏電圧の変化
を生じた。
On the other hand, the constant voltage diode with this configuration was tested as an accelerated test to investigate the change in breakdown voltage over time.
A test in which a reverse breakdown current is passed for a predetermined time (e.g. 3mA for 30 minutes) in a high temperature atmosphere (e.g. 125℃) and then left in a high temperature atmosphere (e.g. 150℃) (hereinafter referred to as H・T・O・R test) ), the breakdown voltage of the voltage regulator diode is the H・T・O・
It was confirmed that the instability significantly changed before and after the R test. It has also been determined that the instability is increased by molding with certain resins. For example, as a method for forming the base region, boron is deposited as a P-type impurity at 980°C by selective diffusion, and then at 1050°C for 50 minutes.
When diffused in a water vapor atmosphere, for example, in a 6.8V constant voltage diode, the above H・T・O・R test shows a change in breakdown voltage of about 50 to 200 mV before molding and about 200 to 500 mV after molding. occured. Furthermore, the above-mentioned H・T・
Approximately 20 to 100 mV before the mold according to O/R test.
After molding, the breakdown voltage changed by about 50 to 300 mV.

又、従来、定電圧ダイオードを形成する他の方
法として、第1導電型の半導体基体表面より該半
導体基体との間にPN接合を形成する為に第2導
電型の領域を形成した後、該第2導電型領域の所
定表面に第1導電型不純物のイオンを注入し、前
記第2導電型領域の底部における前記PN接合に
接し前記半導体基体の不純物濃度と異なる不純物
濃度の領域を設ける事により、降伏電圧の値を任
意の値に調整可能としようとする技術が提案され
ている。(特開昭47−36777号公報及び特開昭48−
74171号公報参照) しかしながら、そのような従来技術に於ては、
イオン注入法を用いているので、不純物濃度領域
の不純物分布は正確に制御できるものの、第2導
電型領域の形成には拡散法を用いており、半導体
基板表面からの拡散深さがその領域の底部におい
てばらつきが生じた場合、結局、PN接合部にお
ける不純物濃度のばらつきを招いていた。即ち、
イオン注入した際には、不純物イオンは深さ方向
についてイオン加速電圧に応じたイオンの平均の
浸入深さRPを中心にガウス分布すると考えられ
ており、前述したように第2導電型領域の底部の
拡散深さにばらつきが生じると、その領域の底部
のPN接合が存在する不純物濃度領域の不純物濃
度がばらついてしまう。
Another conventional method for forming a constant voltage diode is to form a region of the second conductivity type from the surface of the semiconductor substrate of the first conductivity type in order to form a PN junction between the semiconductor substrate and the semiconductor substrate. By implanting impurity ions of the first conductivity type into a predetermined surface of the second conductivity type region, and providing a region having an impurity concentration different from the impurity concentration of the semiconductor substrate in contact with the PN junction at the bottom of the second conductivity type region. , a technique has been proposed that allows the value of breakdown voltage to be adjusted to an arbitrary value. (Japanese Patent Application Laid-Open No. 1983-36777 and
(Refer to Publication No. 74171) However, in such conventional technology,
Since the ion implantation method is used, the impurity distribution in the impurity concentration region can be controlled accurately, but the diffusion method is used to form the second conductivity type region, and the diffusion depth from the semiconductor substrate surface is When variations occur at the bottom, this eventually leads to variations in the impurity concentration at the PN junction. That is,
When ions are implanted, impurity ions are thought to have a Gaussian distribution in the depth direction centered on the average penetration depth R P of the ions according to the ion acceleration voltage, and as mentioned above, If the diffusion depth at the bottom varies, the impurity concentration in the impurity concentration region where the PN junction exists at the bottom of that region will vary.

ここで、定電圧ダイオードの降伏電圧は、PN
接合部におけるP型領域及びN型領域の各々の不
純物濃度に対して所定の関係を有しており、その
不純物濃度に差がある場合、主に低濃度の方の導
電型領域の不純物濃度の影響を受ける。そして、
上記の従来技術の構成によると、半導体基体表面
より電極を取り出す為に、第2導電型領域の不純
物濃度は不純物濃度領域のその濃度より1桁以上
高濃度にする必要があり、従つて降伏電圧はほと
んどが不純物濃度領域の不純物濃度の影響を受け
る事になり、その濃度が前述した理由からばらつ
いてしまうので、この従来技術においても降伏電
圧のばらつきは生じていた。
Here, the breakdown voltage of the constant voltage diode is PN
There is a predetermined relationship with the impurity concentration of each of the P-type region and the N-type region in the junction, and if there is a difference in the impurity concentration, the impurity concentration of the conductivity type region with the lower concentration mainly depends on the impurity concentration. to be influenced. and,
According to the configuration of the prior art described above, in order to take out the electrode from the surface of the semiconductor substrate, the impurity concentration in the second conductivity type region needs to be one order of magnitude higher than the concentration in the impurity concentration region, and therefore the breakdown voltage is mostly affected by the impurity concentration in the impurity concentration region, and the concentration varies for the reasons mentioned above, so variations in breakdown voltage have also occurred in this prior art.

そこで本発明は、上記の不具合点に鑑みなされ
たものであつて、上記H・T・O・R試験での不
安定性をなくし、ツエナー降伏電圧の経時変化、
且つそのばらつきを低減し得る定電圧ダイオード
を有する半導体装置の製造方法を提供することを
目的としている。
Therefore, the present invention has been made in view of the above-mentioned drawbacks, and eliminates the instability in the above-mentioned H・T・O・R test, and improves the temporal change of the Zener breakdown voltage.
Another object of the present invention is to provide a method for manufacturing a semiconductor device having a constant voltage diode, which can reduce variations thereof.

そして、本発明は、上記H・T・O・R試験に
よる降伏電圧の不安定性を生じる原因を調べた結
果、定電圧ダイオードにおける降伏現象を発生す
る部位(以下ツエナー降伏部と称す)が半導体基
体表面に近い程上記不安定性を増加するという事
実と、PN接合に於るツエナー降伏がPN接合を
構成する低濃度領域での最大濃度部で発生する事
に着目し、第2導電型第1領域と第1導電型第2
領域とでPN接合を形成した後、第2導電型第1
領域内に、この第2導電型第1領域と同一の導電
型を形成し得る不純物を所定のイオン加速電圧に
てイオン注入し、半導体基体表面より少なくとも
0.2μ以上の深さであつて、第1導電型第2領域の
側面に接するように第2導電型第1領域の不純物
濃度最大部を形成する事により前記の目的を達成
しようとするものである。
As a result of investigating the cause of breakdown voltage instability through the above-mentioned H.T.O.R. test, the present invention found that the region where the breakdown phenomenon occurs in the constant voltage diode (hereinafter referred to as the Zener breakdown region) is located on the semiconductor substrate. Focusing on the fact that the above-mentioned instability increases as the distance approaches the surface, and the fact that Zener breakdown in the PN junction occurs at the maximum concentration part of the low concentration region that constitutes the PN junction, we and the first conductivity type second
After forming a PN junction with the second conductivity type first
An impurity capable of forming the same conductivity type as the first region of the second conductivity type is ion-implanted into the region at a predetermined ion acceleration voltage, and at least
The above objective is achieved by forming the maximum impurity concentration portion of the first region of the second conductivity type to a depth of 0.2μ or more and in contact with the side surface of the second region of the first conductivity type. be.

以下本発明を図面に示す実施例にそつて具体的
に説明する。
The present invention will be specifically described below with reference to embodiments shown in the drawings.

実施例 1 第1図〜第3図は本発明の製造方法を説明する
図で、図示していない複数個のトランジスタ等の
集積回路素子も同時に形成する場合の一例であ
る。まず第1図に示すように、P型シリコン半導
体基板1にN型エピタキシヤル層2を成長させ、
従来の方法と同様に選択拡散法によりP型絶縁分
離層3を設けた後、エピタキシヤル層2内に集積
回路素子に要求される不純物濃度を持つたP型及
びN型不純物を順次拡散して、トランジスタ構造
のベース領域5及びエミツタ領域6を各々形成す
る。該ベース領域5及びエミツタ領域6は定電圧
ダイオードとして使用される時は各々カソード及
びアノード領域に対応する。次に、上記ベース領
域5及エミツタ領域6が形成されてなる基板1内
で、定電圧ダイオードとして使用すべき領域内の
基板表面の酸化膜4を、第2図に示すように即ち
エミツタ接合(PN接合)jeを含みかつコレクタ
接合jcに達しない範囲にわたつてホトエツチング
技術により除去した後、ベース領域5と同導電型
のP型不純物例えばボロンを所定の加速電圧でイ
オン注入し、しかる後例えば化学気相成長法によ
り、表面保護膜8を形成し、例えば1000℃で10分
間窒素雰囲気中でアニールする。しかる後従来と
同様に電極形成工程を経て半導体集積回路が形成
される。
Embodiment 1 FIGS. 1 to 3 are diagrams for explaining the manufacturing method of the present invention, and are an example of a case where a plurality of integrated circuit elements such as transistors (not shown) are also formed at the same time. First, as shown in FIG. 1, an N-type epitaxial layer 2 is grown on a P-type silicon semiconductor substrate 1.
After providing the P-type insulating isolation layer 3 by selective diffusion as in the conventional method, P-type and N-type impurities having the impurity concentration required for the integrated circuit element are sequentially diffused into the epitaxial layer 2. , a base region 5 and an emitter region 6 of a transistor structure are respectively formed. The base region 5 and emitter region 6 correspond to cathode and anode regions, respectively, when used as a constant voltage diode. Next, in the substrate 1 on which the base region 5 and emitter region 6 are formed, the oxide film 4 on the substrate surface in the region to be used as a constant voltage diode is removed as shown in FIG. After removing the area including the PN junction) je but not reaching the collector junction JC using photoetching technology, a P-type impurity of the same conductivity type as the base region 5, such as boron, is ion-implanted at a predetermined acceleration voltage, and then, for example, A surface protective film 8 is formed by chemical vapor deposition, and annealed in a nitrogen atmosphere at, for example, 1000° C. for 10 minutes. Thereafter, a semiconductor integrated circuit is formed through an electrode forming process as in the conventional method.

上記の如くイオン注入された不純物イオンは、
深さ方向についてはイオン加速電圧に応じたイオ
ンの平均の侵入深さRp(投影飛程という)を中心
にガウス分布すると考えられている。第4図は該
投影飛程Rpとイオン加速電圧Eの関係を示すも
ので、第4図中特性aは加速電圧Eと降伏電圧変
化△Vzの関係を示し、特性bは加速電圧Eと投
影飛程Rpの関係を示す。つまり、上記形成法に
なるエミツタ接合の降伏電圧は、前述したよう
に、エミツタ接合を構成する領域のうち主に低濃
度の方の領域の不純物濃度の影響を受ける事か
ら、一般にエミツタ領域6に比しベース領域5の
不純物濃度が1桁以上低いため、結局イオン注入
によつて形成されるベース領域5中のP+濃度の
最大濃度の値によつて殆んど決つてしまい、また
ツエナー降伏部は最大濃度に相当する基板表面か
らの深さ(投影飛程Rpに等しい)によつてほと
んど決まつてしまうことが理解される。そして上
記形成法になるベース領域5のシリコン基板表面
7よりの深さ方向に対する濃度分布を第5図に示
すが、この図からしてイオン注入量をその注入最
大濃度がベース領域5に相当する下地のP+濃度
とほぼ等しいかまたはそれ以上の値であれば、ベ
ース領域5の総不純物濃度分布は第5図の特性e
のように、ほぼ注入イオンの加速電圧により決ま
る投影飛程Rpで最大値を持つことが理解される。
これにより、イオン注入された後のエミツタ接合
の降伏現象を生ずる部位を注入イオンの加速電圧
により制御する事ができる。上記方法により形成
した定電圧ダイオードをモールドした後のH・
T・O・R試験による降伏電圧の変化△Vzにつ
いて加速電圧Eをパラメータにして示したのが第
4図中の特性aである。この図から明らかなよう
に加速電圧Eを高くする程△Vzは小さくなり、
経時変化の少ない定電圧ダイオードを形成する事
ができることが分かる。
The impurity ions implanted as above are
In the depth direction, it is thought that there is a Gaussian distribution centered on the average penetration depth Rp of ions (referred to as projected range) depending on the ion accelerating voltage. Figure 4 shows the relationship between the projected range Rp and the ion acceleration voltage E. In Figure 4, characteristic a shows the relationship between acceleration voltage E and breakdown voltage change △Vz, and characteristic b shows the relationship between acceleration voltage E and projected The relationship between range Rp is shown. In other words, the breakdown voltage of the emitter junction formed by the above formation method is generally influenced by the impurity concentration in the lower concentration region of the regions that make up the emitter junction, as described above. Compared to this, the impurity concentration in the base region 5 is more than one order of magnitude lower, so that it is almost determined by the maximum concentration of P + concentration in the base region 5 formed by ion implantation, and Zener breakdown occurs. It is understood that the depth is almost determined by the depth from the substrate surface corresponding to the maximum concentration (equal to the projected range Rp). FIG. 5 shows the concentration distribution of the base region 5 in the depth direction from the silicon substrate surface 7 using the above-mentioned formation method. From this figure, it can be seen that the maximum concentration of the ion implantation amount corresponds to the base region 5. If the value is approximately equal to or higher than the underlying P + concentration, the total impurity concentration distribution in the base region 5 will have the characteristic e shown in FIG.
It is understood that it has a maximum value at the projected range Rp, which is approximately determined by the acceleration voltage of the implanted ions.
This makes it possible to control the region where the breakdown phenomenon of the emitter junction occurs after ion implantation by the acceleration voltage of the implanted ions. H after molding the constant voltage diode formed by the above method.
Characteristic a in FIG. 4 shows the change in breakdown voltage ΔVz due to the T.O.R test using the acceleration voltage E as a parameter. As is clear from this figure, the higher the accelerating voltage E, the smaller △Vz becomes.
It can be seen that a constant voltage diode with little change over time can be formed.

第1図〜第5図に示す実施例1では、他のトラ
ンジスタのベース領域を形成するとき同時にこの
定電圧ダイオードの下地ベース領域5も形成する
ようにしているため、このベース領域5の不純物
濃度の値は予じめ設定された値によつて制限さ
れ、あまり低くすることはできない。この制限に
も係わらず実施例1では、第4図に示すように基
板表面より約0.3μの深さ(イオン加速電圧で
100Kev程度)以上であれば、降伏電圧の変化△
Vzを非常に小さくできることが認められた。
In the first embodiment shown in FIGS. 1 to 5, when forming the base regions of other transistors, the underlying base region 5 of this constant voltage diode is also formed at the same time, so the impurity concentration of this base region 5 is The value of is limited by a preset value and cannot be made too low. Despite this limitation, in Example 1, as shown in FIG.
100Kev) or more, the breakdown voltage change△
It was recognized that Vz could be made very small.

なお、第5図中特性cはベース領域5に相当す
る下地P+濃度分布を示すもので、このベース領
域5は不純物の拡散により形成されるため、基板
表面からの深さlに対して若干の濃度勾配を有し
ており、また基板表面の近傍では酸化膜形成工程
での不純物吸出し効果および基板表面上の不純物
イオン等の影響を受けて若干濃度が低くなつてい
る。また、特性dは外部よりイオン注入された不
純物(ボロン)のP+濃度分布を示す。この図よ
り、イオン注入後のベース領域5のP+濃度分布
の特性eは、下地のP+濃度分布cの濃度とイオ
ン注入する不純物濃度分布dの濃度との和の関係
にあり、そのため不純物濃度分布dを尖鋭にする
ほど、あるいは下地のP+濃度分布cの濃度を低
くするほど、濃度分布e中の最大濃度部が尖鋭に
なり、その場合には最大濃度部が基板表面より比
較的浅い位置にあつても、安定した素子特性が得
られることが認められた。
Note that the characteristic c in FIG. 5 shows the underlying P + concentration distribution corresponding to the base region 5, and since this base region 5 is formed by diffusion of impurities, there is a slight difference with respect to the depth l from the substrate surface. In addition, near the substrate surface, the concentration is slightly lower due to the effect of sucking out impurities in the oxide film forming process and the influence of impurity ions on the substrate surface. Further, the characteristic d shows the P + concentration distribution of an impurity (boron) ion-implanted from the outside. From this figure, the characteristic e of the P + concentration distribution in the base region 5 after ion implantation is the sum of the concentration of the underlying P + concentration distribution c and the concentration of the ion-implanted impurity concentration distribution d, and therefore, the impurity The sharper the concentration distribution d, or the lower the concentration of the underlying P + concentration distribution c, the sharper the maximum concentration part in the concentration distribution e becomes. It was confirmed that stable device characteristics could be obtained even at a shallow position.

このことは第6図及び第7図からも明らかであ
る。まず第6図は一定のイオン加速電圧(本例で
はE=150Kev)及び一定のイオン注入量(本例
では1.58×1014cm-3)の場合の、下地のP+濃度分
布cの濃度と降伏電圧の変化△Vzとの関係を示
す一実験結果であり、また第7図は一定のイオン
加速電圧(本例ではE=150Kev)及び一定の下
地濃度(本例では7.5×1018cm-3)の場合の、イオ
ン注入域の最大濃度と△Vzとの関係を示す一実
験結果である。この両図から分かるように、イオ
ン加速電圧が一定の場合でも下地濃度が低いほど
△Vzは小さくなり、また最大濃度部の濃度が高
いほど△Vzは小さくなる。
This is also clear from FIGS. 6 and 7. First of all, Figure 6 shows the concentration of P + concentration distribution c in the base when a constant ion accelerating voltage (E = 150 Kev in this example) and a constant ion implantation amount (1.58 x 10 14 cm -3 in this example) are used. The results of an experiment showing the relationship between the breakdown voltage and the change △Vz are shown in FIG . This is an experimental result showing the relationship between the maximum concentration in the ion implantation region and △Vz in case 3 ). As can be seen from both figures, even when the ion accelerating voltage is constant, ΔVz becomes smaller as the base concentration is lower, and ΔVz becomes smaller as the concentration of the maximum concentration portion becomes higher.

以上の第4図〜第7図に示した実験結果からみ
て、H・T・O・R試験による定電圧ダイオード
の降伏電圧の変化△Vzを極力小さくする(例え
ば100mV以内)には、イオン注入によつてイオ
ン注入域の最大濃度部が少なくとも元の下地濃度
より高くかつ尖鋭な形状になるようにイオン注入
濃度及び下地濃度を設定し、かつその最大濃度部
が基板表面より少なくとも0.2〜0.3μの深さ以上
に形成されるようにイオン加速電圧(約60Kev以
上)を設定すればよいことが分かる。
In view of the experimental results shown in Figures 4 to 7 above, in order to minimize the change in breakdown voltage △Vz of the voltage regulator diode in the H・T・O・R test (within 100 mV, for example), ion implantation is necessary. The ion implantation concentration and the base concentration are set so that the maximum concentration part of the ion implantation area is at least higher than the original base concentration and has a sharp shape, and the maximum concentration part is at least 0.2 to 0.3μ higher than the substrate surface. It can be seen that the ion accelerating voltage (approximately 60 Kev or more) should be set so that the ion is formed at a depth greater than or equal to .

ここで、上記実施例1に於いては、第2図を用
いて説明したように、エミツタ接合jeを含みかつ
コレクタ接合jcに達しない範囲にわたつて酸化膜
4を除去した後、P型不純物を所定の加速電圧で
イオン注入することによつて、ベース領域5の最
大濃度部を形成しており、この場合、その最大濃
度部はエミツタ領域6の側面6aに構成される
PN接合に接した状態で、加速電圧の大きさに応
じた深さに形成される。
In Example 1 above, as explained using FIG. 2, after removing the oxide film 4 over a range including the emitter junction je but not reaching the collector junction JC, By implanting ions at a predetermined acceleration voltage, the maximum concentration portion of the base region 5 is formed. In this case, the maximum concentration portion is formed on the side surface 6a of the emitter region 6.
It is formed in contact with the PN junction to a depth that corresponds to the magnitude of the accelerating voltage.

尚、実施例1ではトランジスタ構造のエミツタ
領域6は形成しており、その拡散深さは通常2μ
程度である事からその最大濃度部はエミツタ領域
6の底部に形成される事なく、必然的にその側面
6aに形成される事になる。
In Example 1, the emitter region 6 of the transistor structure is formed, and its diffusion depth is usually 2μ.
Because of this, the maximum concentration portion is not formed at the bottom of the emitter region 6, but is inevitably formed at the side surface 6a thereof.

さて、このようにエミツタ領域6の側面6aに
最大濃度部を形成した場合、前述したようにイオ
ン注入された不純物イオンは深さ方向について投
影飛程Rpを中心にガウス分布すると考えられて
おり、その深さ方向に垂直な水平方向においては
イオン注入領域にわたつて略均一な不純物分布を
呈しているので、例えば拡散法により形成される
エミツタ領域6の拡散深さ、あるいは水平方向に
おける幅にばらつきが生じたとしてもエミツタ接
合部における不純物濃度最大部の不純物濃度にば
らつきが生じることはないので降伏電圧のばらつ
きを低減できる。
Now, when the maximum concentration portion is formed on the side surface 6a of the emitter region 6 in this way, the implanted impurity ions are thought to have a Gaussian distribution centered on the projected range Rp in the depth direction, as described above. In the horizontal direction perpendicular to the depth direction, the impurity distribution is approximately uniform across the ion implantation region, so for example, there may be variations in the diffusion depth or width in the horizontal direction of the emitter region 6 formed by the diffusion method. Even if this occurs, there will be no variation in the impurity concentration at the maximum impurity concentration portion in the emitter junction, so variation in breakdown voltage can be reduced.

次に、上記実施例1において述べた考察に基づ
き、下地のベース領域を他のトランジスタのベー
ス領域とは別々の工程において形成するように
し、その不純物濃度を極力低くして、イオン注入
層の不純物濃度分布における最大濃度部を一層尖
鋭な形状とし、イオン注入の効果を一層大きくす
る方法を実施例2として以下に示す。
Next, based on the considerations described in Example 1 above, the underlying base region is formed in a separate process from the base regions of other transistors, and the impurity concentration in the ion-implanted layer is made as low as possible. Embodiment 2 A method of making the maximum concentration part in the concentration distribution more sharp and further increasing the effect of ion implantation will be described below as a second embodiment.

第8,9図に示す如く実施例1と同様な方法で
P型絶縁分離層3まで形成した後、定電圧ダイオ
ードを構成すべき領域をホトエツチング技術によ
り酸化膜を除去し、例えばイオン注入法によりP
型不純物としてのボロンを打込み熱拡散すること
により、他のトランジスタ形成の際のベース領域
における不純物濃度に比し、十分低い濃度を有す
るP-領域9を形成する。しかる後、実施例1と
同様な方法により実施例1に示すようなトランジ
スタ構造のベース領域5及びエミツタ領域6を形
成し、該定電圧ダイオード形成領域内に実施例1
と同様にしてP型不純物例えばボロンを打込み、
表面保護膜形成後アニール処理及び電極形成を行
なう。
As shown in FIGS. 8 and 9, after forming up to the P-type insulating isolation layer 3 in the same manner as in Example 1, the oxide film is removed from the region where the constant voltage diode is to be formed by photoetching, and then by, for example, ion implantation. P
By implanting and thermally diffusing boron as a type impurity, a P - region 9 having a sufficiently lower impurity concentration than the impurity concentration in the base region when forming other transistors is formed. Thereafter, the base region 5 and emitter region 6 of the transistor structure as shown in Example 1 are formed by the same method as in Example 1, and Example 1 is formed in the constant voltage diode formation region.
In the same manner as above, a P-type impurity such as boron is implanted,
After forming the surface protective film, annealing treatment and electrode formation are performed.

かかる製造方法により形成された定電圧ダイオ
ード、例えば本実験条件として、第10図中下地
濃度分布fに相当するP-領域不純物濃度として
約1×1017cm-3とし、イオン注入最大部濃度1.2×
1019cm-3とした試料においては、第10図に示す
ようにイオン注入した後のP-領域での不純物濃
度分布gはP-領域の下地濃度に全く影響されず、
イオン注入での加速電圧により決まる投影飛程
Rpを中心にガウス分布する。実施例1において
はP+領域の下地濃度としてトランジスタ形成時
のベース領域を使用したため、約6×1018cm-3
下地濃度に対して実施例2と同様な最大濃度とす
るにはイオン注入量6×1018cm-3で最大濃度とな
り、注入後のP+下地濃度の影響により広がりが
大きくなる。降伏現象を生ずる部位がP+領域最
大濃度点を中心にしてある広がりを有していると
すれば、実施例1に比し、実施例2においては実
効的な降伏部(第10図中部位hを参照)がシリ
コン基板表面7より深くなる事により、同一加速
電圧を用いても△Vzを小さくできる。第11図
に本実施例2に基づく一実験結果として△Vzと
加速電圧の関係を示すが、シリコン基板表面7よ
り投影飛程Rpが約0.2μの深さ(約加速電圧
65Kev)以上とすれば△Vzはほとんど生じなく
なることがわかる。尚、本実施例2においても、
実施例1と同様にP-領域9の最大濃度部はエミ
ツタ領域6の側面に構成されるPN接合に接して
いる。
In a constant voltage diode formed by such a manufacturing method, for example, as the present experimental conditions, the impurity concentration in the P - region corresponding to the base concentration distribution f in FIG . ×
In the sample with a concentration of 10 19 cm -3 , as shown in Figure 10, the impurity concentration distribution g in the P - region after ion implantation is not affected at all by the underlying concentration in the P - region.
Projected range determined by accelerating voltage during ion implantation
Gaussian distribution centered on Rp. In Example 1, the base region at the time of transistor formation was used as the base concentration of the P + region, so ions were implanted to obtain the same maximum concentration as in Example 2 for the base concentration of approximately 6×10 18 cm -3 . The maximum concentration is reached at an amount of 6×10 18 cm -3 , and the spread becomes larger due to the influence of the P + base concentration after implantation. Assuming that the region where the breakdown phenomenon occurs has a certain spread around the maximum concentration point of the P + region, the effective yield region (the region in Fig. 10) in Example 2 is different from that in Example 1. h) is deeper than the silicon substrate surface 7, ΔVz can be made smaller even if the same acceleration voltage is used. FIG. 11 shows the relationship between △Vz and accelerating voltage as an experimental result based on Example 2.
65Kev) or more, it can be seen that △Vz hardly occurs. In addition, also in this Example 2,
As in the first embodiment, the maximum concentration portion of the P - region 9 is in contact with the PN junction formed on the side surface of the emitter region 6.

なお、以上の実施例ではNPNトランジスタを
含む半導体集積回路装置について述べてきたが、
本発明はこれとは全く逆極性のトランジスタにつ
いても同様に実施できることは勿論である。ま
た、プレーナ型の定電圧ダイオードであれば広く
一般に実施可能である。
Note that although the above embodiments have described semiconductor integrated circuit devices including NPN transistors,
It goes without saying that the present invention can be similarly implemented with transistors having completely opposite polarity. Moreover, it can be widely implemented as long as it is a planar type constant voltage diode.

上述の如く本発明になる半導体装置の製造方法
によれば、PN接合を形成した後、少なくとも該
PN接合を構成する第2導電型第1領域内に、こ
の第2導電型第1領域と同一の導電型を形成し得
る不純物を所定のイオン加速電圧にてイオン注入
し、半導体基体表面より少なくとも0.2μ以上の深
さであつて、第1導電型第2領域の側面に接する
ように第2導電型第1領域の不純物濃度最大部が
形成される様にしているから、H・T・O・R試
験による不安定性をなくし、ツエナー降伏電圧の
経時変化がほとんど生じなく、且つ、その降伏電
圧の値のばらつきを低減できる特性の安定した信
頼性の高い定電圧ダイオードを有する半導体装置
を得る事ができるという効果がある。
As described above, according to the method of manufacturing a semiconductor device according to the present invention, after forming a PN junction, at least
An impurity capable of forming the same conductivity type as the first region of the second conductivity type is ion-implanted into the first region of the second conductivity type constituting the PN junction at a predetermined ion accelerating voltage. Since the maximum impurity concentration portion of the first region of the second conductivity type is formed at a depth of 0.2μ or more and in contact with the side surface of the second region of the first conductivity type, H.T.O. - To obtain a semiconductor device having a highly reliable constant voltage diode with stable characteristics that eliminates instability caused by the R test, causes almost no change in Zener breakdown voltage over time, and reduces variations in the breakdown voltage value. It has the effect of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は夫々本発明半導体装置の製造
方法の実施例1を示す各製造工程中における半導
体装置の断面図、第4図はボロンイオン注入加速
電圧に対する投影飛程及び定電圧ダイオードの降
伏電圧の変化を示す特性曲線、第5図は実施例1
におけるシリコン基板表面からのP+不純物濃度
分布を示す特性図、第6図、第7図はそれぞれ
P+下地濃度と△Vzとの関係、及び下地の最大濃
度と△Vzとの関係を示す特性図、第8,9図は
実施例2における半導体装置の断面図、第10図
は実施例2における不純物濃度分布を示す特性
図、第11図はイオン注入加速電圧に対する降伏
電圧の変化を示す特性曲線である。 1…P型半導体基板、2…半導体基体部分に相
当するN型エピタキシヤル層、3…P型絶縁分離
層、4…酸化膜、5…第2導電型ドープ層をなす
ベース領域、6…第1導電型ドープ層をなすエミ
ツタ領域、9…第2導電型ドープ層をなすP-層、
je…エミツタ接合、jc…コレクタ接合。
1 to 3 are cross-sectional views of a semiconductor device during each manufacturing process showing Embodiment 1 of the semiconductor device manufacturing method of the present invention, and FIG. 4 shows the projected range and constant voltage diode with respect to the boron ion implantation accelerating voltage. FIG. 5 is a characteristic curve showing the change in breakdown voltage of Example 1.
Characteristic diagrams showing the P + impurity concentration distribution from the silicon substrate surface in Figures 6 and 7, respectively.
Characteristic diagrams showing the relationship between the P + base concentration and △Vz, and the relationship between the maximum base concentration and ΔVz. Figures 8 and 9 are cross-sectional views of the semiconductor device in Example 2, and Figure 10 is Example 2. FIG. 11 is a characteristic curve showing the change in breakdown voltage with respect to the ion implantation acceleration voltage. DESCRIPTION OF SYMBOLS 1...P-type semiconductor substrate, 2...N-type epitaxial layer corresponding to a semiconductor base portion, 3...P-type insulating separation layer, 4...oxide film, 5...base region forming a second conductivity type doped layer, 6...th an emitter region forming a first conductivity type doped layer; 9... a P - layer forming a second conductivity type doped layer;
je...emitter junction, jc...collector junction.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型の半導体基体表面より部分的に形
成された第2導電型第1領域と、前記半導体基体
表面よりこの第2導電型第1領域より不純物濃度
の高い第1導電型第2領域とが少なくとも一部重
なるように形成され、前記第2導電型第1領域と
前記第1導電型第2領域とが重なるPN接合部分
近傍の前記第2導電型第1領域内にこの第2導電
型第1領域と同一の導電型を形成し得る不純物を
所定のイオン加速電圧にてイオン注入し、半導体
基体表面より少なくとも0.2μ以上の深さであつ
て、前記第1導電型第2領域の側面に接するよう
に前記第2導電型第1領域の不純物濃度最大部を
形成することを特徴とする半導体装置の製造方
法。
1 A first region of a second conductivity type formed partially from the surface of the semiconductor substrate of the first conductivity type, and a second region of the first conductivity type having a higher impurity concentration than the first region of the second conductivity type from the surface of the semiconductor substrate. The second conductivity type first region is formed so that the second conductivity type first region and the first conductivity type second region overlap at least partially, and the second conductivity type first region is formed in the second conductivity type first region near the PN junction portion where the second conductivity type first region and the first conductivity type second region overlap. An impurity capable of forming the same conductivity type as the first region of the mold is ion-implanted at a predetermined ion acceleration voltage to form a second region of the first conductivity type at a depth of at least 0.2 μm from the surface of the semiconductor substrate. A method of manufacturing a semiconductor device, characterized in that a maximum impurity concentration portion of the first region of the second conductivity type is formed so as to be in contact with a side surface.
JP2465279A 1979-03-02 1979-03-02 Fabrication of semiconductor device Granted JPS55117284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2465279A JPS55117284A (en) 1979-03-02 1979-03-02 Fabrication of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2465279A JPS55117284A (en) 1979-03-02 1979-03-02 Fabrication of semiconductor device

Publications (2)

Publication Number Publication Date
JPS55117284A JPS55117284A (en) 1980-09-09
JPS6321355B2 true JPS6321355B2 (en) 1988-05-06

Family

ID=12144063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2465279A Granted JPS55117284A (en) 1979-03-02 1979-03-02 Fabrication of semiconductor device

Country Status (1)

Country Link
JP (1) JPS55117284A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103473A (en) * 1980-01-23 1981-08-18 New Japan Radio Co Ltd Semiconductor device
JPH07107939B2 (en) * 1985-11-20 1995-11-15 三洋電機株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS55117284A (en) 1980-09-09

Similar Documents

Publication Publication Date Title
US4382827A (en) Silicon nitride S/D ion implant mask in CMOS device fabrication
US4242691A (en) MOS Semiconductor device
US4116720A (en) Method of making a V-MOS field effect transistor for a dynamic memory cell having improved capacitance
US4298401A (en) Breakdown voltage resistor obtained through a double ion-implantation into a semiconductor substrate, and manufacturing process of the same
US4038107A (en) Method for making transistor structures
US4060427A (en) Method of forming an integrated circuit region through the combination of ion implantation and diffusion steps
JPH0697665B2 (en) Method of manufacturing integrated circuit structure
US3660735A (en) Complementary metal insulator silicon transistor pairs
US5389563A (en) Method of fabricating a bipolar transistor having a high ion concentration buried floating collector
US4261763A (en) Fabrication of integrated circuits employing only ion implantation for all dopant layers
US3390019A (en) Method of making a semiconductor by ionic bombardment
US3943555A (en) SOS Bipolar transistor
EP0386798A2 (en) A method for forming a channel stopper in a semiconductor structure
JPS6224945B2 (en)
US4178190A (en) Method of making a bipolar transistor with high-low emitter impurity concentration
US4362574A (en) Integrated circuit and manufacturing method
US3974560A (en) Method of making a bipolar transistor
US6511893B1 (en) Radiation hardened semiconductor device
KR910002294B1 (en) Fabrication of a semiconductor device
JPS6321355B2 (en)
US4136353A (en) Bipolar transistor with high-low emitter impurity concentration
US4479830A (en) Method of manufacturing a semiconductor device using epitaxially regrown protrusion as an alignment marker
US4113513A (en) Method of manufacturing a semiconductor device by non-selectively implanting a zone of pre-determined low resistivity
US4415372A (en) Method of making transistors by ion implantations, electron beam irradiation and thermal annealing
US3770516A (en) Monolithic integrated circuits