JPS6197888A - Manufacture of photosemiconductor device - Google Patents

Manufacture of photosemiconductor device

Info

Publication number
JPS6197888A
JPS6197888A JP21738084A JP21738084A JPS6197888A JP S6197888 A JPS6197888 A JP S6197888A JP 21738084 A JP21738084 A JP 21738084A JP 21738084 A JP21738084 A JP 21738084A JP S6197888 A JPS6197888 A JP S6197888A
Authority
JP
Japan
Prior art keywords
wafer
mirror surface
rotary table
reactive ion
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21738084A
Other languages
Japanese (ja)
Other versions
JPH0149029B2 (en
Inventor
Osamu Wada
修 和田
Hiroyuki Nobuhara
裕之 延原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21738084A priority Critical patent/JPS6197888A/en
Publication of JPS6197888A publication Critical patent/JPS6197888A/en
Publication of JPH0149029B2 publication Critical patent/JPH0149029B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form mirrors flat and vertical in an optical meaning by a method wherein a wafer with a mask film covering the necessary part is tentatively fixed to a rotary table and then etched by irradiation with reactive ions or the like from the oblique direction while the rotary table is rotated on the axis of the direction parallel with the tentative-fixing surface. CONSTITUTION:Covered with a photo resist film 4 over the photosemiconductor element, a wafer 3 is tentatively fixed on the rotary table 1. While a rotary shaft 2 fixed to the side surface of the rotary table 1 is rotated in the direction of an arrow 6, reactive ion beams 5 are made obliquely incident at an angle of phi to the surface of the wafer 3. Streaks are produced on the mirror surface 7 when the surface of the wafer 3 is almost opposed to the reactive ion beams 5, but as the wafer 3 rotates away off that state, the beams 5 come into irradiation from the side surfaces of the streaks and cut them away; the flat surface of the mirror surface 7 improves. Besides, suitable adjustment of the angle phiof incidence of the beams 5 improves the verticality of the mirror surface 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザ或いは端面放射型発光ダイオー
ド等の光放射面をエツチングに依って形成するようにし
た光半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an optical semiconductor device in which a light emitting surface of a semiconductor laser, an edge-emitting light emitting diode, etc. is formed by etching.

〔従来の技術〕[Conventional technology]

近年、光集積回路についての開発・研究が盛んであり、
その場合、該光集積回路には、当然、半導体レーザが組
み込まれる。
In recent years, development and research on optical integrated circuits has been active.
In that case, a semiconductor laser is naturally incorporated into the optical integrated circuit.

一般に、個別形式の半導体レーザに於ける鏡面(レーザ
端面)は襞間に依って形成されていて、現在のところ、
この技法に依って得られる鏡面が最窩の性能を示してい
る。
Generally, the mirror surface (laser end face) in an individual type semiconductor laser is formed between folds, and at present,
The mirror surface obtained by this technique shows the best performance.

ところが、光集積回路の場合、半導体レーザの外に他の
機能をもつ半導体素子がモノリシックに集積化されてい
る。
However, in the case of optical integrated circuits, semiconductor elements having other functions in addition to the semiconductor laser are monolithically integrated.

従って、そのような光集積回路に対して、個別形式の半
導体レーザに適用されているような襞間技術を用いると
基板まで分離されてしまうので、実施不可能か、或いは
、ごく小規模のものしか得られない。
Therefore, if the interfold technology applied to individual type semiconductor lasers is used for such optical integrated circuits, the substrate will be separated, so it is either impossible to implement, or it is impossible to use a very small-scale device. I can only get it.

そこで、半導体レーザの鏡面を、反応性イオン−エツチ
ング(reactive  ion  etching
:RIE)法などのドライ・エツチング法、或いは、化
学混液などを用いたウェット・エツチング法等を適用し
て形成することが試みられているが、襞間した場合のよ
うな良質の鏡面は得ることができない。
Therefore, the mirror surface of the semiconductor laser is subjected to reactive ion etching (reactive ion etching).
Attempts have been made to apply dry etching methods such as (RIE) or wet etching methods using chemical mixtures, etc., but it has not been possible to obtain a high-quality mirror surface, such as that obtained with pleats. I can't.

第2図は鏡面をドライ・エツチング法で形成する従来技
術を説明する為の試料及び装置の要部説明図を表してい
る。
FIG. 2 shows an explanatory view of the main parts of a sample and an apparatus for explaining the conventional technique of forming a mirror surface by dry etching.

図に於いて、1は回転台、2は回転軸、3は光半導体装
置を作り込んだウェハ、4はフォト・レジスト膜、5は
反応性或いは非反応性イオン・ビーム、6は回転方向を
指示する矢印をそれぞれ示している。
In the figure, 1 is a rotating table, 2 is a rotating shaft, 3 is a wafer on which an optical semiconductor device is fabricated, 4 is a photoresist film, 5 is a reactive or non-reactive ion beam, and 6 is a rotating direction. Each indicates a pointing arrow.

この従来技術では、ウェハ3に於ける光半導体素子上を
フォト・レジスト膜4で覆い、そのウェハ3を回転台1
上に仮固着し、その回転台1、従って、ウェハ3を矢印
6で指示しであるように回転させながら反応性イオン・
ビーム5を照射してエツチングを行い、ウェハ3内に破
線で示しである部分を除去することに依り鏡面を形成す
るものである。
In this conventional technique, the optical semiconductor elements on the wafer 3 are covered with a photoresist film 4, and the wafer 3 is placed on the rotary table 1.
The rotating table 1 and therefore the wafer 3 are rotated as indicated by the arrow 6 while reactive ions are irradiated.
Etching is performed by irradiating the beam 5, and a mirror surface is formed by removing the portion indicated by the broken line in the wafer 3.

第3図は第2図に関して説明した技術に依って鏡面が形
成された半導体レーザの要部切断斜面図を表し、第2図
に関して説明した部分と同部分は同記号で指示しである
FIG. 3 shows a cut-away oblique view of essential parts of a semiconductor laser in which a mirror surface is formed by the technique explained in connection with FIG. 2, and the same parts as those explained in connection with FIG. 2 are indicated by the same symbols.

図に於いて、7は鏡面、8はストライプ電橿をそれぞれ
示している。
In the figure, 7 indicates a mirror surface, and 8 indicates a striped electric wire.

前記したところから理解できるように、第2図に関して
説明した従来技術を適用した場合、第3図に見られるよ
うに、鏡面7には多数の筋が形成される。
As can be understood from the foregoing, when the prior art described with reference to FIG. 2 is applied, a large number of streaks are formed on the mirror surface 7, as seen in FIG. 3.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来技術に依、て形成された鏡面7に多数の筋が形
成されるのは、マスク膜であるフォト・レジスト膜4の
端面形状がウェハ3にそのまま転写されることが主たる
原因であり、この従来技術に依っては、鏡面7の光学的
な平坦性及び垂直性を得ることは不可能である。尚、第
2図に関して説明したように、ウェハ3を仮固定した回
転台1を回転させることは、反応性イオン・ビーム5の
不均一性を緩和する程度の役割しか果たすことができな
い。また、前記したようなフォト・レジスト膜4のエツ
ジには1000 [人〕程度の凹凸が存在していること
は良(知られている。
The main reason why a large number of streaks are formed on the mirror surface 7 formed by the conventional technique is that the shape of the end face of the photoresist film 4, which is a mask film, is directly transferred to the wafer 3. With this conventional technique, it is impossible to obtain optical flatness and verticality of the mirror surface 7. As explained with reference to FIG. 2, rotating the rotary table 1 on which the wafer 3 is temporarily fixed can only serve to alleviate the non-uniformity of the reactive ion beam 5. Furthermore, it is well known that the edges of the photoresist film 4 as described above have irregularities of about 1000 [people].

本発明は、エツチング法に依って光半導体装置の鏡面を
形成するに際し、ごく簡単な技法を採り入れることに依
り、従来技術を実施して得られる鏡面に住成される筋を
皆無となし、光学的に平坦で、且つ、垂直な鏡面を形成
することが可能であるようにする。
The present invention employs a very simple technique when forming a mirror surface of an optical semiconductor device by an etching method, thereby eliminating any streaks that would otherwise be formed on the mirror surface obtained by implementing the conventional technique, and thereby eliminating optical To make it possible to form a mirror surface that is vertically flat and vertical.

c問題点を解決するための手段〕 本発明の光半導体装置の製造方法では、諸素子が作り込
まれたウェハに於ける光半導体素子及びその他必要部分
上を覆うフォト・レジスト膜などのマスク膜を形成し、
次いで、該ウェハを回転台に貼着するなどして仮固着し
、次いで、該回転台を前記ウェハが仮固着された面と平
行な方向を軸として回転させながら該ウェハの表面に対
して斜め方向から反応性イオンなどを照射してエツチン
グを行うことに依り光半導体素子の鏡面を形成するよう
にしている。
Means for Solving Problem c] In the method for manufacturing an optical semiconductor device of the present invention, a mask film such as a photoresist film that covers the optical semiconductor elements and other necessary parts in a wafer in which various elements are fabricated is provided. form,
Next, the wafer is temporarily fixed by pasting it on a rotating table, and then the rotating table is rotated about a direction parallel to the surface on which the wafer is temporarily fixed, and the wafer is attached at an angle to the surface of the wafer. A mirror surface of the optical semiconductor element is formed by performing etching by irradiating reactive ions or the like from a certain direction.

〔作用〕[Effect]

前記手段に依れば、通常であれば光半導体素子の鏡面に
発生する筋は、イオンの照射方向に対するウェハの回転
方向の関係に依り、側方からイオンで削り取られるよう
な状態となり、その結果、鏡面は光学的に平坦且つ垂直
となるものである。
According to the above means, the streaks that would normally occur on the mirror surface of an optical semiconductor element are scraped off from the sides by ions, depending on the relationship between the direction of ion irradiation and the rotation direction of the wafer, and as a result, , the mirror surface is optically flat and vertical.

C実施例〕 第1図は本発明一実施例を説明する為の工程要所に於け
るウェハ及びエツチング装置の要部説明図を表し、第2
図及び第3図に関して説明した部分と同部分は同記号で
指示しである。
Embodiment C] FIG. 1 shows an explanatory diagram of the main parts of a wafer and an etching apparatus at key points in the process for explaining one embodiment of the present invention.
The same parts as those described with reference to the figures and FIG. 3 are indicated by the same symbols.

本実施例では、回転台1の側面に回転軸2が固定され、
矢印6の方向に回転させるようになっている。
In this embodiment, the rotating shaft 2 is fixed to the side surface of the rotating table 1,
It is designed to rotate in the direction of arrow 6.

従って、回転台1の表面に仮固着されたウェハ3は回転
軸2の180°の回転毎にエツチングされることになる
Therefore, the wafer 3 temporarily fixed to the surface of the rotating table 1 is etched every time the rotating shaft 2 rotates by 180 degrees.

図では、反応性イオン・ビーム5は垂直に照射されてい
るが、回転軸2、従って、回転台1が傾斜して設定され
ていることから、ウェハ3の表面に対してφなる角度で
斜めに入射していることになる。尚、ウェハ3は回転台
lの表裏に貼着しであるが、これは作業効率を高める為
であり、必須ではない。
In the figure, the reactive ion beam 5 is irradiated perpendicularly, but since the rotation axis 2 and therefore the rotary table 1 are set at an angle, the reactive ion beam 5 is irradiated at an angle of φ with respect to the surface of the wafer 3. This means that it is incident on . The wafer 3 is attached to the front and back sides of the rotary table l, but this is for the purpose of increasing work efficiency and is not essential.

前記のようにして光半導体素子の鏡面7を形成する場合
、ウェハ3の表面が反応性イオン・ビーム5に略相対す
る位置に於いては鏡面7に筋が生成されるが、その状態
からウェハ3が回転するにつれ、反応性イオン・ビーム
5が核部の側面から照射される状態となって削り取られ
てしまうので鏡面7の平坦性は良好となり、また、反応
性イオン・ビーム5の入射角φを適宜に調整することに
依り鏡面7の垂直性も良好になる。
When forming the mirror surface 7 of an optical semiconductor element as described above, streaks are generated on the mirror surface 7 at a position where the surface of the wafer 3 is substantially opposed to the reactive ion beam 5. As the reactive ion beam 3 rotates, the reactive ion beam 5 is irradiated from the side of the nucleus and is scraped off, so the flatness of the mirror surface 7 becomes good, and the incident angle of the reactive ion beam 5 By appropriately adjusting φ, the verticality of the mirror surface 7 can also be improved.

前記実施例では、回転台1として平板状のものを用いた
が、これに限定されることなく、例えば、三角柱状のも
の、四角柱状のものなど、多角柱状のものを用いれば量
産性が向上する。
In the above embodiment, a flat plate-shaped rotary table 1 was used, but the rotary table 1 is not limited to this, and mass productivity can be improved by using a polygonal column-shaped one such as a triangular prism, a quadrangular prism, etc. do.

前記実施例に於いて、ウェハ3に組み込んだ光半導体素
子がG a A (l A s / G a A s系
ダブル・ヘテロ構造の半導体レーザである場合、マスク
膜となるフォト・レジスト膜4をポジ型とし、また、照
射すべきイオンとして加速電圧500(V)のアルゴン
(Ar)イオンを用いて実験した結果、φ=15°に於
いて、平坦且つ垂直の鏡面7が得られ、闇値電流■いは
襞間に依る鏡面を有するものと殆ど変わりなかった。
In the above embodiment, when the optical semiconductor device assembled on the wafer 3 is a Ga A (l A s / Ga As type double hetero structure semiconductor laser), the photo resist film 4 serving as a mask film is As a result of experiments using a positive type and argon (Ar) ions with an acceleration voltage of 500 (V) as ions to be irradiated, a flat and vertical mirror surface 7 was obtained at φ=15°, and the dark value The current was almost the same as that of the mirror surface between the folds.

〔発明の効果〕〔Effect of the invention〕

本発明の光半導体装置の製造方法に於いては、諸素子が
作り込まれたウェハに於ける光半導体素子上及びその他
の必要部分上を覆うフォト・レジスト膜などのマスク膜
を形成し、次いで、該ウェハを回転台に貼着するなどし
て仮固着し、次いで、該回転台を前記ウェハが仮固着さ
れた面と平行な方向を軸として回転させながら該ウェハ
の表面に対して斜め方向から反応性イオンなどを照射し
てエツチングを行うことに依り光半導体素子の鏡面を形
成している。
In the method for manufacturing an optical semiconductor device of the present invention, a mask film such as a photoresist film is formed to cover the optical semiconductor elements and other necessary parts of a wafer in which various elements are fabricated, and then , the wafer is temporarily fixed by pasting it on a rotating table, and then the rotating table is rotated about a direction parallel to the surface on which the wafer is temporarily fixed, and the wafer is attached in a direction oblique to the surface of the wafer. The mirror surface of the optical semiconductor element is formed by etching by irradiating reactive ions or the like.

このようにすると、ウェハの表面がイオンの照射方向に
略相対する位置では鏡面に筋が生成されはするものの、
その状態からウェハが回転するにつれてイオンが核部を
側方から削りとるような状態でエツチングすることにな
り、その結果、得られる鏡面の平坦性は著しく向上し、
また、ウェハに対するイオンの照射方向を調節すること
に依り前記鏡面の垂直性を良好なものとすることが可能
であり、通常の襞間に依って作製される鏡面の特性と殆
ど変わらないような良好な特性を得ることができる。
In this way, although streaks will be generated on the mirror surface at positions where the wafer surface is approximately opposite to the ion irradiation direction,
From this state, as the wafer rotates, the ions begin etching by scraping away the core from the sides, and as a result, the flatness of the resulting mirror surface is significantly improved.
In addition, by adjusting the direction of ion irradiation to the wafer, it is possible to improve the perpendicularity of the mirror surface, and it is possible to improve the perpendicularity of the mirror surface, so that the characteristics of the mirror surface are almost the same as those of the mirror surface produced by ordinary folds. Good characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例を説明する為のウェハ及びエツ
チング装置の要部説明図、第2図は従来技術を説明する
為の試料及びエツチング装置の要部説明図、第3図は従
来技術に依って形成された鏡面を説明する為の半導体レ
ーザの要部切断斜面図をそれぞれ表している。 図に於いて、1は回転台、2は回転軸、3はウェハ、4
はマスク膜であるフォト・レジスト膜、5は反応性イオ
ン・ビーム、6は回転軸2の回転方向を表す矢印、7は
半導体レーザの鏡面、8はストライブ電極、φは反応性
イオン・ビーム5の入射角をそれぞれ示している。。 第2図 第3図
FIG. 1 is an explanatory diagram of the main parts of a wafer and etching apparatus for explaining one embodiment of the present invention, FIG. 2 is an explanatory diagram of the main parts of a sample and etching apparatus for explaining the conventional technique, and FIG. 3 is an explanatory diagram of the main parts of the etching apparatus for explaining the conventional technique. Each of the drawings shows a cut-away oblique view of a main part of a semiconductor laser to explain the mirror surface formed by the technique. In the figure, 1 is a rotating table, 2 is a rotating shaft, 3 is a wafer, and 4 is a rotating table.
is a photoresist film which is a mask film, 5 is a reactive ion beam, 6 is an arrow indicating the rotation direction of the rotation axis 2, 7 is a mirror surface of a semiconductor laser, 8 is a stripe electrode, φ is a reactive ion beam 5 are shown, respectively. . Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  諸素子が作り込まれたウェハに於ける光半導体素子及
びその他必要部分上を覆うマスク膜を形成し、次いで、
該ウェハを回転台に仮固着し、次いで、該回転台を前記
ウェハが仮固着された面と略平行な方向を軸として回転
させながら該ウェハの表面に対して斜め方向からイオン
を照射して光半導体素子の鏡面を形成する工程が含まれ
てなることを特徴とする光半導体装置の製造方法。
A mask film is formed to cover the optical semiconductor elements and other necessary parts on the wafer in which the various elements have been fabricated, and then,
The wafer is temporarily fixed on a rotary table, and then, while the rotary table is rotated about a direction substantially parallel to the surface on which the wafer is temporarily fixed, ions are irradiated from an oblique direction onto the surface of the wafer. 1. A method for manufacturing an optical semiconductor device, comprising the step of forming a mirror surface of an optical semiconductor element.
JP21738084A 1984-10-18 1984-10-18 Manufacture of photosemiconductor device Granted JPS6197888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21738084A JPS6197888A (en) 1984-10-18 1984-10-18 Manufacture of photosemiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21738084A JPS6197888A (en) 1984-10-18 1984-10-18 Manufacture of photosemiconductor device

Publications (2)

Publication Number Publication Date
JPS6197888A true JPS6197888A (en) 1986-05-16
JPH0149029B2 JPH0149029B2 (en) 1989-10-23

Family

ID=16703264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21738084A Granted JPS6197888A (en) 1984-10-18 1984-10-18 Manufacture of photosemiconductor device

Country Status (1)

Country Link
JP (1) JPS6197888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025855A1 (en) * 2016-08-05 2018-02-08 東京エレクトロン株式会社 Method for processing subject to be processed

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025855A1 (en) * 2016-08-05 2018-02-08 東京エレクトロン株式会社 Method for processing subject to be processed
KR20190034645A (en) * 2016-08-05 2019-04-02 도쿄엘렉트론가부시키가이샤 How to treat the object
CN109564872A (en) * 2016-08-05 2019-04-02 东京毅力科创株式会社 The method for handling handled object
TWI731126B (en) * 2016-08-05 2021-06-21 日商東京威力科創股份有限公司 Method of processing the processed body
US11056370B2 (en) 2016-08-05 2021-07-06 Tokyo Electron Limited Method for processing workpiece
CN109564872B (en) * 2016-08-05 2023-05-26 东京毅力科创株式会社 Method for processing object to be processed

Also Published As

Publication number Publication date
JPH0149029B2 (en) 1989-10-23

Similar Documents

Publication Publication Date Title
JP2732524B2 (en) Photoelectric conversion device
JP2009267247A (en) Method for manufacturing photoelectromotive force device, and laser processing device
JPS6135573A (en) Manufacture of photovoltaic element
JPH0435726B2 (en)
JPH0447466B2 (en)
JPS6158974B2 (en)
JPS6197888A (en) Manufacture of photosemiconductor device
JPH0364043A (en) Solar cell
JPH0459787B2 (en)
JPH022175A (en) Manufacture of thin film transistor
JPH0644664B2 (en) Semiconductor laser external tilt mirror formation method
JPH03265117A (en) Manufacture of semiconductor device
KR100201229B1 (en) Method of address electrode and mirror system with address electrode
JPH10321622A (en) Wiring formation
JPS62124742A (en) Manufacture of device
JP3003875B2 (en) Photosensor manufacturing method
JP2690378B2 (en) Method of forming fine pattern
JP2850805B2 (en) Method for manufacturing optical semiconductor device
JPH0237047B2 (en)
JPH11354418A (en) Manufacture of blanking aperture array, and manufacture of electron beam exposure system
JPH084078B2 (en) Method for manufacturing semiconductor device
KR100379514B1 (en) Method for Fabricating of X-Ray Mask
JPH0399479A (en) Manufacture of solar cell
CN115373059A (en) Method for manufacturing slit structure
JPH1126835A (en) Semiconductor hall element and its manufacture