JPH0364043A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH0364043A
JPH0364043A JP1200751A JP20075189A JPH0364043A JP H0364043 A JPH0364043 A JP H0364043A JP 1200751 A JP1200751 A JP 1200751A JP 20075189 A JP20075189 A JP 20075189A JP H0364043 A JPH0364043 A JP H0364043A
Authority
JP
Japan
Prior art keywords
groove
laser beam
metallic electrode
amorphous silicon
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1200751A
Other languages
Japanese (ja)
Inventor
Yasuharu Matsukawa
松川 泰晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1200751A priority Critical patent/JPH0364043A/en
Publication of JPH0364043A publication Critical patent/JPH0364043A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To perform patterning easily with certainty after scanning once with a laser beam by forming grooves in such a way that one groove is made deeply at the middle of the groove width direction in a scribing groove and the other grooves are made shallowly at both sides of the deep groove, thereby forming stepped parts between mutual grooves. CONSTITUTION:A YAG laser is used as a light source for a laser beam and the YAG laser is defocused so that power distribution is created by two stages by a condensing optical system. When the laser beam LB having large power, therefore, passes the middle of the groove, the treatment depth of the groove 5 is so great that its treatment comes to a state where the laser beam scribes an amorphous silicon layer 3 located below an metallic electrode together with its metallic electrode 4. On the other hand, when the laser beam LB having small power passes the periphery of the groove, treatment depths in regions passed by the above laser beam become shallow. Although extremely small amount of scattered substances of the metallic electrode 4 and vaporized residues are present, the metallic electrode. in the center part having a great treatment depth comes to a state where the metallic electrode 4 is cut wholly without exception. As stepped parts are formed between the metallic electrode 4 and the amorphous silicon layer 3, the metallic electrode 4 does not come directly into contact with a transparent conductive film 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコンを用いた複数の光起電力
素子を集積してなる太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solar cell formed by integrating a plurality of photovoltaic elements using amorphous silicon.

(従来の技術) 一般に太陽電池は、ガラス等の透光性絶縁基板上に透明
導電膜、光活性層であるアモルファスシリコン層、金属
電極をこの順序に積層して構成されている0通常太陽電
池の場合は2個以上の光起電力素子を直列接続した状態
の集積型構造とするため、各光起電力素子を構成する過
程ではアモルファスシリコン層、金属電極等について夫
々バターニングすることが必要になる。
(Prior Art) Generally, a solar cell is constructed by laminating a transparent conductive film, an amorphous silicon layer as a photoactive layer, and a metal electrode in this order on a transparent insulating substrate such as glass. In this case, since the integrated structure has two or more photovoltaic elements connected in series, it is necessary to butter the amorphous silicon layer, metal electrode, etc. in the process of configuring each photovoltaic element. Become.

このパターニングには従来マスクを用いたウェットエツ
チングが一般的であったが、近年にあっては工程の省略
化のためレーザビームを用いたスクライブ加工が行われ
るようになっている。
Conventionally, wet etching using a mask has been commonly used for this patterning, but in recent years, scribing using a laser beam has been used to simplify the process.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところでスクライブ加工にレーザビームを用いる場合は
レーザビーム自体のパワー分布が可及的に均一となるよ
う第6図に示す如き分布のレーザビームが用いられる。
By the way, when a laser beam is used for scribing, a laser beam having a distribution as shown in FIG. 6 is used so that the power distribution of the laser beam itself is as uniform as possible.

第6図は横軸に径方向の位置を、また縦軸にパワーをと
って示している。
FIG. 6 shows the radial position on the horizontal axis and the power on the vertical axis.

ところでこのようなパワー分布のレーザビームを用いて
レーザスクライブを行うとパワーが強すぎるときは第7
図(イ)の如く、またパワーか弱過ぎるときは第7図(
口〉に示す如くになる。
By the way, when laser scribing is performed using a laser beam with such a power distribution, if the power is too strong, the seventh
As shown in Figure (A), if the power is too weak, see Figure 7 (
The result will be as shown in the image below.

第7図(イ)、(ロ)はレーザビームによるスクライブ
溝の形状を示す斜視図であり、パワーが強すぎると溝幅
の中央部ではスクライブ溝は金属電極4.アモルファス
シリコンN3を経て透明導電膜2の表面に達する深さに
、また溝幅の両側部ではアモルファスシリコン層3の表
面に蒸発残りの極く薄い金属電極4の飛沫、或いは蒸発
残の薄膜が存在し、これが透明導電膜2の面と接触し、
短絡状態が発生してしまう。
FIGS. 7(a) and 7(b) are perspective views showing the shape of scribed grooves created by the laser beam, and when the power is too strong, the scribed grooves are formed by the metal electrode 4 in the center of the groove width. At the depth reaching the surface of the transparent conductive film 2 through the amorphous silicon N3, and on both sides of the groove width, very thin droplets of the metal electrode 4 remaining after evaporation or a thin film remaining after evaporation are present on the surface of the amorphous silicon layer 3. This contacts the surface of the transparent conductive film 2,
A short circuit condition will occur.

また逆にパワーか弱過ぎると第7図(ロ)に示す如くア
モルファスシリコン層3が切断不良の状態となる外、そ
の表面に金属電柵4の飛沫、蒸発残りの薄膜が存在し、
両金属電極4,4が接触して切断不良の状態となるとい
う問題があった。
On the other hand, if the power is too weak, not only will the amorphous silicon layer 3 be poorly cut as shown in FIG.
There was a problem in that the two metal electrodes 4 came into contact with each other, resulting in poor cutting.

この対策として加工幅の異なるレーザビーム投射法が提
案されているが、この方法はレーザビームを2回走査す
る必要があり、工数が増大するという難点があった。
As a countermeasure to this problem, a laser beam projection method with different processing widths has been proposed, but this method requires scanning the laser beam twice, which has the disadvantage of increasing the number of steps.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは、金属電極等を過不足なく正確に切
断し得て、高い歩留りが得られるようにした太陽電池を
提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a solar cell in which metal electrodes, etc. can be accurately cut without too much or too little, and a high yield can be obtained. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る太陽電池は、絶縁性基板上に透明導電膜、
アモルファスシリコン層、金属電極を順次積層形成し、
前記金属電極表面側から高エネルギビームを1回走査し
てスクライブ溝を形成して構成した複数の光起電力素子
を集積してなる太陽電池において、前記スクライブ溝は
溝幅方向の中央部で深く、その両側部で浅くして溝の中
央部と両側部との間に夫々段差を形成してあることを特
徴とする。
The solar cell according to the present invention includes a transparent conductive film on an insulating substrate,
Amorphous silicon layer and metal electrode are sequentially laminated,
In a solar cell formed by integrating a plurality of photovoltaic elements configured by scanning a high-energy beam once from the surface side of the metal electrode to form a scribe groove, the scribe groove is deep at the center in the groove width direction. , the groove is shallower on both sides to form a step between the central part and both sides of the groove.

(作用) 本発明はこれによってスクライブ溝の中央部とその両側
部との間に形成される段差のエツジ部が金属電極膜の繋
がりを遮断する。
(Function) According to the present invention, the edge portion of the step formed between the central portion of the scribe groove and its both sides interrupts the connection of the metal electrode film.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.

第1図は本発明に係る太陽電池の斜視図であり、図中1
はガラス等にて構成される透光性の絶縁基板を示してい
る。この絶縁基板l上にITO又はZnO1等からなる
透明導電膜2、アモルファスシリコン層(シリコンの沸
点は2330°C)3、Af製金属電極(Afの沸点2
060°C)  4をこの順序に積層しである。
FIG. 1 is a perspective view of a solar cell according to the present invention.
indicates a translucent insulating substrate made of glass or the like. On this insulating substrate l, a transparent conductive film 2 made of ITO or ZnO1, an amorphous silicon layer (the boiling point of silicon is 2330°C) 3, a metal electrode made of Af (the boiling point of Af 2
060°C) were laminated in this order.

そして金属電極4.アモルファスシリコン層3をレーザ
ビームLBを用いた、所謂レーザスクライブ法によりバ
ターニングし、相互に直列接続された複数の光起電力素
子を形成しである。レーザビーム用光源としては、例え
ばYAG レーザを用い、これを集光光学系にて第2図
に示す如きパワー分布となるよう第3図(イ)、(ロ)
に示す如くデフォーカスする。即ち第3図(イ)は焦点
位置Fが遠い場合を、また第3図(ロ)は焦点位fiF
が近い場合を夫々示しており、これによってパワーは中
央部とその周縁部とに段差が形成された状態となる。
and metal electrode 4. The amorphous silicon layer 3 is patterned by a so-called laser scribing method using a laser beam LB to form a plurality of photovoltaic elements connected in series. As the light source for the laser beam, for example, a YAG laser is used, and the power distribution is as shown in FIG.
Defocus as shown. That is, Fig. 3(a) shows the case where the focal point F is far, and Fig. 3(b) shows the case where the focal position F is far.
The graphs show cases in which the power is close to each other, and as a result, the power is in a state where a level difference is formed between the center portion and the peripheral portion thereof.

この結果、第1図に示す如くレーザスクライブLBによ
って形成される溝5はパワーの大きいレーザビームLB
の中央部の通過域では加工深度が太きく金属電極4と共
にその下のアモルファスシリコン層3をスクライブした
状態となる。一方パワーの小さいレーザビームLBの周
縁部の通過域では加工深度は浅く、極く小量の金属電極
4の飛散物蒸発残りが存在するが、加工深度の大きい中
心部分では金属電極4は残りなく切断された状態にあり
、全体としては切断不良の状態は生じない。
As a result, as shown in FIG. 1, the groove 5 formed by laser scribe LB is
In the central passage area, the machining depth is large and the metal electrode 4 and the amorphous silicon layer 3 underneath are scribed. On the other hand, in the peripheral passage area of the laser beam LB with low power, the processing depth is shallow and there is a very small amount of evaporated debris of the metal electrode 4, but in the central part where the processing depth is large, no metal electrode 4 remains. It is in a disconnected state, and no defective disconnection occurs as a whole.

しかも金属電極4とアモルファスシリコン層3との間に
は段差が形成されるから、金属電極4が透明導電膜2と
直接接触することはない。
Moreover, since a step is formed between the metal electrode 4 and the amorphous silicon layer 3, the metal electrode 4 does not come into direct contact with the transparent conductive film 2.

第4図は本発明の他の実施例を示す断面構造図であり、
この実施例にあってはスクライブ溝6の断面形状は丁字
形となっている。即ちスクライブ溝6の幅方向の中央部
では金属電極4及びその下層のアモルファスシリコン層
3が残存することなく切断されて溝底には透明導電膜2
が露出せしめられている。一方スクライブ溝6の幅方向
の両側部では金属電極4の殆どが切断されているが、ア
モルファスシリコン層3の表面に沿って極く僅かに金属
電極4の飛沫、或いは蒸発残りが存在しているに留まり
、溝の中央部と両側部との間に形成される段差、特にそ
のエツジ部が金属電極4と透明導電膜2との接触を防止
した状態となっている。
FIG. 4 is a cross-sectional structural diagram showing another embodiment of the present invention,
In this embodiment, the cross-sectional shape of the scribe groove 6 is T-shaped. That is, the metal electrode 4 and the underlying amorphous silicon layer 3 are cut without remaining at the center in the width direction of the scribe groove 6, and the transparent conductive film 2 is left at the bottom of the groove.
is exposed. On the other hand, on both sides of the scribe groove 6 in the width direction, most of the metal electrode 4 is cut off, but there are very few droplets or evaporated remains of the metal electrode 4 along the surface of the amorphous silicon layer 3. The level difference formed between the central part and both sides of the groove, especially the edge part, is in a state where contact between the metal electrode 4 and the transparent conductive film 2 is prevented.

第5図は第4図のレーザスクライブ加工に用いた結像光
学系を示す説明図であり、集光レンズ11の手前にスク
ライブ溝幅に相応する幅を備えたスリットを有する板1
2と更にこの板12のスリット12a幅よりも若干狭い
幅のスリット13aを有するハーフミラ13を夫々スリ
ット12a、13aの中心位置を一致させた状態で配設
しである。これによって入射されてきたレーザビームL
Bの中央部はスリット12a。
FIG. 5 is an explanatory diagram showing the imaging optical system used for the laser scribing process shown in FIG.
2 and a half mirror 13 having a slit 13a having a width slightly narrower than the width of the slit 12a of this plate 12, respectively, are arranged with the center positions of the slits 12a and 13a being aligned with each other. The laser beam L that has been incident as a result of this
The center part of B is a slit 12a.

13aを経て直接的に、またレーザビームLBの周縁部
の光はハーフ壽う13にて一部を反射された状態で間接
的に夫々レンズ11に入射し、被加工物表面に結像せし
められるが、そのパワー分布は中央部とその両側との間
には段差が形成された状態となり、第4図に示す如き断
面のスクライブ溝が形成されることとなる。
The light from the peripheral part of the laser beam LB enters the lens 11 directly via the laser beam 13a, and indirectly after being partially reflected by the half-circuit 13, and is imaged on the surface of the workpiece. However, the power distribution is such that a step is formed between the central portion and both sides thereof, and a scribe groove having a cross section as shown in FIG. 4 is formed.

〔効果〕〔effect〕

以上の如く本発明品にあってはスクライブ溝の溝幅方向
の中央部で溝深さが深く、その両側では溝深さを浅くし
て相互の間に段差を形成したから、レーザビームの1回
の走査で容易に、しかも確実にバターニングが可能とな
り、工数の省略が図れるなど本発明は優れた効果を奏す
るものである。
As described above, in the product of the present invention, the groove depth is deep at the central part of the scribe groove in the groove width direction, and the groove depth is made shallow on both sides to form a step between them. The present invention has excellent effects, such as making it possible to easily and reliably pattern the pattern with a single scan and reducing the number of man-hours.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明品のスクライブ溝を拡大した状態を示す
斜視図、第2図はレーザスクライブに用いたレーザビー
ムのパワー分布図、第3図(イ〉。 (ロ)はデフォーカシングの態様を示す説明図、第4図
は本発明の他の例を示す断面構造図、第5図は第4図の
レーザスクライブに用いた結像光学系の説明図、第6図
は従来のレーザビームのパワー分布図、第7図(イ)、
(ロ)は従来のレーザスクライブの不都合例を示す説明
図である。 1・・・絶縁基板 2・・・透明導電膜3・・・アモル
ファスシリコン層 4・・・金属電極5.6・・・スク
ライブ溝 特 許 出願人  三洋電機株式会社
Figure 1 is a perspective view showing an enlarged state of the scribe groove of the product of the present invention, Figure 2 is a power distribution diagram of the laser beam used for laser scribing, and Figure 3 (a). (b) is the mode of defocusing. 4 is a cross-sectional structural diagram showing another example of the present invention, FIG. 5 is an explanatory diagram of the imaging optical system used for laser scribing in FIG. 4, and FIG. 6 is a conventional laser beam Power distribution diagram, Figure 7 (a),
(B) is an explanatory diagram showing an example of a disadvantage of conventional laser scribing. 1... Insulating substrate 2... Transparent conductive film 3... Amorphous silicon layer 4... Metal electrode 5. 6... Scribe groove patent Applicant Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】 1、絶縁性基板上に透明導電膜、アモルファスシリコン
層、金属電極を順次積層形成し、前記金属電極表面側か
ら高エネルギビームを1回走査してスクライブ溝を形成
して構成した複数の光起電力素子を集積してなる太陽電
池において、 前記スクライブ溝は溝幅方向の中央部で深 く、その両側部で浅くして溝の中央部と両側部との間に
夫々段差を形成してあることを特徴とする太陽電池。
[Claims] 1. A transparent conductive film, an amorphous silicon layer, and a metal electrode are sequentially laminated on an insulating substrate, and a scribe groove is formed by scanning a high-energy beam once from the surface side of the metal electrode. In the solar cell configured by integrating a plurality of photovoltaic elements, the scribe groove is deep at the center in the groove width direction and shallow at both sides, so that there are steps between the center and both sides of the groove, respectively. A solar cell characterized by comprising:
JP1200751A 1989-08-01 1989-08-01 Solar cell Pending JPH0364043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1200751A JPH0364043A (en) 1989-08-01 1989-08-01 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1200751A JPH0364043A (en) 1989-08-01 1989-08-01 Solar cell

Publications (1)

Publication Number Publication Date
JPH0364043A true JPH0364043A (en) 1991-03-19

Family

ID=16429568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1200751A Pending JPH0364043A (en) 1989-08-01 1989-08-01 Solar cell

Country Status (1)

Country Link
JP (1) JPH0364043A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255621B1 (en) * 2000-01-31 2001-07-03 International Business Machines Corporation Laser cutting method for forming magnetic recording head sliders
JP2002540950A (en) * 1999-04-07 2002-12-03 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for peeling a thin layer on a carrier material
JP2005252245A (en) * 2004-02-03 2005-09-15 Showa Denko Kk Gallium nitride-based compound semiconductor wafer
US7087857B2 (en) * 2003-08-12 2006-08-08 Disco Corporation Method of dividing a workpiece in the form of a plate having a layer and a substrate made of different materials
US7194803B2 (en) * 2001-07-05 2007-03-27 Flowserve Management Company Seal ring and method of forming micro-topography ring surfaces with a laser
JP2011040462A (en) * 2009-08-07 2011-02-24 Mitsubishi Electric Corp Photoelectric conversion device, and method of manufacturing the same
USRE43400E1 (en) 2000-09-20 2012-05-22 Electro Scientific Industries, Inc. Laser segmented cutting, multi-step cutting, or both
WO2013051323A1 (en) * 2011-10-03 2013-04-11 三菱電機株式会社 Solar cell element and method for manufacturing same
CN110504333A (en) * 2019-09-19 2019-11-26 通威太阳能(合肥)有限公司 Z-shaped pattern slotting structure suitable for thin-sheet PERC battery
US10987761B2 (en) * 2017-04-13 2021-04-27 Elfab Limited Method of creating a burst groove by laser scoring

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540950A (en) * 1999-04-07 2002-12-03 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for peeling a thin layer on a carrier material
US6255621B1 (en) * 2000-01-31 2001-07-03 International Business Machines Corporation Laser cutting method for forming magnetic recording head sliders
USRE39001E1 (en) 2000-01-31 2006-03-07 Electro Scientific Industries, Inc. Laser cutting method for forming magnetic recording head sliders
USRE43400E1 (en) 2000-09-20 2012-05-22 Electro Scientific Industries, Inc. Laser segmented cutting, multi-step cutting, or both
USRE43487E1 (en) 2000-09-20 2012-06-26 Electro Scientific Industries, Inc. Laser segmented cutting
US7194803B2 (en) * 2001-07-05 2007-03-27 Flowserve Management Company Seal ring and method of forming micro-topography ring surfaces with a laser
US7087857B2 (en) * 2003-08-12 2006-08-08 Disco Corporation Method of dividing a workpiece in the form of a plate having a layer and a substrate made of different materials
JP2005252245A (en) * 2004-02-03 2005-09-15 Showa Denko Kk Gallium nitride-based compound semiconductor wafer
JP2011040462A (en) * 2009-08-07 2011-02-24 Mitsubishi Electric Corp Photoelectric conversion device, and method of manufacturing the same
WO2013051323A1 (en) * 2011-10-03 2013-04-11 三菱電機株式会社 Solar cell element and method for manufacturing same
US10987761B2 (en) * 2017-04-13 2021-04-27 Elfab Limited Method of creating a burst groove by laser scoring
CN110504333A (en) * 2019-09-19 2019-11-26 通威太阳能(合肥)有限公司 Z-shaped pattern slotting structure suitable for thin-sheet PERC battery

Similar Documents

Publication Publication Date Title
JP3436858B2 (en) Manufacturing method of thin film solar cell
JP4964186B2 (en) Method for manufacturing photovoltaic device
US8039396B2 (en) Method for manufacturing photovoltaic device
JPH0364043A (en) Solar cell
WO2010140621A1 (en) Semiconductor light detecting element and manufacturing method therefor
JP2011253909A (en) Manufacturing method of photovoltaic device
WO1991002380A1 (en) Method of fabricating a binary optics microlens upon a detector array
JPH10258383A (en) Linear laser beam optical system
JP2008187153A (en) Method of fabricating a plurality of semiconductor devices
KR960705347A (en) FORMING MICROLENSES ON SOLID STATE IMAGER
JP3676202B2 (en) Method for manufacturing photovoltaic device
WO2013051323A1 (en) Solar cell element and method for manufacturing same
JP4764989B2 (en) Laser processing method
JPH0399479A (en) Manufacture of solar cell
JPS63212084A (en) Laser beam machine
JPS6240119B2 (en)
JPH08288481A (en) Manufacture of solid-state image pickup element and solid-state image pickup element
JPH01143274A (en) Manufacture of integrated optical power generating device
JPH0691269B2 (en) Method for manufacturing amorphous silicon solar cell
JP2850805B2 (en) Method for manufacturing optical semiconductor device
JPS58133A (en) Mask for laser annealing
KR20030054788A (en) Method of manufacturing image sensor for semiconductor device
JPH0528912B2 (en)
JPS6197888A (en) Manufacture of photosemiconductor device
JPS63136543A (en) Semiconductor device