JPH0435726B2 - - Google Patents

Info

Publication number
JPH0435726B2
JPH0435726B2 JP13054478A JP13054478A JPH0435726B2 JP H0435726 B2 JPH0435726 B2 JP H0435726B2 JP 13054478 A JP13054478 A JP 13054478A JP 13054478 A JP13054478 A JP 13054478A JP H0435726 B2 JPH0435726 B2 JP H0435726B2
Authority
JP
Japan
Prior art keywords
diffraction grating
photoresist
film
metal thin
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13054478A
Other languages
Japanese (ja)
Other versions
JPS5557807A (en
Inventor
Shigeo Yamashita
Tadashi Fukuzawa
Michiharu Nakamura
Junichi Umeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13054478A priority Critical patent/JPS5557807A/en
Publication of JPS5557807A publication Critical patent/JPS5557807A/en
Publication of JPH0435726B2 publication Critical patent/JPH0435726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images

Description

【発明の詳細な説明】 本発明は、SiO2やガラス等の透明な無機材料
表面にホログラフイツクな露光法を用いて、微細
(〜1μm以下)な周期の回折格子を作製する製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a manufacturing method for producing a diffraction grating with a fine period (~1 μm or less) on the surface of a transparent inorganic material such as SiO 2 or glass using a holographic exposure method.

従来の作製法の例を簡単に説明すると、以下の
とおりである。まず第1図に示すように、半導体
基板1上に形成した酸化膜2の表面にホトレジス
ト3を塗布する。次に二本のレーザビームを用い
たホログラフイツクな干渉露光法いわゆる干渉縞
を用いて、ホトレジスト3を周期的に露光し、現
像処理を行つて、ホトレジストの格子状マスクを
作製する。次に、イオン加工や、プラズマ加工、
化学エツチング等を行つて、酸化膜表面を加工
し、最後にホトレジストマスクを除去して、酸化
膜表面に回折格子を作製する。
A brief explanation of an example of a conventional manufacturing method is as follows. First, as shown in FIG. 1, a photoresist 3 is applied to the surface of an oxide film 2 formed on a semiconductor substrate 1. As shown in FIG. Next, the photoresist 3 is periodically exposed using a holographic interference exposure method using two laser beams, so-called interference fringes, and developed to produce a photoresist lattice mask. Next, ion processing, plasma processing,
The surface of the oxide film is processed by chemical etching, etc., and finally the photoresist mask is removed to create a diffraction grating on the surface of the oxide film.

この際、露光用レーザ光は、各層の境界で反射
されるが、特に半導体基板1と酸化膜2との界面
4での反射が強いために、入射光と反射光との干
渉によつて、酸化膜2およびホトレジスト3の厚
さ方向に上記干渉縞の光強度分布が生ずる。この
干渉縞の光強度分布は、界面4がほぼ節となり、
ピツチはλ/2nicosφ、その節と腹との強度比は 1−2|ρ|/1+|ρ|2/1+2|ρ|/1+|ρ
2 となる。ここで、λは露光用レーザの波長、niは
酸化膜、ホトレジストの屈折率、φは界面4にお
けるレーザ光の入射角、ρは界面4での反射率で
ある。例えばSi表面に形成したSiO2で、露光用
レーザの波長λ=4416Å、入射角φ=60℃の場
合、|ρ|0.53、ピツチは約2940Å、強度比は
0.097となる。すなわち、干渉縞の節付近は、光
強度が1割以下となり、露光不足になり易い。こ
の回折格子の製造過程において被加工面となるホ
トレジスト層3と酸化膜2の境界面5における露
光状態が極めて重要となる。そしてこの干渉縞の
ため、ホトレジスト層3内の光強度は厚さ方向に
変化するが、その状態は、酸化膜2の厚さに大き
く依存し、酸化膜の厚さが面内でバラついている
と、上記境界面5における露光状態に著るしいム
ラが発生することになる。このことは、従来法に
おいて回折格子の品質を低下させる大きな問題で
あつた。
At this time, the exposure laser light is reflected at the boundaries of each layer, but since the reflection is particularly strong at the interface 4 between the semiconductor substrate 1 and the oxide film 2, interference between the incident light and the reflected light causes The light intensity distribution of the interference fringes occurs in the thickness direction of the oxide film 2 and the photoresist 3. In the light intensity distribution of this interference fringe, the interface 4 is almost a node,
The pitch is λ/2nicosφ, and the intensity ratio between the node and the antinode is 1-2|ρ|/1+|ρ| 2 /1+2|ρ|/1+|ρ
2 . Here, λ is the wavelength of the exposure laser, ni is the refractive index of the oxide film and photoresist, φ is the incident angle of the laser beam at the interface 4, and ρ is the reflectance at the interface 4. For example, for SiO 2 formed on a Si surface, when the exposure laser wavelength λ = 4416 Å and the incident angle φ = 60°C, |ρ| 0.53, the pitch is approximately 2940 Å, and the intensity ratio is
It becomes 0.097. That is, near the nodes of the interference fringes, the light intensity is less than 10%, which tends to result in underexposure. In the manufacturing process of this diffraction grating, the exposure condition at the interface 5 between the photoresist layer 3 and the oxide film 2, which is the surface to be processed, is extremely important. Due to these interference fringes, the light intensity within the photoresist layer 3 changes in the thickness direction, but this state largely depends on the thickness of the oxide film 2, and the thickness of the oxide film varies within the plane. As a result, significant unevenness occurs in the exposure state at the boundary surface 5. This has been a major problem in the conventional method, degrading the quality of the diffraction grating.

本発明は、従来のこのような問題を解決するた
めのものである。ホトレジストの露光状態が、酸
化膜の厚さに著るしく影響されることを防ぐため
に、以下の方法を用いる。
The present invention is intended to solve these conventional problems. In order to prevent the exposure state of the photoresist from being significantly influenced by the thickness of the oxide film, the following method is used.

第2図に示すようにSi基板1に形成した無機材
料たとえばSiO2(酸化膜)2の表面にまず金属膜
6を形成する。次いでその上にホトレジストを塗
布し、その後、従来法と同様に、露光、現像を行
う。なお、本発明の適用出来る基板としては、ガ
ラス質材料等を直接用いることが出来るが、ここ
では、能動的デイバイスに並置して形成するに有
用なSi基板上にSiO2膜を形成した基板の例を示
す。このようにすると、露光用レーザ光は、金属
膜6とホトレジスト3との界面7で反射されるた
めに、干渉縞の節の位置が界面7に固定され、従
つて、ホトレジスト層3内の光の分布を、被加工
面となる境界面内のいずれの位置も同じ状態にす
ることができ、均一な露光が可能になる。金属膜
6にはCr,Al,Ni,Pt,W,Mo,Au,Ag等を
用いることが可能である。厚さとしては一般に
0.01〜0.5μmの範囲で選択する。後工程の加工は、
金属膜、酸化膜を順次加工する方法(化学エツ
チ、プラズマエツチ)や、同時に行う方法(イオ
ン加工)等いずれも可能で、最後に残つたホトレ
ジスト、金属膜を除去する。
As shown in FIG. 2, a metal film 6 is first formed on the surface of an inorganic material such as SiO 2 (oxide film) 2 formed on a Si substrate 1. As shown in FIG. Next, a photoresist is applied thereon, and then exposed and developed in the same manner as in the conventional method. Although a glass material or the like can be used directly as a substrate to which the present invention can be applied, here we will use a substrate with an SiO 2 film formed on a Si substrate, which is useful for forming active devices in parallel. Give an example. In this way, since the exposure laser beam is reflected at the interface 7 between the metal film 6 and the photoresist 3, the position of the interference fringe node is fixed at the interface 7, and therefore the light inside the photoresist layer 3 is The distribution can be made the same at any position within the boundary surface serving as the surface to be processed, making it possible to achieve uniform exposure. For the metal film 6, Cr, Al, Ni, Pt, W, Mo, Au, Ag, etc. can be used. The thickness is generally
Select in the range of 0.01 to 0.5 μm. Post-process processing is
Either a method of processing the metal film and the oxide film sequentially (chemical etching, plasma etching) or a method of processing them simultaneously (ion processing) is possible, and the remaining photoresist and metal film are removed at the end.

実施例では金属膜6に厚さ200Åに真空蒸着し
たCrを用い、周知の方法でホトレジストに露光、
現像した後はイオン加工を行つた。加工条件はた
とえば加速電圧500V、電流密度100μA/cm2、加
工時間約10minである。イオン加工後、ホトレジ
スト、Cr蒸着膜の順に除去し、Si上のSiO2膜に
回折格子を形成した。
In the example, Cr was vacuum-deposited to a thickness of 200 Å for the metal film 6, and exposed to photoresist using a well-known method.
After development, ion processing was performed. The processing conditions are, for example, an accelerating voltage of 500 V, a current density of 100 μA/cm 2 , and a processing time of about 10 min. After ion processing, the photoresist and Cr deposited film were removed in this order to form a diffraction grating on the SiO 2 film on Si.

なお、Cr膜の除去には消酸第2セリウムアン
モン水溶液を用いた。ウエーハのほぼ全面に均一
な回折格子を歩留り良く作製できるようになる。
Note that an aqueous ceric ammonium quenching solution was used to remove the Cr film. A uniform diffraction grating can be manufactured over almost the entire surface of the wafer with a high yield.

また、この金属膜6を用いることにより、これ
を反応性プラズマ、エツチング時のマスクとを兼
用させることが出来る。このことによつて良質な
ホログラフイツク・グレーテイングをガラス質基
板の上に形成することが可能になる。
Furthermore, by using this metal film 6, it can also be used as a mask during reactive plasma and etching. This makes it possible to form high quality holographic gratings on glass substrates.

第3図にその工程を示す。10は、グレーテイ
ングを形成すべき無機材料たとえばガラス基板で
ある。Al,Au等の金属膜6を500〜3000Åの厚
さに真空蒸着する。フオトレジスト3(Shipley
社AZ−1350)を800〜1000Åの厚さに塗布す
る。レーザー光14の照射及び現像処理により、
フオトレジストが、グレーテイング状になる(第
3図bの15)、露光時に、レーザー光14は、
金属蒸着膜6によつて反射されるため、ガラス基
板の底面で反射された光が、フオトレジストにゴ
ーストを生じさせることがない。
Figure 3 shows the process. 10 is an inorganic material such as a glass substrate on which the grating is to be formed. A metal film 6 of Al, Au, etc. is vacuum deposited to a thickness of 500 to 3000 Å. Photoresist 3 (Shipley
AZ-1350) to a thickness of 800 to 1000 Å. By irradiation with laser light 14 and development treatment,
The photoresist becomes grating-like (15 in FIG. 3b). During exposure, the laser beam 14
Since the light is reflected by the metal vapor deposited film 6, the light reflected from the bottom surface of the glass substrate does not cause a ghost on the photoresist.

形成されたフオトレジストのグレーテイングを
マスクとして、イオン加工(加速電圧500V、電
流密度100μA/cm2、時間5min)を行ない、金属
蒸着膜の露出している部分を除去する。第3図c
の状態となる。Al,Au等はフオトレジストに比
べ約1桁大きいエツチングレートを持つため、フ
オトレジストのグレーテイングパターンは、くず
れることなく金属膜のグレーテイング16に転写
される。次に、この金属膜をマスクとして、反応
性プラズマエツチを行なう。反応性プラズマエツ
チは、エツチングに指向性を持つため、エツチン
グ後のガラス基板は、第3図dに示す如く矩形状
の断面を持つ良質なグレーテイング17となる。
エツチング終了後、金属膜を除去し、第3図eに
示す如くグレーテイング17が完成する。なお、
金属膜除去のエツチング液としてはAlの場合、
水酸化ナトリウム溶液、Auの場合ヨウ素系エツ
チング液等が良い。
Using the formed photoresist grating as a mask, ion processing (acceleration voltage 500V, current density 100μA/cm 2 , time 5min) is performed to remove the exposed portion of the metal vapor deposited film. Figure 3c
The state will be as follows. Since Al, Au, etc. have an etching rate about one order of magnitude higher than that of photoresist, the photoresist grating pattern is transferred to the metal film grating 16 without deterioration. Next, using this metal film as a mask, reactive plasma etching is performed. Since reactive plasma etching has directivity in etching, the glass substrate after etching becomes a high quality grating 17 having a rectangular cross section as shown in FIG. 3d.
After etching, the metal film is removed to complete the grating 17 as shown in FIG. 3e. In addition,
In the case of Al as an etching solution for metal film removal,
Sodium hydroxide solution, and in the case of Au, iodine-based etching solution are recommended.

この方法を用いて、SiO2酸化膜の上に、ガラ
ス膜(コーニング社、7059)をスパツタリング法
で付着させ、非対称光導波路を作成する。次いで
ガラスの表面に、ピツチ3000Å、深さ1500Åのグ
レーテイングを作成した。従来の方法で作成した
グレーテイングに比べ、1桁回折効率が向上し
た。
Using this method, a glass film (Corning, Inc., 7059) is deposited on top of the SiO 2 oxide film by sputtering to create an asymmetric optical waveguide. Next, a grating with a pitch of 3000 Å and a depth of 1500 Å was created on the surface of the glass. Compared to gratings created using conventional methods, the diffraction efficiency was improved by one order of magnitude.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に従来の回折格子を製造法を説明するた
めの説明図、第2図は本発明の製造法を説明する
ための説明図、第3図はガラス質基板に回折格子
を製造する工程を示す図である。 1……半導体基板、2……酸化膜、3……ホト
レジスト、6……金属膜、10……無機材料基
板。
Figure 1 is an explanatory diagram for explaining the conventional method of manufacturing a diffraction grating, Figure 2 is an explanatory diagram for explaining the manufacturing method of the present invention, and Figure 3 is a process for manufacturing a diffraction grating on a glass substrate. FIG. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Oxide film, 3... Photoresist, 6... Metal film, 10... Inorganic material substrate.

Claims (1)

【特許請求の範囲】 1 レーザ光の干渉を用いたホログラフイツクな
露光により上記レーザ光に対し透明な無機材料に
ピツチ1μm以下の回折格子を形成する回折格子の
製造方法において、上記無機材料からなる被加工
物上に金属薄膜を形成する工程、この金属薄膜上
に感光膜を形成する工程、この感光膜を上記ホロ
グラフイツク露光し、この感光膜に回折格子状マ
スクを形成する工程、この回折格子状マスクを用
いて上記金属薄膜を食刻する工程、少なくともこ
の金属薄膜をマスクとして上記被加工物を食刻す
る工程を有し、かつ上記ホログラフイツク露光時
に上記感光膜内に生じる干渉縞の膜厚方向の光強
度分布の節は上記金属薄膜と上記感光膜との界面
に固定されていることを特徴とする回折格子の製
造方法。 2 上記被加工物の食刻工程後、上記金属薄膜を
除去する工程を有する特許請求の範囲第1項記載
の回折格子の製造方法。 3 上記回折格子は光導波路の構成体である特許
請求の範囲第2項記載の回折格子の製造方法。
[Scope of Claims] 1. A method for producing a diffraction grating in which a diffraction grating with a pitch of 1 μm or less is formed on an inorganic material transparent to the laser beam by holographic exposure using laser beam interference, wherein the method comprises: A process of forming a metal thin film on a workpiece, a process of forming a photoresist film on this metal thin film, a process of exposing this photoresist film to the above-mentioned holographic light, and forming a diffraction grating mask on this photoresist film, a process of forming a diffraction grating on this photoresist film. a step of etching the metal thin film using a shaped mask; and a step of etching the workpiece using at least the metal thin film as a mask, and a film of interference fringes generated in the photoresist film during the holographic exposure. A method for producing a diffraction grating, characterized in that nodes of the light intensity distribution in the thickness direction are fixed at an interface between the metal thin film and the photoresist film. 2. The method of manufacturing a diffraction grating according to claim 1, further comprising the step of removing the metal thin film after the etching step of the workpiece. 3. The method of manufacturing a diffraction grating according to claim 2, wherein the diffraction grating is a component of an optical waveguide.
JP13054478A 1978-10-25 1978-10-25 Production of diffraction grating Granted JPS5557807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13054478A JPS5557807A (en) 1978-10-25 1978-10-25 Production of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13054478A JPS5557807A (en) 1978-10-25 1978-10-25 Production of diffraction grating

Publications (2)

Publication Number Publication Date
JPS5557807A JPS5557807A (en) 1980-04-30
JPH0435726B2 true JPH0435726B2 (en) 1992-06-12

Family

ID=15036812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13054478A Granted JPS5557807A (en) 1978-10-25 1978-10-25 Production of diffraction grating

Country Status (1)

Country Link
JP (1) JPS5557807A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137118A (en) * 1980-03-29 1981-10-26 Rikagaku Kenkyusho Production of lamellar diffraction grating
JPS60103307A (en) * 1983-11-11 1985-06-07 Pioneer Electronic Corp Manufacture of micro fresnel lens
JPS60103308A (en) * 1983-11-11 1985-06-07 Pioneer Electronic Corp Manufacture of micro fresnel lens
JP3147481B2 (en) * 1992-04-21 2001-03-19 松下電器産業株式会社 Mold for forming glass diffraction grating, method for manufacturing the same, and method for manufacturing glass diffraction grating
JP5428636B2 (en) * 2009-06-17 2014-02-26 住友電気工業株式会社 Formation method of diffraction grating
JP5390357B2 (en) 2009-12-04 2014-01-15 パナソニック株式会社 Press molding die for optical lens, glass optical lens, and method for manufacturing glass optical lens
CN104459854B (en) * 2013-09-22 2017-12-01 清华大学 The preparation method of metal grating
US10254942B2 (en) 2014-07-31 2019-04-09 Microsoft Technology Licensing, Llc Adaptive sizing and positioning of application windows
US10592080B2 (en) 2014-07-31 2020-03-17 Microsoft Technology Licensing, Llc Assisted presentation of application windows
US10678412B2 (en) 2014-07-31 2020-06-09 Microsoft Technology Licensing, Llc Dynamic joint dividers for application windows
US10317677B2 (en) 2015-02-09 2019-06-11 Microsoft Technology Licensing, Llc Display system
US11086216B2 (en) 2015-02-09 2021-08-10 Microsoft Technology Licensing, Llc Generating electronic components
US9827209B2 (en) * 2015-02-09 2017-11-28 Microsoft Technology Licensing, Llc Display system
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
CN116603700A (en) * 2022-02-08 2023-08-18 成都拓米双都光电有限公司 Preparation method of support grid plate

Also Published As

Publication number Publication date
JPS5557807A (en) 1980-04-30

Similar Documents

Publication Publication Date Title
US6015650A (en) Method for forming micro patterns of semiconductor devices
JPH0435726B2 (en)
US6200711B1 (en) Phase mask for manufacturing diffraction grating, and method of manufacture
JP3377134B2 (en) Reactive ion etching of lattice and two-dimensional lattice structures
JP4824273B2 (en) Diffraction grating phase mask
JPH06174907A (en) Production of metallic grating
US4087281A (en) Method of producing optical image on chromium or aluminum film with high-energy light beam
JPH0815510A (en) Binary optics and their production
JPS6033504A (en) Production of blazed grating
JP2742683B2 (en) Manufacturing method of transmission diffraction grating
JP2624351B2 (en) Photomask manufacturing method
JP2816833B2 (en) Method for manufacturing phase shift mask
JP2624354B2 (en) Photomask manufacturing method
US4239787A (en) Semitransparent and durable photolithography masks
JP2824314B2 (en) Method of manufacturing reflective optical bending waveguide
JPH06148413A (en) Formation of diffraction grating
JPH041703A (en) Production of phase shift type diffraction grating
EP0490320B1 (en) A method for producing a diffraction grating
JPH11223714A (en) Phase mask for producing differaction grating and product ion thereof
JPH0830764B2 (en) Method of manufacturing diffraction grating
JPH06250007A (en) Production of blazed type diffraction grating
JPS627001A (en) Production of diffraction grating
JPS6024933B2 (en) Electron sensitive inorganic resist
JPH0461331B2 (en)
JPH07281414A (en) Phase shift mask blank and phase shift mask as well as its production