JPS6197121A - Method for recovering carbon monoxide - Google Patents

Method for recovering carbon monoxide

Info

Publication number
JPS6197121A
JPS6197121A JP59217256A JP21725684A JPS6197121A JP S6197121 A JPS6197121 A JP S6197121A JP 59217256 A JP59217256 A JP 59217256A JP 21725684 A JP21725684 A JP 21725684A JP S6197121 A JPS6197121 A JP S6197121A
Authority
JP
Japan
Prior art keywords
carbon monoxide
absorbent
heating
pressure
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59217256A
Other languages
Japanese (ja)
Other versions
JPH0651563B2 (en
Inventor
Shunichi Azuma
俊一 東
Sachio Asaoka
佐知夫 浅岡
Isao Suzuki
功 鈴木
Haruhiko Yoshida
晴彦 吉田
Koji Watabe
渡部 耕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP59217256A priority Critical patent/JPH0651563B2/en
Publication of JPS6197121A publication Critical patent/JPS6197121A/en
Publication of JPH0651563B2 publication Critical patent/JPH0651563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To separate economically high purity CO from a gaseous mixture contg. CO by bringing the gaseous mixture into contact with a porous CO absorbent to absorb selectively CO and by desorbing the absorbed CO by evacuation combined with heating. CONSTITUTION:A porous CO absorbent is manufactured by supporting univalent Cu or univalent Cu and tervalent Al on an inorg. porous body such as porous alumina. A gaseous mixture contg. CO such as exhaust gas from a blast furnace, a coke oven or a converter in an iron mill is brought into contact with the porous CO absorbent to absorb selectively CO. After unabsorbed gas is removed by evacuation, evacuation and heating or heating and evacuation are successively carried out to desorb the absorbed CO from the absorbent. Evacuation and heating may be carried out at the same time. Thus, CO is separated from the gaseous mixture.

Description

【発明の詳細な説明】 本発明は一酸化炭素を主成分とする混合ガスから一酸化
炭素を選択的に回収する方法に関し、更に詳しくは、多
孔質一酸化炭素吸収剤を用いて一酸化炭素を回収する際
に、脱離処理を減圧および加熱により行なうことを特徴
とする一酸化炭素の回収方法(二関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively recovering carbon monoxide from a mixed gas containing carbon monoxide as a main component. A method for recovering carbon monoxide, characterized in that, when recovering carbon monoxide, desorption treatment is performed by reducing pressure and heating.

従来の技術 一般に工業的に、混合ガスからCOを分離精製して高純
度COを製造する方法としては、調液吸収法、C08O
RB法あるいは、深冷分離法がある。しかし、調液吸収
法は、操作の複雑さ、腐食性溶液使用による装置の腐食
、溶液損失、および建設コストが高いなどの欠点によシ
、経済性が低く、現在では殆んど工業的に採用されてい
ない。C08ORB法は混合ガス中の水分の存在が溶液
劣化を来たし、また回収CO中にトルエンまた深冷分離
法では、混合ガス中に窒素が含まれる場合は窒素とCO
の沸点差が近接しているため、COを目的とした分離に
は一般的に経済的でない。
BACKGROUND TECHNOLOGY In general, industrial methods for separating and refining CO from a mixed gas to produce high-purity CO include liquid preparation absorption method, CO8O
There is the RB method or the cryogenic separation method. However, the liquid absorption method suffers from drawbacks such as operational complexity, equipment corrosion due to the use of corrosive solutions, solution loss, and high construction costs, making it uneconomical and currently hardly used industrially. Not adopted. In the CO8ORB method, the presence of moisture in the mixed gas causes solution deterioration, and in the cryogenic separation method, when nitrogen is contained in the mixed gas, nitrogen and CO are
Because of the close boiling point differences between the two, separation for CO is generally not economical.

一般にCOを原料として、化学品を合成する場合には、
不純物が合成触媒に悪影響を及ぼすとともに、COの分
圧に犬きく依存することが多く、化学品合成の際の原料
のCo純度は厳しく規定するケースが多い。
Generally, when synthesizing chemicals using CO as a raw material,
Impurities have a negative effect on synthesis catalysts and are often highly dependent on the partial pressure of CO, so the Co purity of raw materials used in chemical synthesis is often strictly regulated.

本発明の方法で得られるCo純度は、95%以上となり
、そのままで通常の化学品合成用の原料として十分使用
できることを特徴とする。また本発明の方法ではco純
度98チ以上の製品も容易に製造可能である。
The Co purity obtained by the method of the present invention is 95% or more, and it is characterized in that it can be used as it is as a raw material for ordinary chemical synthesis. Further, with the method of the present invention, products with a Co purity of 98% or higher can be easily produced.

本発明は、多孔質一酸化炭素吸収剤を用いて効率的かつ
経済的に混合ガスから一酸化炭素を分離・精製して高純
度COを回収する方法を提供するものである。
The present invention provides a method for efficiently and economically separating and purifying carbon monoxide from a mixed gas and recovering high-purity CO using a porous carbon monoxide absorbent.

即ち、本発明は、一酸化炭素を選択的に吸収した吸収剤
から一酸化炭素を脱離することにより一酸化炭素を回収
する方法において、脱離処理を減圧および加熱の組合せ
によシ行なうことを特徴とする。
That is, the present invention provides a method for recovering carbon monoxide by desorbing carbon monoxide from an absorbent that has selectively absorbed carbon monoxide, in which the desorption treatment is performed by a combination of reduced pressure and heating. It is characterized by

発明の効果 本発明の効果は、加熱或は冷却てよシ温度を変化させる
と共にこれを雰囲気の圧力を変化させることを組合せて
、COピックアップ量、即ち吸収−脱離操作によって回
収されるCO量、を、夫々の単独の変化によって回収さ
れる場合よシも遥かに大きな量で回収し得るところにあ
る。
Effect of the Invention The effect of the present invention is that by changing the heating or cooling temperature and changing the atmospheric pressure, the amount of CO pickup, that is, the amount of CO recovered by the absorption-desorption operation, can be reduced. , could be recovered in much larger quantities than if they were recovered by each individual change.

作用 本発明の方法におけるCOガスの回収に、温度変化と圧
力変化とを組合せるには種々の態様が可能である。即ち
、(1)加熱と減圧を同時に行なう:(2)加熱と減圧
を時間差をつけて行なう;(3)初期に吸引処理して、
未吸収残存ガスを減圧除去した後に減圧加熱する等であ
る。これらのうち加熱と減圧を同時に行なうことはCO
を主成分とする廃ガスから吸収−回収を連続して行なう
場合、回収の所要時間の短縮が可能となシ装置の所要数
の削減をもたらし、また加熱を減圧に時間差をつけて行
なうことによシ、例えば純度の異なる製品カスを回収す
る必要のある場合等に有利に用いることが出来る。
Operation Various embodiments are possible for combining temperature change and pressure change in the recovery of CO gas in the method of the present invention. That is, (1) heating and depressurization are performed simultaneously; (2) heating and depressurization are performed with a time difference; (3) initial suction treatment is performed;
For example, the unabsorbed residual gas is removed under reduced pressure and then heated under reduced pressure. Of these, heating and depressurizing at the same time is CO
In the case of continuous absorption and recovery from waste gas whose main component is It can be advantageously used, for example, when it is necessary to collect product residues of different purity.

次に本発明の効果を図により説明する。第1図は温度変
化によりCOを回収する場合(TSA) 、第2図は圧
力変化によりCOを回収する場合(v s A) 、な
らびに第3図は本発明の温度と圧力との組合せ変化させ
る場合のうち特に両者を同時に変化させることによりC
Oを回収する場合(TVSA)についての説明図である
。図において横軸は00分圧(atmlを縦軸は吸収C
o量(ミリモル/g−吸収剤)を夫々示す。尚第1〜3
図に示したグラフ(3本の実線)は上から夫々25℃、
90℃、120℃における吸収CO量(ミリ・モル/g
−吸収剤)と00分圧(atm)との関係を示したもの
である。
Next, the effects of the present invention will be explained using figures. Figure 1 shows the case in which CO is recovered by changing temperature (TSA), Figure 2 shows the case in which CO is recovered by changing pressure (VS A), and Figure 3 shows the case in which the combination of temperature and pressure of the present invention is changed. In particular, by changing both at the same time, C
It is an explanatory diagram about the case of recovering O (TVSA). In the figure, the horizontal axis is 00 partial pressure (atml) and the vertical axis is absorption C
The amount (mmol/g-absorbent) is shown in each case. In addition, 1st to 3rd
The graph shown in the figure (three solid lines) is 25℃ from the top,
Absorbed CO amount at 90°C and 120°C (mmole/g
- Absorbent) and 00 partial pressure (atm).

第1図において25℃の吸収剤を加熱してCOを分離す
る状態を考えると、90℃まで加熱したときに発生する
COの量は、Δの点から垂直に下した線と90℃のグラ
フとの交点Bまでの量、ΔV′となるべきであるが、実
際には、脱離の際00分圧が高い側にずれて、0点に達
し、ΔVIからCOを回収することが出来ない。
Considering the state in which CO is separated by heating the absorbent at 25°C in Figure 1, the amount of CO generated when heated to 90°C is the graph between the line drawn perpendicularly from the point Δ and the graph at 90°C. The amount of CO up to the intersection B with the .

また第2図において、温度も25℃に保ったまま減圧す
ると25℃のときの吸収曲線に沿ってAからDに移り、
その間にΔ■3′の量のCOが回収される筈である。し
かるに現実には、減圧によって放出されるCO量は吸収
曲線に沿って変化せず破線で示されるビステリシス曲線
に沿って放出されるため、点りにくるべきところが点E
に達することとなりΔv2′よネ小さいΔVz[、か回
収することが出来ない。
In addition, in Figure 2, if the pressure is reduced while keeping the temperature at 25°C, it will move from A to D along the absorption curve at 25°C.
During this time, an amount of Δ■3' of CO should be recovered. However, in reality, the amount of CO released by depressurization does not change along the absorption curve but is released along the bisteresis curve shown by the broken line, so the point where it should reach is point E.
ΔVz[, which is smaller than Δv2', cannot be recovered.

以上の第1図と第2図に示した従来法に対し、第3図は
本発明の温度変化と圧力変化を組合せることによりCO
を回収するときの吸着されたCOの回収量を示したもの
である。
In contrast to the conventional method shown in Figs. 1 and 2 above, Fig. 3 shows CO2 reduction by combining the temperature change and pressure change of the present invention.
This figure shows the amount of adsorbed CO recovered when CO is recovered.

第3図において点Aで吸収されたcoは90℃までの温
度上昇を減圧によシ、AからFの蔵に沿ってCoの放出
が行われΔV、で示す量のCOが回収される。以上の結
果から明らかなように本発明の組合によれば単独処理の
場合に比較して大量のCOの回収が可能となる。
In FIG. 3, the co absorbed at point A is reduced in pressure while the temperature rises to 90° C., and the co is released along the storehouses from A to F, and the amount of CO shown by ΔV is recovered. As is clear from the above results, the combination of the present invention makes it possible to recover a larger amount of CO than in the case of single treatment.

本発明は吸着されたCOを効率よく回収することを目的
としており吸収方法には特に制限はない。しかしCO吸
収と回収を繰返して連続処理を行なうには、回収にマツ
チした吸収方法を採用するのが工程を組合せる上で有効
である。
The purpose of the present invention is to efficiently recover adsorbed CO, and there are no particular restrictions on the absorption method. However, in order to carry out continuous treatment by repeating CO absorption and recovery, it is effective to adopt an absorption method that matches the recovery in terms of combining processes.

本発明の方法は、多孔質吸収剤を用いることを特徴とす
る方法であり、吸収剤としては銅(Ilが多孔質無機担
体と組合されたものであシ、例えばハロゲン化銅(I)
活性炭、銅(Ilゼオライトあるいはハロゲン化銅(1
)、ハロゲン化アルミニウム(III)と有機溶媒を用
いて多孔質アルミナなどの多孔質無機酸化物担体に担持
した吸収剤、更にはハロゲン化銅(I)、ハロゲン化ア
ルミニ94皿】、ポリスチレンを有機溶媒を用いて多孔
質アルミナなどの多孔質無機酸化物担体に担持した吸収
剤が有効に利用できる。これらの吸収剤のうち特にハロ
ゲン化銅(T)、ハロゲン化フルミ4ウム@ンを有機溶
媒を用いて多孔質無機酸化物に担持した吸収剤は、Co
の選択吸収性に優れ、しかも水による劣化が少ないため
極めて効果的であシ、また、ハロゲン化銅(1)、ハロ
ゲン化アルミニウム@)、ポリスチレン、およびアルミ
ナからなる吸収剤も極めて効果的である。
The method of the present invention is characterized in that a porous absorbent is used, the absorbent being copper (Il) in combination with a porous inorganic carrier, such as copper(I) halide.
activated carbon, copper (Il zeolite or copper halide (1
), an absorbent supported on a porous inorganic oxide support such as porous alumina using aluminum(III) halide and an organic solvent; An absorbent supported on a porous inorganic oxide carrier such as porous alumina using a solvent can be effectively used. Among these absorbents, those in which copper halide (T) and fluorium halide are supported on a porous inorganic oxide using an organic solvent are particularly suitable for Co
It is extremely effective because it has excellent selective absorption and little deterioration due to water. Also, absorbents made of copper halide (1), aluminum halide (@), polystyrene, and alumina are also extremely effective. .

例えば、CuAlα4−トルエン錯体を多孔質アルミナ
に分散担持してなる吸収剤は第1〜3図に示す如く、C
O吸収量が、25℃から120℃の間で犬きく変化し、
かつ00分圧に犬きく依存しており、この両方の因子(
温度およびCO圧)を合せて操作することによって、単
独の因子の操作よりもはるかに有効にC0吸収剤として
寄与することが明らかである。
For example, as shown in Figs.
The amount of O absorption changes drastically between 25℃ and 120℃,
It is highly dependent on the 00 partial pressure, and both of these factors (
It is clear that the joint manipulation of temperature and CO pressure serves as a much more effective CO absorber than the manipulation of any single factor.

本発明は、常温から120℃近辺および、減圧および常
圧を前後する圧力において、温度および00分圧にCO
平衡吸収量が犬きく左右されるCO吸収剤を見い出した
ことによって完成された。すなわち、温度および圧力を
組合せることによって、単独の操作によっては同一のC
Oピックアップ量を得るに必要な操作中(温度中、圧力
中)よシはるかに狭い操作中にて高純度Coを効率よく
回収製造することができる。例えば、COの脱離に関し
圧力変化より温度変化の方の所要時間か長い吸収剤にあ
っては、所望のCO量を得るためには温度変化中は小さ
くして圧力中によって補うことができる。これら変化中
は使用する吸収剤のCO平衡吸収量の温度、圧力依存の
割合、使用条件によって適宜選択する。上記の如く、本
発明は、第1〜3図に示されるような、CO平衡吸収量
の温度及び圧力依存性をもつco吸収剤を用いることに
よる。すなわち本発明に用いられる多孔質吸収剤は、温
度変化と圧力変化のそれぞれの変化によってC0平衡吸
収量が有意義な差で変化するものであれば有効である。
The present invention applies CO2 to temperature and partial pressure at room temperature to around 120°C and at pressures around reduced pressure and normal pressure.
This achievement was achieved by discovering a CO absorbent whose equilibrium absorption amount is significantly influenced. That is, by combining temperature and pressure, the same C
High-purity Co can be efficiently recovered and produced during operations that are much narrower than those required to obtain the O pickup amount (under temperature and pressure). For example, in the case of absorbents that require a longer time for CO desorption during temperature changes than pressure changes, the amount of CO can be reduced during the temperature change and compensated for by the pressure change in order to obtain the desired amount of CO. These changes are appropriately selected depending on the temperature and pressure dependence of the CO equilibrium absorption amount of the absorbent used, and the conditions of use. As mentioned above, the present invention relies on the use of a co absorbent having a temperature and pressure dependence of CO equilibrium absorption as shown in FIGS. 1-3. That is, the porous absorbent used in the present invention is effective as long as the C0 equilibrium absorption amount changes by a significant difference depending on changes in temperature and pressure.

次に本発明を更に実施例により詳細に説明する。Next, the present invention will be further explained in detail with reference to Examples.

実施例1(連続型式) Cu [11,4j(ml、有機化合物からなる錯塩を
多孔性アルミニウムしたCuAlα4= JNz Os
  /i 0(Wt/wt+のl団φの球状吸収剤を内
径25−1高さ600Taのステンレス(5US−30
4)製二重管型反応塔5塔の中に各基200.@づつ充
てんした。
Example 1 (continuous type) Cu[11,4j (ml, CuAlα4=JNz Os in which porous aluminum was formed from a complex salt consisting of an organic compound)
/i 0 (Wt/wt+ l group φ spherical absorbent is made of stainless steel (5US-30
4) Each group has 200. I filled it up one by one.

原料ガスとして下記成分に調整した特定のガスをボンベ
から一旦減圧したものを用いた。
As the raw material gas, a specific gas adjusted to have the following components was used, which was once depressurized from a cylinder.

組成は下記のとおりだった。The composition was as follows.

H22volチ C068# co、  12  # N、18# 吸収、脱離、冷却の各工程をくり返し連続操作を行なっ
た。まず第1の塔に塔下部から常圧40℃、580cc
Z分の速度で8分間原料ガスを通気しCOを吸収させ塔
の上下バルブをブロックした。その後バルブを切り換え
原料ガスを第2の塔に通気し吸収開始するとともに第1
の塔を真空ポンプで300 cc/i)の速さで40 
torr  にまで減圧かつ二重管外部に95℃に加熱
したシリコンオイルを導入し吸収層を90℃に加熱した
。この操作に15分要した。脱離操作終了後95℃のシ
リコンオイルの供給を止め、20℃のシリコンオイルの
供給を開始し、吸収層を冷却した。40℃まで冷却する
のに15分要した。冷却後再び原料ガスを導入し吸収操
作に入った。塔1に於ては冷却により1サイクルが完了
した。
H22vol CH C068#co, 12#N, 18# Each process of absorption, desorption, and cooling was repeated and continuous operation was performed. First, 580 cc of water was introduced into the first column at normal pressure of 40°C from the bottom of the column.
The raw material gas was passed through the reactor at a rate of Z for 8 minutes to absorb CO, and the upper and lower valves of the column were blocked. After that, the valve is switched and the raw material gas is vented into the second tower to start absorption, and the first tower
40 at a speed of 300 cc/i) with a vacuum pump.
The pressure was reduced to 2.5 torr, and silicone oil heated to 95°C was introduced into the outside of the double tube to heat the absorption layer to 90°C. This operation took 15 minutes. After the desorption operation was completed, the supply of silicone oil at 95°C was stopped, and the supply of silicone oil at 20°C was started to cool the absorption layer. It took 15 minutes to cool down to 40°C. After cooling, raw material gas was introduced again and absorption operation started. One cycle was completed in column 1 by cooling.

以上の操作を第1の塔から順次第5の塔まで8分間づつ
位相をずらして行なった。
The above operation was carried out sequentially from the first column to the fifth column with a phase shift of 8 minutes.

8分間の物質収支は以下の通シとなった。The material balance for 8 minutes was as follows.

原料ガス     回収ガス vo1%   Nca     vo1%  NccH
z   2+   93    0.1   3Co 
 6813155   97.0 2619Co、  
121 557    1.2  32比較例1゜ 実施例で使用したのと同じ吸収剤反応器を使用した。充
てん量も200,9.原料ガスも同一組成のものを使用
した。二重管外側に40℃に加温したシリコンオイルを
循環させ、あらかじめ吸収層を40℃に加温した。その
後原料ガスを反応器下部から常圧、40℃、580 c
c15)の速度で10分間通気し、COを吸収させた。
Raw material gas Recovery gas vo1% Nca vo1% NccH
z 2+ 93 0.1 3Co
6813155 97.0 2619Co,
121 557 1.2 32 Comparative Example 1° The same absorbent reactor used in the example was used. The filling amount is also 200.9. Raw material gases of the same composition were also used. Silicone oil heated to 40°C was circulated around the outside of the double tube, and the absorbent layer was previously heated to 40°C. After that, the raw material gas is introduced from the bottom of the reactor at normal pressure, 40℃, 580℃.
C15) for 10 minutes to absorb CO.

その後原料ガスの供給を止め吸収層を90℃に加温した
。この操作において回収されたガス量と組成を測定した
Thereafter, the supply of raw material gas was stopped and the absorption layer was heated to 90°C. The amount and composition of the gas recovered in this operation were measured.

原料ガス     回収ガス vo1%  Ncc    vo1%   NccH,
21160,45 Co   68 3944   93.6  1147
Co、  12  696    13   28比較
例2゜ 実施例で使用したものと同じ吸収剤、反応器を使用した
。充てん量も200.9X原料ガスも同一組成のものを
使用した。原料ガスを反応器下部から常圧、20℃、5
80 cc15)の速度で10分間通気し、coを吸収
させた。
Raw material gas Recovery gas vo1% Ncc vo1% NccH,
21160,45 Co 68 3944 93.6 1147
Co, 12 696 13 28 Comparative Example 2° The same absorbent and reactor as used in the example were used. Both the filling amount and the 200.9X source gas had the same composition. The raw material gas is fed from the bottom of the reactor at normal pressure, 20℃, 5
It was aerated for 10 minutes at a rate of 80 cc15) to absorb the cobalt.

その後原料ガスの供給を止め、反応器を真空ポンプで3
00cc15)の速さで40 torr  にまで減圧
した。排出ガスを回収し、ガス量と組成を測定した。
After that, the supply of raw material gas was stopped, and the reactor was operated with a vacuum pump for 3
The pressure was reduced to 40 torr at a speed of 00cc15). The exhaust gas was collected and the amount and composition of the gas was measured.

原料ガス    回収ガス vo1%  Nac    vo1%  NccHz2
  116   0.3    5Co   68 3
944  95.4 1686co、  12  69
6   1.6   29
Raw material gas Recovery gas vo1% Nac vo1% NccHz2
116 0.3 5Co 68 3
944 95.4 1686co, 12 69
6 1.6 29

【図面の簡単な説明】[Brief explanation of drawings]

第1図は温度変化によシcoを回収する場合(TSA)
 、第2図は圧力変化によシcoを回収する場合(VS
A)および第3図は本発明の温度と圧力との組合せ変化
させる場合のうち特に両者を同時に変化させることKよ
りCOを回収する場合(’l”VsA)についてのC0
分圧(atom )と吸収CO量との関係を示したグラ
フである。 しくJウナノ土 (atm)
Figure 1 shows the case of collecting CO due to temperature changes (TSA)
, Fig. 2 shows the case where CO is recovered by pressure change (VS
A) and FIG. 3 show the CO for the case of changing the combination of temperature and pressure according to the present invention, particularly for the case of changing both at the same time and recovering CO from K ('l''VsA).
It is a graph showing the relationship between partial pressure (atom) and absorbed CO amount. Shiku J Unano Soil (atm)

Claims (1)

【特許請求の範囲】 1、多孔質一酸化炭素吸収剤に、一酸化炭素を主成分と
する混合ガスを接触せしめ、一酸化炭素を選択的に吸収
せしめた後、該吸収剤から一酸化炭素を脱離することに
より一酸化炭素を回収する方法において、脱離処理を減
圧と加熱との組合せにより行なうことを特徴とする一酸
化炭素の回収方法。 2、脱離処理を減圧した後減圧加熱することにより行な
う特許請求の範囲第1項の方法。 3、脱離処理を加熱した後、減圧することにより行なう
特許請求の範囲第1項の方法。 4、脱離処理を減圧と加熱とを同時に行なう特許請求の
範囲第1項の方法。 5、脱離処理を残存未吸収ガスを減圧除去した後、減圧
加熱することにより行なう特許請求の範囲第1項の方法
。 6、吸収剤が、銅( I )を一酸化炭素吸収成分とし、
これを無機多孔質体に担持してなる特許請求の範囲第1
〜5項の何れかの方法。 7、吸収剤が銅( I )とアルミニウム(III)とを、無
機多孔質体に担持してなる特許請求の範囲第1〜5項の
何れかの方法。 8、一酸化炭素を主成分とする混合ガスが製鉄所の高炉
、転炉あるいはコークス炉排ガスである特許請求の範囲
第1〜7項の何れかの方法。
[Claims] 1. After bringing a mixed gas containing carbon monoxide as a main component into contact with a porous carbon monoxide absorbent to selectively absorb carbon monoxide, carbon monoxide is removed from the absorbent. 1. A method for recovering carbon monoxide by desorption of carbon monoxide, characterized in that the desorption treatment is performed by a combination of reduced pressure and heating. 2. The method according to claim 1, wherein the desorption treatment is carried out by reducing the pressure and then heating under reduced pressure. 3. The method according to claim 1, wherein the desorption treatment is carried out by heating and then reducing the pressure. 4. The method according to claim 1, wherein the desorption treatment is performed simultaneously by depressurization and heating. 5. The method according to claim 1, wherein the desorption treatment is carried out by removing residual unabsorbed gas under reduced pressure and then heating under reduced pressure. 6. The absorbent uses copper (I) as a carbon monoxide absorbing component,
Claim 1 in which this is supported on an inorganic porous body.
- Any method of item 5. 7. The method according to any one of claims 1 to 5, wherein the absorbent comprises copper (I) and aluminum (III) supported on an inorganic porous body. 8. The method according to any one of claims 1 to 7, wherein the mixed gas containing carbon monoxide as a main component is exhaust gas from a blast furnace, converter, or coke oven of a steelworks.
JP59217256A 1984-10-18 1984-10-18 Recovery method of carbon monoxide Expired - Lifetime JPH0651563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217256A JPH0651563B2 (en) 1984-10-18 1984-10-18 Recovery method of carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217256A JPH0651563B2 (en) 1984-10-18 1984-10-18 Recovery method of carbon monoxide

Publications (2)

Publication Number Publication Date
JPS6197121A true JPS6197121A (en) 1986-05-15
JPH0651563B2 JPH0651563B2 (en) 1994-07-06

Family

ID=16701290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217256A Expired - Lifetime JPH0651563B2 (en) 1984-10-18 1984-10-18 Recovery method of carbon monoxide

Country Status (1)

Country Link
JP (1) JPH0651563B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101520729B1 (en) * 2013-10-28 2015-05-20 재단법인 포항산업과학연구원 The method for preparing absorbent for carbon monoxide, and the method for separating and recovering carbon monoxide from LDG gas using thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849436A (en) * 1981-08-31 1983-03-23 Hidefumi Hirai Separation of carbon monoxide
JPS58124516A (en) * 1982-01-22 1983-07-25 Hidefumi Hirai Separation of carbon monooxide from mixed gas
JPS6117413A (en) * 1984-07-04 1986-01-25 Nippon Kokan Kk <Nkk> Separation of co

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849436A (en) * 1981-08-31 1983-03-23 Hidefumi Hirai Separation of carbon monoxide
JPS58124516A (en) * 1982-01-22 1983-07-25 Hidefumi Hirai Separation of carbon monooxide from mixed gas
JPS6117413A (en) * 1984-07-04 1986-01-25 Nippon Kokan Kk <Nkk> Separation of co

Also Published As

Publication number Publication date
JPH0651563B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
AU662267B2 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
US5711926A (en) Pressure swing adsorption system for ammonia synthesis
JP4745299B2 (en) Adsorption / desorption material of ammonia using a combination of specific metal halides, separation method and storage method
JPH01313301A (en) Continuous production of hydrogen and carbon dioxide
JPS63230505A (en) Method of forming and recovering oxygen product
JPH0624962B2 (en) Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace
JPS6197121A (en) Method for recovering carbon monoxide
JPH09110406A (en) Production of neon and helium
JPS5930646B2 (en) Argon gas purification method
JP3256811B2 (en) Method for purifying krypton and xenon
JPH0112529B2 (en)
JPH0114164B2 (en)
JP2000272905A (en) Removal of organic impurity in methanol degradation gas by closed tsa method
JPS61146705A (en) Method for separating and recovering high purity carbon monoxide from gaseous mixture containing carbon monoxide
JPH0221285B2 (en)
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS62113710A (en) Production of adsorbent for separation and recovery of co
JPS6097021A (en) Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method
JPS6410443B2 (en)
JPS6139087B2 (en)
JPS6265919A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent
JPS63123417A (en) Refining method for methane
CN115947949A (en) Porous metal organic framework material and synthesis method thereof, adsorbent and method for purifying ethylene
JPH0351648B2 (en)
JPS63242318A (en) Carbon monoxide separation/concentration device