JPS6197056A - Charging method of electrical dust precipitator - Google Patents
Charging method of electrical dust precipitatorInfo
- Publication number
- JPS6197056A JPS6197056A JP21800484A JP21800484A JPS6197056A JP S6197056 A JPS6197056 A JP S6197056A JP 21800484 A JP21800484 A JP 21800484A JP 21800484 A JP21800484 A JP 21800484A JP S6197056 A JPS6197056 A JP S6197056A
- Authority
- JP
- Japan
- Prior art keywords
- charging method
- charging
- electrostatic precipitator
- intermittent
- power consumption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrostatic Separation (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は電気集塵機の荷電方法、持に集塵効率を高め
るように荷電方式を選択して運転を行なわせる電気集塵
機の荷電方法に関するものでちる。[Detailed Description of the Invention] "Industrial Application Field" This invention relates to a method of charging an electrostatic precipitator, and a method of charging an electrostatic precipitator that selects a charging method and operates the electrostatic precipitator in order to increase dust collection efficiency. Chiru.
「従来の技術」
乾式電気集塵機においては、放電電極と集塵電極間に電
圧を荷電することによりコロナ放電を起させて電荷を作
り、ダストヲ含んだガスを流入してダストに帯電させ集
塵電極に静電的にダストを付着させる。このようにして
ガスに含まれて送り込まれるダストが乾式電気集塵機に
よって捕集される。``Prior art'' In a dry type electrostatic precipitator, a voltage is applied between a discharge electrode and a dust collection electrode to cause a corona discharge to create an electric charge, and a gas containing dust is flowed in to charge the dust and connect it to the dust collection electrode. The dust is electrostatically attached to the surface. The dust contained in the gas and sent in in this manner is collected by a dry electrostatic precipitator.
この場合ダストの見掛は上の電気抵抗[直が1010〜
1011Ω・csを越えると、集塵電極に捕集されたダ
スト層内の電位勾配が大きくなり、ダスl[内で絶縁破
壊を生じダスト層より正のイオンが供給されるという逆
電離現象が発生することがある。In this case, the apparent electrical resistance of the dust is
When it exceeds 1011Ω・cs, the potential gradient within the dust layer collected by the dust collecting electrode increases, causing dielectric breakdown within the dust layer and causing a reverse ionization phenomenon in which positive ions are supplied from the dust layer. There are things to do.
このような逆電離現象が発生すると集塵に寄与する負の
イオンが正のイオンによって中和されるために、放電電
流の大部分が無効電流となυ、集塵効率が大幅に低下す
ると共に電気集塵機における消費電力も増大する。When such a reverse ionization phenomenon occurs, the negative ions that contribute to dust collection are neutralized by positive ions, so that most of the discharge current becomes a reactive current, which significantly reduces the dust collection efficiency. Power consumption in the electrostatic precipitator also increases.
第1図は電気集塵機の電極に印加される二次電圧Vを溝
軸に、その時に得られる二次電流工を縦軸にとって示し
た二次電圧と二次電流間の関係曲線で、図中曲線Aは電
気集塵機内に空気のみを流した場合に得られる関係曲線
である。この状態から電気集塵機内に処理対象ガスを流
入させて得られる二次電圧と二次電流の関係曲線は第1
図でBに示すように空気のみを流入させた場合に比して
同一の二次電圧に対して二次電流が増大する傾向が認め
られる。又第1図に示す関係曲線Cは運転中の電気集塵
機に逆電離現象が発生した場合における二次電圧と二次
電流の関係曲線であシ、比較的小さな所定の二次電EE
(fitで二次電流値が急激に過大1(―°に達するよ
うな傾向が認められる。Figure 1 is a relationship curve between secondary voltage and secondary current, with the secondary voltage V applied to the electrodes of an electrostatic precipitator taken on the groove axis and the secondary current obtained at that time taken on the vertical axis. Curve A is a relationship curve obtained when only air flows through the electrostatic precipitator. The relationship curve between secondary voltage and secondary current obtained by flowing the gas to be treated into the electrostatic precipitator from this state is the first
As shown in B in the figure, there is a tendency for the secondary current to increase for the same secondary voltage compared to when only air is allowed to flow in. Furthermore, the relationship curve C shown in Fig. 1 is a relationship curve between the secondary voltage and the secondary current when a reverse ionization phenomenon occurs in the electrostatic precipitator during operation.
(There is a tendency for the secondary current value to suddenly reach an excessive value of 1 (-°) with fit.
一般に電気集塵機を連続荷電方式で作動させている状態
で逆電離現象が発生した場合に放電電極と集塵電極間の
二次電圧の荷電方式を間歇荷電方式に切換えて運転する
と、電気集塵機での消費電力eM少させ、且つその集塵
効率の低下を阻止することができることが知られている
。Generally, if a reverse ionization phenomenon occurs while an electrostatic precipitator is operated in the continuous charging mode, if the charging method of the secondary voltage between the discharge electrode and the collecting electrode is switched to the intermittent charging method, the electrostatic precipitator will It is known that it is possible to reduce power consumption eM and prevent a decrease in dust collection efficiency.
しかしこれは運転中の電気集塵機に顕著な逆電離現象が
発生し、完全な逆電離状態下での運転が行なわれている
場合に言えることである。過大な無効電流が流れるよう
な顕著な逆電離現象が発生していない状態で間歇荷電方
式を採用すると、電気集塵機の集塵効率が連続荷電方式
を採用し几場合よりも低下することがある。従来はどの
ような運転条件下で間歇荷電方式を採用すると集塵効率
を向上させ、又消費電力を低下させ得るかということは
定量的には把握されていない。However, this is true when a significant reverse ionization phenomenon occurs in the electrostatic precipitator during operation, and the operation is carried out under complete reverse ionization conditions. If an intermittent charging method is used in the absence of significant reverse ionization phenomena such as excessive reactive current flowing, the dust collection efficiency of the electrostatic precipitator may be lower than when a continuous charging method is used. Conventionally, it has not been quantitatively understood under what operating conditions the intermittent charging method can improve dust collection efficiency and reduce power consumption.
従って電気集塵機の運転を常時監視していて第1図の曲
線Cで示すような二次電圧と二次電流との関係が明白に
認められる運転状態を確認して、間歇荷電方式に切換え
て運転することはできる。Therefore, the operation of the electrostatic precipitator is constantly monitored, and after confirming the operating condition where the relationship between the secondary voltage and secondary current is clearly recognized as shown by curve C in Figure 1, the operation is switched to the intermittent charging method. You can do it.
しかしその切換えの条件を定量的におさえることができ
ないので、荷電方式を切換えるべき逆電離現象の発生条
件を迅速正確に確認することは困難である。又電気集塵
機の出口側のダスト濃度を連続的に監視していて、この
濃度の変化によって間歇荷電方式に切換えることも可能
であるが、この場合にも完全な定量的な関係の把握は困
難であり、且つ検出の工程が複雑となる0
従来はこのために電気集塵機の荷電方式を間歇荷電方式
に切換えてもその切換え時にはすでに長時間集塵効率の
低い状態での運転が継続されていて無駄な電力消費が行
なわれた後であって切換えの効果が上らなかったシ、或
は過大な無効電流が流れる顕著な逆電離現象が発生しな
い前に電気集塵機の荷電方式を間歇荷電方式に切換えて
しまって集塵効率を低下させてしまうことがあった。However, since the conditions for the switching cannot be quantitatively determined, it is difficult to quickly and accurately confirm the conditions for the occurrence of the reverse ionization phenomenon under which the charging method should be switched. In addition, the dust concentration on the outlet side of the electrostatic precipitator is continuously monitored, and it is possible to switch to the intermittent charging method based on changes in this concentration, but even in this case, it is difficult to understand the complete quantitative relationship. In the past, even if the charging method of the electrostatic precipitator was switched to the intermittent charging method, by the time the switch was made, the operation had already been continued for a long time with low dust collection efficiency, which was wasteful. Switch the charging method of the electrostatic precipitator to the intermittent charging method after a certain amount of power has been consumed and the switching is not effective, or before a significant reverse ionization phenomenon occurs that causes excessive reactive current to flow. This may lead to a decrease in dust collection efficiency.
「発明の解決すべき問題点」
゛ この発明は乾式電気集塵機の運転において逆電離現
象が荷電方式の切換えを行なうべき条件下で発生してい
ることを迅速正確に把握して、荷電方式の切換えを適切
な運転時期において行なわせることを可能とする電気集
塵機の荷電方法を提供しようとするものである。``Problems to be Solved by the Invention'' ゛ This invention quickly and accurately grasps that the reverse ionization phenomenon occurs under the conditions under which the charging method should be changed in the operation of a dry electrostatic precipitator, and changes the charging method. The object of the present invention is to provide a charging method for an electrostatic precipitator that allows the electrostatic precipitator to be charged at appropriate operating times.
電気集塵機のダストの電気抵抗log P を横軸にと
9、二次電圧もしくは二次電流を縦軸にとり、これら間
の関係を示すと第2図に示す関係曲線が得られる。図中
りに正常放電域、Eはコロナ放電抑止域、Fは逆電離域
と呼ばれている。従来に逆電離域Fにおいてのみ間歇荷
電による電気集塵機の集塵効率を向上させ得るとされて
いたが、発明者等の研究の結果、逆電離域F以外の領域
においても所定の判定条件を満足していると電気集塵機
の集塵効率を向上させ得ることが可能であることを見出
した・
この発明によシ前述の目的とする課題が解決され、この
発明で与えられる特定の判定条件を満たすか否かを確認
することにより、乾式電気集塵機の連続荷電と間歇荷電
を判定条件に対応させて切換えて運転させて常に最適の
集塵効率下での運転が可能となる。If the electrical resistance log P of the dust of the electrostatic precipitator is plotted on the horizontal axis, and the secondary voltage or secondary current is plotted on the vertical axis, and the relationship between them is shown, the relationship curve shown in FIG. 2 is obtained. In the figure, the normal discharge region, E is called the corona discharge suppression region, and F is called the reverse ionization region. Previously, it was believed that intermittent charging could improve the dust collection efficiency of an electrostatic precipitator only in the reverse ionization region F, but as a result of research by the inventors, the predetermined judgment conditions were also satisfied in regions other than the reverse ionization region F. We have found that it is possible to improve the dust collection efficiency of an electrostatic precipitator by using By checking whether or not the dry electrostatic precipitator is operated by switching between continuous charging and intermittent charging in accordance with the determination conditions, it is possible to operate the dry electrostatic precipitator at the optimum dust collection efficiency at all times.
「発明の構成」
この発明でに乾式電気集塵機の運転中において、所定の
判定操作時間だけ放電電極に荷電する電圧の荷電方式を
、連続荷電方式と荷電率γの間歇荷電方式の内現在荷電
していない荷電方式に切換える。この切換えの前後にお
ける連続荷電方式での消費電力要素直PW(C)から得
られるPW(C)γと間歇荷電方式での消費電力要素直
P W (I)とが比較される。``Structure of the Invention'' In this invention, during the operation of a dry electrostatic precipitator, the voltage charging method for charging the discharge electrode for a predetermined judgment operation time is selected from among a continuous charging method and an intermittent charging method with a charging rate γ. Switch to a charging method that does not. PW(C)γ obtained from the power consumption element PW(C) in the continuous charging method and the power consumption element PW(I) in the intermittent charging method before and after this switching are compared.
この比較によってP W (I) < P W (C)
・γと判定されると連続荷電方式が選択され、P W
(I) >P W (C)・rと判定されると間歇荷電
方式が選択されて電気集塵機に対する荷電が行なわれ電
気集塵機の運転が継続される。By this comparison, P W (I) < P W (C)
・If γ is determined, the continuous charging method is selected, and P W
When it is determined that (I)>P W (C)·r, the intermittent charging method is selected, the electrostatic precipitator is charged, and the electrostatic precipitator continues to operate.
「実施例」
以下この発明の電気集塵機の荷電方法を実施例に基づき
図面を使用して詳細に説明する。``Example'' Hereinafter, a method for charging an electrostatic precipitator according to the present invention will be described in detail based on an example using the drawings.
第4図はこの発明の電気集塵機の荷電方法の実施に使用
される回路の例を示すもので、商用交流電源11の出力
信号がサイリスタ12を介して変圧器13の一次側に印
加される。変圧器13の二次側は整流器14を介して放
電電極15に接続され、この放電電極15は電気集塵機
の集塵電極16に対向して配設され、集塵電極16はア
ースされている。FIG. 4 shows an example of a circuit used to carry out the method of charging an electrostatic precipitator according to the present invention, in which an output signal from a commercial AC power source 11 is applied to the primary side of a transformer 13 via a thyristor 12. The secondary side of the transformer 13 is connected to a discharge electrode 15 via a rectifier 14, and this discharge electrode 15 is disposed opposite to a dust collection electrode 16 of an electrostatic precipitator, and the dust collection electrode 16 is grounded.
変8E器13の二次側には二次電圧計17及び二次電流
計18がそれぞれ接続され、二次電圧及び二次電流の検
出が可能な構成となっている。又商用交流電源11の出
力端子には電力計19が接続されている。一方間歇荷電
制御回路20の出力がサイリスタ制御回路21に与えら
れ、サイリスタ制御回路21の出力はサイリスタ120
制御端子22に印加されている。A secondary voltmeter 17 and a secondary ammeter 18 are connected to the secondary side of the converter 13, respectively, so that the secondary voltage and secondary current can be detected. Further, a wattmeter 19 is connected to the output terminal of the commercial AC power supply 11. On the other hand, the output of the intermittent charging control circuit 20 is given to the thyristor control circuit 21, and the output of the thyristor control circuit 21 is supplied to the thyristor 120.
A voltage is applied to the control terminal 22.
商用交流電源11の出力信号は変圧器13によ#)20
〜100 KVに昇圧され、この昇圧された出力信号が
放電電極15と集塵電極16間に荷電されコロナ放電が
誘起される。The output signal of the commercial AC power supply 11 is transferred to the transformer 13 (#) 20
The voltage is increased to ~100 KV, and this increased output signal is charged between the discharge electrode 15 and the dust collection electrode 16 to induce corona discharge.
この発明に用いる電気集塵機は連続荷電方式及び間歇荷
電方式での運転が切換え可能な構成とされていて、その
切換えは後述するように間歇荷電制御回路20、サイリ
スク制御回路21及びサイリスタ12により行なわれる
。The electrostatic precipitator used in this invention is configured to be able to switch between continuous charging mode and intermittent charging mode, and the switching is performed by an intermittent charging control circuit 20, a thyrisk control circuit 21, and a thyristor 12, as will be described later. .
第3図(a) 、 (b) dそれぞれこの発明の電気
集塵機の荷電方法における間歇荷電時の電圧波形及び電
流波形を示す図であり、横軸は時間軸であシ、周期時間
Tごとに間歇荷電が行なわれる。FIGS. 3(a) and 3(b) d are diagrams respectively showing the voltage waveform and current waveform during intermittent charging in the charging method of the electrostatic precipitator of the present invention, where the horizontal axis is the time axis, and the voltage waveforms are plotted at each cycle time T. Intermittent charging is performed.
即ち周期時間Tの始点から荷電時間t1の間二次電王V
が放電電極15と集塵電極間に荷電され、その後荷電休
止時間t2の間は二次電圧Vの荷電は停止される。電気
集塵機内へ流入される処理ガスやダストの物理的及び化
学的条件、例えばガス組成、ガス圧、ガス温度、ダスト
粒度などに応じてこの周期時間T及び二次電圧、の荷電
時間t1が選定され、間歇荷電方式においてはこの周期
時間Tごとに間歇荷電が行なわれる。この場合荷電時間
中の平均二次電圧及び平均二次電流は、荷電時間t1中
での平均二次電圧及び平均二次電流を表わし、態ではγ
=1となる。That is, during the charging time t1 from the start point of the period time T, the secondary voltage V
is charged between the discharge electrode 15 and the dust collecting electrode, and thereafter charging with the secondary voltage V is stopped during the charging pause time t2. The period time T and the charging time t1 of the secondary voltage are selected depending on the physical and chemical conditions of the processing gas and dust flowing into the electrostatic precipitator, such as gas composition, gas pressure, gas temperature, and dust particle size. In the intermittent charging method, intermittent charging is performed every cycle time T. In this case, the average secondary voltage and average secondary current during the charging time represent the average secondary voltage and average secondary current during the charging time t1, and in the state γ
=1.
第4図の間歇荷電制御回路20からは電気集塵機の運転
条件に応じた所定の周期時間T及び荷電時間t1を有す
る制御信号がサイリスタ制御回路21に与えられる。こ
のサイリスタ制御回路21の出力信号が制御端子22に
与えられてサイリスタ12が制御され、変圧器13の二
次側から整流器14を介して第3図(a)に示すような
二次電圧信号が得られ、この二次電圧信号が電気集塵機
の放電電極15に印加される。The intermittent charging control circuit 20 in FIG. 4 provides the thyristor control circuit 21 with a control signal having a predetermined cycle time T and charging time t1 depending on the operating conditions of the electrostatic precipitator. The output signal of the thyristor control circuit 21 is applied to the control terminal 22 to control the thyristor 12, and a secondary voltage signal as shown in FIG. 3(a) is generated from the secondary side of the transformer 13 via the rectifier 14. This secondary voltage signal is applied to the discharge electrode 15 of the electrostatic precipitator.
連続荷電時の消費電力要素値ff:PW(C)、間歇荷
電時の消費電力要素li!、をP W (I)、荷電率
をrとすると荷電時間t1中の平均二次電圧をV、平均
二次電流を工としてそれぞれ次式が得られる。Power consumption element value ff during continuous charging: PW (C), power consumption element li during intermittent charging! , P W (I), charging rate r, the average secondary voltage during the charging time t1 is V, and the average secondary current is Q, the following equations are obtained, respectively.
pw(c)=v・工 ・・・・・・・−・・・・
(1)PW(I)=V・工・γ ・・・・・・・・・
・・・(2)発明者等は各種の荷電率において電気集塵
機の運転を行なわせ、それぞれの場合に得られる消費電
力量、消費電力要素値、集塵効率の関係について研究を
進め、実測を行なって解析を進めた結果、消費電力要素
値は消費電力量に比例し、集塵効率ηと荷電率rとの間
には、第5図(a) 、 (b) 、 (C)にそれぞ
れ示す三伏態があることが判明した。この場合の集塵効
率ηは電気集塵機の入口及び出口側において測定される
ガス中のダストの含有量の比率で定義される。pw(c)=v・engine・・・・・・・−・・・・
(1) PW (I) = V・Work・γ ・・・・・・・・・
...(2) The inventors operated the electrostatic precipitator at various charging rates, conducted research on the relationship between power consumption, power consumption element values, and dust collection efficiency obtained in each case, and conducted actual measurements. As a result of the analysis, the power consumption element value is proportional to the amount of power consumption, and the relationship between the dust collection efficiency η and the charging rate r is shown in Figures 5 (a), (b), and (C), respectively. It turns out that there is a three-pronged posture. The dust collection efficiency η in this case is defined by the ratio of the dust content in the gas measured at the inlet and outlet sides of the electrostatic precipitator.
第5図(a) 、 (b) 、 (C)は電気集塵機を
それぞれ荷電率γが0.25に設定された場合と連続荷
電でγが1.0に設定された場合で運転させ、それぞれ
の場合について集塵効率ηを測定したものである。第5
図(a)は連続荷電方式での運転の場合が荷電率が02
5での間歇荷電方式での運転の場合よりも集塵効率ηが
高く、第5図(b)では連続荷電方式での運転の場合が
荷電率が025での間歇荷電方式での運転の場合よりも
集塵効率ηが低い。又第5図(C)では連続荷電方式で
の運転の場合と荷電率が0.25での間歇荷電方式での
運転の場合とで集塵効率が変化しない。Figures 5 (a), (b), and (C) show the electrostatic precipitator operated with the charge rate γ set to 0.25 and when γ set to 1.0 with continuous charging, respectively. The dust collection efficiency η was measured for the case. Fifth
Figure (a) shows that the charging rate is 02 when operating in the continuous charging method.
The dust collection efficiency η is higher than that when operating with the intermittent charging method at a charging rate of 0.5, and in FIG. The dust collection efficiency η is lower than that of Further, in FIG. 5(C), the dust collection efficiency does not change between the continuous charging method and the intermittent charging method at a charging rate of 0.25.
これは第2図において正常放電域D、コロナ放電抑止域
E及び逆電離域Fの境界附近のダストの電気抵抗f直に
よって放電状態が微妙に影響を受けることによるもので
あることが発明者等の実測及び実測データの解析の結果
明らかにされている。The inventors believe that this is because the discharge state is subtly affected by the electric resistance f of dust near the boundaries of the normal discharge region D, corona discharge suppression region E, and reverse ionization region F in Figure 2. This has been clarified as a result of actual measurements and analysis of the actual measurement data.
一方第6図は発明者等により実測された荷電率に対する
消費電力要素値の関係であゃ、連続荷電状態γ=1.0
での運転時の平均二次電圧及び平均二次電流により消費
電力要素値pw=v・工を測定して第6図(a)乃至(
C)のP点が得られる。次いでこのP点と座標系の原点
を結んでそれぞれ直線を作成する。これらの直線ハ連続
荷電での条件をそのまま維持させて実現可能な理論的な
VIrを表示する直線である。即ち現在連続荷電方式で
運転中の電気集塵機を間歇荷電方式に切換えて運転を行
なえば、理論的にはこの時の消費電力要素(@ PWは
これらの直線上に乗るはずである。実際に運転中の電気
集塵機を荷電率0.25の間歇荷電方式での運転に切換
えて得られる消費電力要素値P’W(I)はそれぞれ第
6図(a) 、 (b) 、 (C)において8点とな
る。On the other hand, Fig. 6 shows the relationship between the power consumption element value and the charging rate actually measured by the inventors, and the continuous charging state γ = 1.0.
The power consumption element value pw=v・cm was measured using the average secondary voltage and average secondary current during operation at
C) point P is obtained. Next, a straight line is created by connecting this point P to the origin of the coordinate system. These straight lines represent the theoretical VIr that can be realized by maintaining the continuous charging conditions as they are. In other words, if the electrostatic precipitator that is currently operating in the continuous charging method is switched to the intermittent charging method, theoretically the power consumption element at this time (@ PW should be on these straight lines. The power consumption element values P'W(I) obtained by switching the internal electrostatic precipitator to intermittent charging mode with a charging rate of 0.25 are 8 in Figure 6 (a), (b), and (C), respectively. It becomes a point.
第6図(a) fl荷電率0.25の間歇荷電方式での
運転時η消費電力要素値が荷電率1.0である連続荷電
方式での運転時の消費電力要素値に荷電率を乗じて得た
値以下となる場合である。(b)は荷電率0.25の間
歇荷電方式での運転時の消費電力要素1直が荷電率1.
0である連続荷電方式での運転時の消費電力要素値に荷
電率を乗じて得た晴よりも大きな場合であり、(C)は
荷電率0.25の間歇荷電方式での運転時の消費電力要
素値が荷電率1.0である連続荷電方式での運転時の消
費電力要素値に荷電率を乗じて得られる匝にほぼ等しい
場合である。Figure 6 (a) When operating in the intermittent charging method with fl charging rate of 0.25 η power consumption element value during operation in continuous charging method with charging rate of 1.0 is multiplied by the charging rate. This is the case when the value is less than the value obtained. (b) shows that the power consumption element for one shift during operation in the intermittent charging method with a charging rate of 0.25 is 1.
This is a case where the power consumption element value during operation in the continuous charging method, which is 0, is larger than the value obtained by multiplying the charging rate. This is a case where the power element value is approximately equal to the value obtained by multiplying the power consumption element value during operation in the continuous charging method with a charging rate of 1.0 by the charging rate.
発明者等の研究及びそれに基づく実測の結果、第6図<
a> 、 (b) 、 (C)のそれぞれの状態に対応
して、連続荷電方式での運転時及び間歇荷電方式での運
転時に得られる電気集塵機の集塵効率の間には一定の関
係があることが確認された。即ち各荷電方式での運転時
に得られる電気集塵機の集塵効率ηを示す第5図と各荷
電方式での運転時における消費電力要素値を示す第6図
との間には、両図の(a)。As a result of research by the inventors and actual measurements based on the research, Figure 6<
Corresponding to each of the states a>, (b), and (C), there is a certain relationship between the dust collection efficiency of the electrostatic precipitator obtained when operating with the continuous charging method and when operating with the intermittent charging method. It was confirmed that there is. That is, there is a difference between FIG. 5, which shows the dust collection efficiency η of the electrostatic precipitator obtained when operating with each charging method, and FIG. 6, which shows the power consumption element values when operating with each charging method. a).
(b) 、 (C)がそれぞれ互に対応していることが
明らかにされた。発明者等により荷電率が0.1乃至0
.5゜の範囲においてはこの対応条件が満足することが
確J忍されている。It was revealed that (b) and (C) correspond to each other. The charge rate is 0.1 to 0 according to the inventors.
.. It is certain that this correspondence condition is satisfied within the range of 5°.
従ってこの発明によると電気集塵機の運転中において、
連続荷電方式での運転時における消費電力要素[直を基
にして得られる理論的な間歇荷電方式での運転時におけ
る消費電力要素1直と間歇荷電方式での運転時に得られ
る実際の消費電力要素1直ことかできる。従ってこの判
定結果に基づいて現在運転中の電気集塵機の荷電方式を
高い集塵効率が得られる荷電方式に切、換えて運転させ
ることができる。Therefore, according to this invention, during operation of the electrostatic precipitator,
Power consumption element when operating with continuous charging method [Theoretical power consumption element when operating with intermittent charging method obtained based on 1 shift and actual power consumption element obtained when operating with intermittent charging method] I can do the first shift. Therefore, based on this determination result, the charging method of the electrostatic precipitator currently in operation can be switched to a charging method that provides high dust collection efficiency, and the electrostatic precipitator can be operated.
即ち連続荷電方式で電気奥塵機を運転中には、その運転
を短時間だけ間歇荷電方式での運転に切換え、切換前後
でのそれぞれの荷電方式での消費電力要素値P W (
C)及びPW(I)i測定する。次いで連続荷電方式で
の運転時に得られる消費電力要素値からPW(C)rを
求め、これを間歇荷電方式での運転時に得られる消費電
力要素値と比較して、PW(I)<PW(C)γである
のか、P W (I)> P W (C)γであるのか
を判定する。That is, while the electric dust machine is operating in the continuous charging method, the operation is switched to the intermittent charging method for a short time, and the power consumption element value P W (
C) and PW(I)i are measured. Next, PW(C)r is calculated from the power consumption element value obtained during operation in the continuous charging method, and compared with the power consumption element value obtained during operation in the intermittent charging method, PW(I)<PW( C) γ, or P W (I)> P W (C) γ.
この結果PW(I)<PW(C)γの判定結果が得られ
、第6図(a)に対応する状態と判定されれば、この場
合には第5図(a)によシ連続荷電方式での運転の方が
集塵効率が高いことになるので、従来の運転状態である
連続荷電方式での運転を行なわせる0
判定結果がP W (I) > P W (C)rとな
シ、第6図(b)に対応する状態と判定されれば、第5
図(b)により間歇荷電方式での運転の方が集塵効率が
よいことになるので、間歇荷電方式での運転を行なわせ
る。この場合には、消費電力要素直の比較を行なうため
に行なった切換状態をそのまま維持させて、電気集塵機
の運転を行なわせる。As a result, a determination result of PW(I)<PW(C)γ is obtained, and if it is determined that the state corresponds to FIG. 6(a), then in this case, continuous charging Since the dust collection efficiency is higher when operating in the continuous charging mode, which is the conventional operating state, the judgment result is P W (I) > P W (C)r. If it is determined that the state corresponds to FIG. 6(b), the fifth
As shown in Figure (b), since the intermittent charging method has better dust collection efficiency, the intermittent charging method is used. In this case, the electrostatic precipitator is operated while maintaining the switching state that was used to directly compare the power consumption elements.
判定結果がPW(1)=PW(C)・rである場合には
処理ガスの条件や電気集塵機の作動条件により間歇荷電
方式での運転の方が集塵効率がよい場合と、連続荷電方
式での運転の方が集塵効率75iよい場合とがある。こ
の場合は電気集塵機の試運転時においてPW(I)=P
W(C)の場合にいずれの荷電方式での運転の方が高い
集塵効率が得られるかを処理ガス条件や電気集塵機の作
動条件にそれぞれ対応させて予め設定しておく。If the judgment result is PW(1)=PW(C)・r, depending on the processing gas conditions and operating conditions of the electrostatic precipitator, intermittent charging method may be more efficient in collecting dust, or continuous charging method may be more efficient. There are cases where the dust collection efficiency is 75i better when operating at . In this case, PW(I)=P during trial operation of the electrostatic precipitator
In the case of W (C), which charging method provides higher dust collection efficiency is set in advance in accordance with the processing gas conditions and the operating conditions of the electrostatic precipitator.
従って判定の結果P W (I) = PW (C)が
得られた場合には、予め設定しておいた条件に対応させ
て電気集塵at連続荷電方式もしくは間歇荷電方式のい
ずれで運転させるかを決定し、その荷電方式での運転を
行なわせる。Therefore, if PW (I) = PW (C) is obtained as a result of the determination, it is determined whether to operate the electrostatic precipitator with continuous charging method or with intermittent charging method in accordance with the preset conditions. is determined and the operation is performed using that charging method.
このようにして電気集塵機の運転時の荷電方式を運転中
に判定操作時間だけ切換え、切換前後における異なる荷
電方式での運転、即ち連続荷電方式と間歇荷電方式とで
の運転時における消費電力要素埴に求め、これらから得
られるP W (I)とPW(C)γとを比較していず
れの荷電方式で運転するのが高集塵効率が得られるかを
判定して、いずれかの選択された荷電方式での運転を行
なわせる。この場合間歇荷電方式での運転を行なわせる
場合には、判定操作時に測定に使用した荷電率での運転
を行なわせる。In this way, the charging method during operation of the electrostatic precipitator is switched for a determined operation time during operation, and the power consumption factor when operating with different charging methods before and after switching, that is, when operating with continuous charging method and intermittent charging method. PW(I) and PW(C)γ obtained from these are compared to determine which charging method will provide the highest dust collection efficiency. The battery is operated using a charging method. In this case, if the intermittent charging method is used, the charging rate used in the measurement at the time of the determination operation is used.
この荷電方式を変化させて行なう判定操作の間隔は処理
ガスの条件、電気集塵機の作動条件に対応して定められ
る。発明者等の研究及びこれに基づく実測によると処理
ガスの条件や電気集塵機の作動条件が余9変化しない状
態では、1〜2時間ごとに判定操作を行なえば充分であ
ることが羅認された。しかし処理ガスの条件が激しく変
動するような場合には、10〜30分ごとに判定操作を
行なわせる必要がある。The interval between the determination operations performed by changing the charging method is determined depending on the processing gas conditions and the operating conditions of the electrostatic precipitator. According to the inventors' research and actual measurements based on the research, it has been found that it is sufficient to perform the judgment operation every 1 to 2 hours when the processing gas conditions and the electrostatic precipitator operating conditions do not change. . However, if the processing gas conditions fluctuate drastically, it is necessary to perform the determination operation every 10 to 30 minutes.
又荷電方式を切換えて消費電力要素(@を求め、これに
基づいて判定操作を行なうための判定操作時間は荷電状
態が安定するまで最低1秒位は必要であシ、荷電方式の
切換を頻繁に行なう場合には数秒間は必要である。この
判定操作時間を余り長くすると、この判定操作中に電気
集塵機の集塵効率が低下してしまうことがあるので、1
0秒以上の判定操作時間は避けることが必要である。In addition, the judgment operation time for switching the charging method to obtain the power consumption element (@) and performing the judgment operation based on this requires at least 1 second until the charging state is stabilized, and it is necessary to switch the charging method frequently. Several seconds are required when performing this judgment operation.If this judgment operation time is too long, the dust collection efficiency of the electrostatic precipitator may decrease during this judgment operation.
It is necessary to avoid a determination operation time of 0 seconds or more.
判定操作に使用する荷電率rの値は0.1〜0.5が用
いられる。荷電率γがγ〈0,1では集塵効率を最適状
態に維持できないことが多く、γ〉0.5では省エネル
ギ効果が得られないことがある。父高用変1王2にのヒ
ステリシス曲線で片側飽和を避けZ)た、VlにIUJ
、汲いiする最小「11L位は半サイクルであるが、こ
の発明においては荷電時間t1と荷電休止時間t2とは
、交流1サイクル又はその整数倍を単位として取扱うこ
とが可能である。The value of the charge rate r used in the determination operation is 0.1 to 0.5. When the charge rate γ is γ<0,1, it is often impossible to maintain the dust collection efficiency in an optimum state, and when γ>0.5, the energy saving effect may not be obtained. One-sided saturation was avoided with the hysteresis curve of 1 and 2, and IUJ was applied to Vl.
Although the minimum value of about 11 L for pumping is a half cycle, in the present invention, the charging time t1 and the charging pause time t2 can be treated as a unit of one AC cycle or an integral multiple thereof.
この発明における以上の荷電方式の切換運転、二次電圧
、二次電流の測定による消費電力要素]直の演算、連続
荷電方式での消費電力要素匝からのP’W (C) r
の演算、切換前後において得られるPW(I)とP W
(C)γとの比較演算、その比較演算結果に基づく判
定による荷電方式の選択などの諸動作はマイクロコンピ
ュータシステムを使用して行なわせることができる。In this invention, P'W (C) r from the power consumption element in the continuous charging method, direct calculation of power consumption element by switching operation of the above charging method, measurement of secondary voltage, secondary current]
calculation, PW(I) and PW obtained before and after switching
(C) Operations such as comparison with γ and selection of charging method based on determination based on the comparison result can be performed using a microcomputer system.
例えばドロマイト焼成キルンから発生する排ガスを処理
する処理能力200000rn”/Hの乾式電気集塵機
に対してこの発明を適用した実際の運転状態は以下のよ
うであった。For example, the actual operating conditions in which the present invention was applied to a dry electrostatic precipitator having a processing capacity of 200,000 rn''/H for treating exhaust gas generated from a dolomite calcining kiln were as follows.
この場合ガスの温度は入口側でほぼ220°C。In this case, the gas temperature on the inlet side is approximately 220°C.
ダスト濃度は6〜12y/m8であった。γ=1.0の
連続荷電方式での運転時における二次電圧、二次電流に
それぞれ54.2KV、266mAでちり、この場合P
W(C) = 14.4 VAとなる。The dust concentration was 6-12y/m8. When operating in the continuous charging method with γ = 1.0, the secondary voltage and secondary current are 54.2 KV and 266 mA, respectively, and in this case P
W(C) = 14.4 VA.
電気集塵機の連続荷電方式での運転中において3秒間γ
= 0.25の間歇荷電方式に荷電方式を変更して運転
全行なわせた所、二次電圧及び二次電流はそれぞれ50
.4KV及び421.7 rn Aとなつ7toこの場
合PW(I)=50.4X421.7X0.25=5.
31VAとなり、P W (C) X r = 14.
4X0.25=3、6 V Aとなる。この両者を比較
するとP W (I)> p w (c)γが得られる
ので、それ以降は荷電率γ= 0.25の間歇荷電方式
での運転を行なわせた。γ for 3 seconds while operating the electrostatic precipitator in continuous charging mode.
= 0.25 When the charging method was changed to the intermittent charging method and the entire operation was performed, the secondary voltage and secondary current were each 50
.. 4KV and 421.7 rn A and Natsu 7 to this case PW(I)=50.4X421.7X0.25=5.
31VA, and P W (C) X r = 14.
4X0.25=3,6 VA. Comparing these two results, P W (I) > p w (c) γ was obtained, so that from then on, operation was performed in an intermittent charging method with a charging rate γ = 0.25.
同様の電気集塵機をγ= 0.25の間歇荷電方式で運
転中に得られた二次電圧、二次電流はそれぞれ55KV
、256mAであった。この場合P W(I)=55x
256x0.25=3.52VAであシ、3秒間r =
1.0として連続荷電方式で運転を行なわせると、二
次電圧、二次電流がそれぞれ56KV。The secondary voltage and secondary current obtained while operating a similar electrostatic precipitator with an intermittent charging method of γ = 0.25 were 55 KV, respectively.
, 256 mA. In this case P W (I) = 55x
256x0.25=3.52VA, 3 seconds r=
1.0 and operated in continuous charging mode, the secondary voltage and secondary current were each 56 KV.
225mAとなった。It became 225mA.
コノ場合PW(C)=18.2VA、!:&す、PW(
C)γ= 18.2 X 0.25 = 4.55が得
られ、切換前後のP W (C)γとPW(I)とを比
較するとPW(I)<PW(C)Xγとなるので、以降
は連続荷電方式で電気集塵機の運転を行なわせる。In the case of Kono, PW(C)=18.2VA,! : &su, PW(
C) γ = 18.2 From then on, the electrostatic precipitator is operated using the continuous charging method.
「発明の効果」
この発明によると運転中の乾式電気集塵機での荷電方式
の切換えが必要な顕著な逆電離現象の発生を定量的に把
握して、いずれの荷電方式での運転が高集塵効率を得ら
れるかを判定し、集塵効率の高い状態で電気集塵機を運
転させることができる。"Effects of the Invention" According to this invention, it is possible to quantitatively understand the occurrence of a remarkable reverse ionization phenomenon that requires switching of the charging method in a dry electrostatic precipitator during operation, and to determine whether the operation with any charging method will result in high dust collection. It is possible to determine whether efficiency can be achieved and operate the electrostatic precipitator in a state with high dust collection efficiency.
この判定操作は運転中に短時間だけ電気集塵機の荷電方
式を現在の運転中とは異なる方式に切換えて運転を行な
い、切換前後の消費電力要素直に基づいて得られる値を
比較演算するという簡単な操作であり、この判定操作で
いずれの荷電方式での運転が集塵効果がよいかが直ちに
判定される。This determination operation is as simple as switching the charging method of the electrostatic precipitator to a different method than the one currently in operation for a short period of time during operation, and then comparing and calculating the values obtained based on the power consumption factors before and after the switch. This determination operation immediately determines which charging method has the best dust collection effect.
この判定結果により荷電方式を選択することによって集
塵効果のよい荷電方式での運転を行なわせることが可能
であり、その消費電力をも減少させることができる。By selecting a charging method based on this determination result, it is possible to perform operation using a charging method that provides a good dust collection effect, and the power consumption can also be reduced.
以上詳細に説明したように、この発明によると運転中の
電気集塵機に対してその荷電方式を変更させて判定操F
8:ヲ行なわせ、その判定操作に基づいて集塵効率の優
れた荷電方式を選択して高集塵効率及び低消費電力の条
件下で電気楽寝8!ヲ運転させることが可能な電気集塵
機の荷電方法を提供することが可能となる。As explained in detail above, according to the present invention, the charging method of the electrostatic precipitator that is in operation is changed, and the judgment operation is performed.
8: Select a charging method with excellent dust collection efficiency based on the judgment operation and enjoy electric sleep under conditions of high dust collection efficiency and low power consumption.8! It becomes possible to provide a charging method for an electrostatic precipitator that can be operated.
第1図は電気集塵機における運転時の二次電圧と二次電
流との関係曲線を示す図で、Aは空気のみを流通させた
状態で得られる関係曲線、Bはガスを流入させた状態で
得られる関係曲線、Cは逆電離現象発生状態で得られる
関係曲線、第2図は電気集塵機におけるダストの電気抵
抗値と二次電圧及び二次電流との関係を示す図、第3図
(a)バb)はそれぞれ電気集塵機の間歇荷電時の二次
電圧波形及び二次電流波形を示す図、第4図はこの発明
の実施に用いる制御回路の一例を示すブロック図、第5
図(a) 、 (b) 、 (C)は荷電率と集塵効率
との関係を示す図、第6図(a) 、 (b) 、 (
C)は荷電率と消費電力要素(直との関係を示す図であ
る。
11:商用交流電源、12:サイリスタ、13:変圧器
、14:整流器、15:放電電極、16:集塵電極、1
7:二次電圧計、18二二次電流計、19:電力計、2
0:間歇荷電制御回路、21:サイリスク制御回路、T
:周期時間、’1:荷電時間、t2:荷電休止時間、r
:荷電率、PW(C):連続荷電時の消費電力要素直、
p w(r ):間歇荷電時の消費゛亀力要素直。
代 理 人 草 野 卓ヤ 1図
牙 20
LogP
第3圓
冷4図
オ 5回
(a) (b) (c)半6圓Figure 1 shows the relationship curve between secondary voltage and secondary current during operation in an electrostatic precipitator, where A is the relationship curve obtained when only air is flowing, and B is the relationship curve obtained when gas is flowing. The relationship curve C obtained is the relationship curve obtained in the state where the reverse ionization phenomenon occurs, Figure 2 is a diagram showing the relationship between the electrical resistance value of dust and the secondary voltage and secondary current in an electrostatic precipitator, and Figure 3 ) b) is a diagram showing the secondary voltage waveform and secondary current waveform during intermittent charging of the electrostatic precipitator, FIG. 4 is a block diagram showing an example of a control circuit used for carrying out the present invention, and FIG.
Figures (a), (b), (C) are diagrams showing the relationship between charge rate and dust collection efficiency, and Figure 6 (a), (b), (
C) is a diagram showing the relationship between charging rate and power consumption element (direct). 11: commercial AC power supply, 12: thyristor, 13: transformer, 14: rectifier, 15: discharge electrode, 16: dust collection electrode, 1
7: Secondary voltmeter, 18 Secondary ammeter, 19: Wattmeter, 2
0: Intermittent charge control circuit, 21: Cyrisk control circuit, T
: cycle time, '1: charging time, t2: charging pause time, r
: Charging rate, PW (C): Power consumption element during continuous charging,
p w (r): Power consumption during intermittent charging. Agent Takuya Kusano 1 Tuga 20 LogP 3rd Enrei 4 O 5 times (a) (b) (c) Half 6 En
Claims (1)
電極間に荷電される電圧の荷電方式を連続荷電方式と荷
電率γの間歇荷電方式の内の現在荷電されていない荷電
方式に切換え、この切換の前後における連続荷電方式で
の消費電力要素値PW(C)から得られるPW(C)・
γと間歇荷電方式での消費電力要素値PW(I)とを比
較し、PW(I)<PW(C)・γでは連続荷電方式を
選択し、PW(I)>PW(C)・γでは荷電率γの間
歇荷電方式を選択して前記乾式電気集塵機の荷電を行な
い運転を継続させる電気集塵機の荷電方法。(1) During operation of the dry electrostatic precipitator, switch the charging method of the voltage applied between the discharge electrode and the dust collecting electrode to a charging method that is currently not being charged, from among a continuous charging method and an intermittent charging method with a charging rate γ, PW(C) obtained from the power consumption element value PW(C) in the continuous charging method before and after this switching.
Compare γ with the power consumption element value PW(I) in the intermittent charging method, select the continuous charging method when PW(I)<PW(C)・γ, and select PW(I)>PW(C)・γ. Now, a method for charging an electrostatic precipitator in which an intermittent charging method with a charging rate γ is selected to charge the dry electrostatic precipitator and continue its operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21800484A JPS6197056A (en) | 1984-10-17 | 1984-10-17 | Charging method of electrical dust precipitator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21800484A JPS6197056A (en) | 1984-10-17 | 1984-10-17 | Charging method of electrical dust precipitator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6197056A true JPS6197056A (en) | 1986-05-15 |
JPH0250788B2 JPH0250788B2 (en) | 1990-11-05 |
Family
ID=16713115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21800484A Granted JPS6197056A (en) | 1984-10-17 | 1984-10-17 | Charging method of electrical dust precipitator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6197056A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5555107A (en) * | 1989-07-25 | 1996-09-10 | Canon Kabushiki Kaisha | Image processing apparatus for judging a color using spatial frequency corrected color component signals |
US7272523B1 (en) * | 2006-02-28 | 2007-09-18 | Texas Instruments Incorporated | Trimming for accurate reference voltage |
US7295949B2 (en) * | 2004-06-28 | 2007-11-13 | Broadcom Corporation | Energy efficient achievement of integrated circuit performance goals |
-
1984
- 1984-10-17 JP JP21800484A patent/JPS6197056A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5555107A (en) * | 1989-07-25 | 1996-09-10 | Canon Kabushiki Kaisha | Image processing apparatus for judging a color using spatial frequency corrected color component signals |
US7295949B2 (en) * | 2004-06-28 | 2007-11-13 | Broadcom Corporation | Energy efficient achievement of integrated circuit performance goals |
US7593832B2 (en) | 2004-06-28 | 2009-09-22 | Broadcom Corporation | Energy efficient achievement of integrated circuit performance goals |
US7949493B2 (en) | 2004-06-28 | 2011-05-24 | Broadcom Corporation | Energy efficient achievement of integrated circuit performance goals |
US7272523B1 (en) * | 2006-02-28 | 2007-09-18 | Texas Instruments Incorporated | Trimming for accurate reference voltage |
Also Published As
Publication number | Publication date |
---|---|
JPH0250788B2 (en) | 1990-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1172686A (en) | Method of controlling operation of an electrostatic precipitator | |
Prasad et al. | Automatic control and management of electrostatic precipitator | |
JP3447294B2 (en) | Method of controlling supply of regulator to electrostatic settling separator | |
US5288309A (en) | Flue gas conditioning agent demand control apparatus | |
CN101422754B (en) | Control method and system of zero-spark high-pressure electrostatic precipitation power-supply | |
JPS61141949A (en) | Method of controlling intermittent voltage supply to electrostatic dust collector | |
US5591249A (en) | Flue gas conditioning method for intermittently energized precipitation | |
JP2009039593A (en) | Electric dust collector | |
JPS6197056A (en) | Charging method of electrical dust precipitator | |
JPH05200324A (en) | Method for controlling charging of electric precipitator | |
CN210703910U (en) | Electric ion polishing equipment | |
JPH0250789B2 (en) | ||
JP3139221B2 (en) | Power control method of electric dust collector | |
JPS58143859A (en) | Control apparatus of electric dust collecting device | |
CN210878040U (en) | Energy storage type stud welding machine adopting capacitor current-limiting charging | |
JPH06328005A (en) | Electric power controlling method of electric dust collector | |
JPS57119857A (en) | Control method for electrostatic precipitator | |
JP3139220B2 (en) | Pulsed power supply for electric dust collector | |
CN104549758A (en) | Electrostatic field voltage control method and system for electrostatic dust collector | |
JPS61468A (en) | Intermittent charge controlling system of electric precipitator | |
JPS6097060A (en) | Control of electric dust collector | |
JPS5732745A (en) | Running method of dust collector | |
JPH0250786B2 (en) | ||
JPS6261658A (en) | Electric precipitator | |
JPS6084171A (en) | Power source controlling apparatus of electric dust collector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |