JPH0250790B2 - - Google Patents

Info

Publication number
JPH0250790B2
JPH0250790B2 JP23103384A JP23103384A JPH0250790B2 JP H0250790 B2 JPH0250790 B2 JP H0250790B2 JP 23103384 A JP23103384 A JP 23103384A JP 23103384 A JP23103384 A JP 23103384A JP H0250790 B2 JPH0250790 B2 JP H0250790B2
Authority
JP
Japan
Prior art keywords
secondary current
electrostatic precipitator
secondary voltage
relationship
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23103384A
Other languages
Japanese (ja)
Other versions
JPS61107961A (en
Inventor
Kyoshi Mori
Takeshi Takimoto
Takehiko Hino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP23103384A priority Critical patent/JPS61107961A/en
Publication of JPS61107961A publication Critical patent/JPS61107961A/en
Publication of JPH0250790B2 publication Critical patent/JPH0250790B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は電気集塵機の荷電方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" This invention relates to a method of charging an electrostatic precipitator.

「従来の技術」 乾式電気集塵機では不平等電界を用いてコロナ
放電を発生させて荷電を作り、ダストを含んだガ
スを流入してダストに帯電させ集塵電極にダスト
を集めてガス中のダストを捕集している。この場
合に、集塵電極に集められるダストの見掛け上の
電気抵抗が1010〜1011Ω−cmを超えると、電気集
塵機の集塵電極に捕集されたダスト層内の電位勾
配が大きくなり、ダスト層内で絶縁破壊を生じ
る。このようにダスト層内での絶縁破壊が生じる
とダスト層より正のイオンが供給されて所謂逆電
離現象が発生する。
"Conventional technology" In a dry electrostatic precipitator, an uneven electric field is used to generate a corona discharge to create a charge, and a gas containing dust is flowed in, the dust is charged, and the dust is collected at a dust collection electrode, which removes the dust from the gas. are being collected. In this case, if the apparent electrical resistance of the dust collected on the dust collection electrode exceeds 10 10 to 10 11 Ω-cm, the potential gradient within the dust layer collected on the dust collection electrode of the electrostatic precipitator becomes large. , causing dielectric breakdown within the dust layer. When dielectric breakdown occurs in the dust layer in this manner, positive ions are supplied from the dust layer, causing a so-called reverse ionization phenomenon.

逆電離現象が生じると、集塵作用に寄与する負
のイオンが逆電離現象により発生した正のイオン
によつて中和され、放電電流の大部分が無効電流
となり集塵効率が大幅に低下してしまう。
When the reverse ionization phenomenon occurs, the negative ions that contribute to the dust collection effect are neutralized by the positive ions generated by the reverse ionization phenomenon, and most of the discharge current becomes a reactive current, significantly reducing the dust collection efficiency. I end up.

この集塵効率の低下を防止するために、逆電離
現象の発生を検知して早い時期に電気集塵機のガ
ス中の湿度を増加させて見掛け上の電気抵抗を低
下させる手段を取つたり、或は定期的に一定時間
だけ電気集塵機に対する荷電を停止する間歇荷電
の手段をとることにより、逆電離状態への完全な
移行を阻止することが従来から行なわれている。
In order to prevent this drop in dust collection efficiency, measures may be taken to detect the occurrence of reverse ionization and increase the humidity in the gas of the electrostatic precipitator at an early stage to reduce the apparent electrical resistance. It has been conventional practice to prevent complete transition to a reverse ionization state by periodically stopping charging the electrostatic precipitator for a certain period of time.

しかし、ガス中の湿度を増加させる方法も又間
歇荷電の手段も別途に制御用の装置を付加構成す
ることが必要で装置の構成が複雑となり操作も簡
単でなくなるという欠点がある。又どのような条
件下でどのような間歇荷電方式に切換えればよい
か定量的条件が確認されていないので、間歇荷電
方式に切換えても必ずしも効果的でないことがあ
る。
However, both the method of increasing the humidity in the gas and the means of intermittent charging require the addition of a separate control device, resulting in a complicated device structure and difficulty in operation. Furthermore, since no quantitative conditions have been established regarding what kind of intermittent charging method should be used under what conditions, switching to the intermittent charging method may not necessarily be effective.

如何なる方法をとるにしても、電気集塵機を集
塵効率よく運転するためには電気集塵機の集塵極
に発生する逆電離現象をその初期の段階で検出す
ることが必要である。
No matter what method is used, in order to operate the electrostatic precipitator with high dust collection efficiency, it is necessary to detect the reverse ionization phenomenon occurring in the dust collecting electrode of the electrostatic precipitator at an early stage.

電気集塵機の集塵極に発生する逆電離現象をガ
ス中の含塵量の測定を行なうことなく検出するた
めに、従来から各種の方法が提案されている。
Various methods have been proposed in the past in order to detect the reverse ionization phenomenon occurring in the dust collection electrode of an electrostatic precipitator without measuring the amount of dust contained in the gas.

これらの方法は大別して、逆電離検出専用電極
を使用する方法と、電気集塵機の二次電圧値と二
次電流値に基づいて検出する方法に別けられる。
これらの内、電気集塵機の二次電圧値と二次電流
値とに基づいて、逆電離現象を検出する方法の方
が逆電離検出専用電極を使用する方法よりも検出
精度及び信頼性の点で優れているために広く用い
られている。
These methods can be broadly divided into methods that use electrodes exclusively for detecting reverse ionization, and methods that detect based on the secondary voltage value and secondary current value of the electrostatic precipitator.
Among these, the method of detecting the reverse ionization phenomenon based on the secondary voltage value and secondary current value of the electrostatic precipitator is better in terms of detection accuracy and reliability than the method using a dedicated electrode for reverse ionization detection. It is widely used due to its excellent properties.

電気集塵機の逆電離現象を二次電圧値と二次電
流値に基づいて検出する方法として代表的なもの
は特公昭58−55061「電気集じん装置における逆電
離検出方法」に示されるように、電気集じん装置
の二次電圧、二次電流の変化率を演算し、この演
算値を使用して電気集塵機の逆電離現象を検出す
る方法がある。一方、電気集塵機の二次電圧及び
二次電流の波形パタンに基づいて逆電離の発生を
検知して電気集塵機の逆電離現象を検出する方法
も提案されている。
A typical method for detecting the reverse ionization phenomenon in an electrostatic precipitator based on the secondary voltage value and secondary current value is as shown in Japanese Patent Publication No. 58-55061 ``Reverse ionization detection method in electrostatic precipitator''. There is a method of calculating the rate of change of the secondary voltage and secondary current of an electrostatic precipitator and using these calculated values to detect the reverse ionization phenomenon of the electrostatic precipitator. On the other hand, a method has also been proposed in which the occurrence of back ionization is detected based on the waveform pattern of the secondary voltage and secondary current of the electrostatic precipitator to detect the reverse ionization phenomenon in the electrostatic precipitator.

「発明が解決すべき問題点」 電気集塵機の逆電離現象を二次電圧及び二次電
流の変化率を演算して検出する方法では、電気集
塵機の二次電圧及び二次電流波形に生ずるスパー
ク波形による誤演算が行なわれ易く、この誤演算
による誤検出を防止するためには、スパーク波形
を弁別する複雑な回路を付加する必要があり、検
出方法が複雑なものとなる。
"Problems to be Solved by the Invention" In the method of detecting the reverse ionization phenomenon of an electrostatic precipitator by calculating the rate of change of the secondary voltage and secondary current, the spark waveform that occurs in the secondary voltage and secondary current waveforms of the electrostatic precipitator is In order to prevent erroneous detection due to this erroneous calculation, it is necessary to add a complicated circuit for discriminating the spark waveform, making the detection method complicated.

一方電気集塵機の二次電圧及び二次電流の波形
パタンに基づいて電気集塵機の逆電離現象を検出
する方法では、パタン認識のために回路構成が複
雑となり検出動作も複雑であつて、検出方法とし
ては望ましくない。
On the other hand, in the method of detecting the reverse ionization phenomenon of an electrostatic precipitator based on the waveform pattern of the secondary voltage and secondary current of the electrostatic precipitator, the circuit configuration is complicated to recognize the pattern, and the detection operation is also complicated. is not desirable.

この発明は電気集塵機の二次電圧と二次電流と
の関係曲線を基にして逆電離現象の発生を検知
し、荷電方式での二次電圧もしくは二次電流を所
定の条件下で変化させるだけで常に最適の集塵効
率での電気集塵機の運転を実現させる定量的方法
を提案することをその課題とする。
This invention detects the occurrence of a reverse ionization phenomenon based on the relationship curve between the secondary voltage and secondary current of an electrostatic precipitator, and simply changes the secondary voltage or secondary current in the charging method under predetermined conditions. The objective of this study is to propose a quantitative method that allows electrostatic precipitators to operate at optimal dust collection efficiency at all times.

「発明の構成」 この発明では、乾式電気集塵機の正常荷電運転
状態における運転二次電圧と運転二次電流との関
係を示す第1の関係曲線と、その乾式電気集塵機
の逆電離運転状態における二次電圧と二次電流と
の関係を示す第2の関係曲線とが同一の座標系上
に表示される。この同一の座標系上に表示された
第1及び第2の曲線に対して、互に異なる少なく
とも三種の二次電流値を示す直線を引き、それぞ
れの直線と第1及び第2の関係曲線との交点をそ
れぞれ求める。
"Structure of the Invention" This invention provides a first relationship curve showing the relationship between the operating secondary voltage and the operating secondary current in the normal charging operation state of the dry electrostatic precipitator, and the second relation curve in the reverse ionization operating state of the dry electrostatic precipitator. A second relationship curve showing the relationship between the secondary voltage and the secondary current is displayed on the same coordinate system. Straight lines representing at least three different secondary current values are drawn on the first and second curves displayed on the same coordinate system, and the relationship between each straight line and the first and second relationship curves is Find each intersection point.

各二次電流値を示す直線と第1及び第2の曲線
とのそれぞれの交点間を結んで得られる各直線を
予め設定した一定の比率で分割するようにそれぞ
れの直線に対して分割点が求められる。このよう
にして得られた分割点を通るか、もしくはその近
傍を通るように判定二次電圧値と判定二次電流値
間の関係を示す判定曲線が描かれる。
A dividing point is set for each straight line so that each straight line obtained by connecting the intersection points of the straight line indicating each secondary current value and the first and second curves is divided at a preset constant ratio. Desired. A determination curve indicating the relationship between the determined secondary voltage value and the determined secondary current value is drawn so as to pass through the division point obtained in this manner or to pass near the division point.

この発明においては運転時における電気集塵機
の被検二次電圧値が読み取られ、この被検二次電
圧値に対応する二次電流値が判定曲線から得られ
る被検二次電圧値と同一の判定二次電圧値に対応
する判定二次電流値とが比較される。この比較に
よつて、被検二次電圧値に対応する二次電流値が
判定曲線より得られる判定二次電流値を越える場
合には、被検二次電圧値に対応する二次電流値に
対する判定二次電流値の比率が予め設定した値以
下になるように運転二次電圧もしくは運転二次電
流を選定して電気集塵機に対する荷電を行なわせ
る。
In this invention, the test secondary voltage value of the electrostatic precipitator during operation is read, and the secondary current value corresponding to the test secondary voltage value is determined to be the same as the test secondary voltage value obtained from the determination curve. The determined secondary current value corresponding to the secondary voltage value is compared. Through this comparison, if the secondary current value corresponding to the test secondary voltage value exceeds the judgment secondary current value obtained from the judgment curve, the secondary current value corresponding to the test secondary voltage value The electrostatic precipitator is charged by selecting the operating secondary voltage or operating secondary current so that the ratio of the determined secondary current values is equal to or less than a preset value.

「実施例」 以下、この発明を実施例に基づき図面を使用し
て詳細に説明する。
"Example" Hereinafter, the present invention will be described in detail based on an example using the drawings.

乾式電気集塵機の正常荷電運転状態における運
転二次電圧と運転二次電流との関係を示す第1の
関係曲線と、乾式電気集塵機の逆電離運転状態に
おける二次電圧と二次電流との関係を示す第2の
関係曲線とが同一直交座標系上に表示される。
A first relationship curve showing the relationship between the operating secondary voltage and the operating secondary current in the normal charging operating state of the dry electrostatic precipitator, and the relationship between the secondary voltage and the secondary current in the reverse ionizing operating state of the dry electrostatic precipitator. The second relationship curve shown in FIG. 1 is displayed on the same orthogonal coordinate system.

一般に乾式電気集塵機においては流入ガス及び
流入ガス中のダストの物理的及び化学的特性、例
えばガスの化学的組成、ガス圧、ガス温度、ダス
トの化学的組成、ダスト濃度、ダスト粒径などに
より運転時の二次電圧と二次電流間に得られる関
係曲線は互にその勾配及び形状が異なつている。
In general, dry electrostatic precipitators operate based on the physical and chemical properties of the incoming gas and the dust in the incoming gas, such as gas chemical composition, gas pressure, gas temperature, dust chemical composition, dust concentration, and dust particle size. The relationship curves obtained between the secondary voltage and the secondary current differ from each other in slope and shape.

従つてこれらの諸因子をパラメータとして得ら
れる運転時の二次電圧と二次電流との関係曲線を
求めると一つの曲線群が得られる。
Therefore, when a relationship curve between the secondary voltage and the secondary current during operation, which is obtained by using these factors as parameters, is obtained, a group of curves is obtained.

乾式電気集塵機における正常荷電運転状態にお
いて、例えば流入ガスとそこに含まれるダストの
種類を定め他の物理的条件をパラメータとして運
転二次電圧Vと運転二次電流Iとの関係をそれぞ
れの運転二次電圧に対して流れる運転二次電流を
測定して求めると第1図A0,A1,A2……に示す
曲線群がそれぞれ得られる。
In the normal charging operation state of a dry electrostatic precipitator, for example, by determining the type of inflow gas and the dust contained therein, and using other physical conditions as parameters, the relationship between the operating secondary voltage V and the operating secondary current I is determined for each operating secondary. When the operating secondary current flowing with respect to the secondary voltage is measured and determined, the curve groups shown in Fig. 1 A 0 , A 1 , A 2 . . . are obtained.

このようにして得られる曲線群は正常荷電運転
状態に対応するものであり、逆電離運転状態では
二次電圧と二次電流の間には別の関係曲線群が存
在する。即ち、この正常荷電運転状態から、電気
集塵機の運転状態が逆電離運転状態に移行する
と、二次電圧と二次電流との関係曲線は、第1図
のA0,A1,A2,A3,……で得られた関係曲線群
から別の曲線群に移行する。
The group of curves obtained in this manner corresponds to the normal charging operation state, and another relationship curve group exists between the secondary voltage and the secondary current in the reverse ionization operation state. That is, when the operating state of the electrostatic precipitator shifts from this normal charging operating state to the reverse ionizing operating state, the relationship curve between the secondary voltage and the secondary current becomes A 0 , A 1 , A 2 , A in FIG. 3. Transfer from the relational curve group obtained in ,... to another curve group.

この発明では、後述の判定曲線を得るために、
同一の電気集塵機を、正常荷電運転状態の場合と
同様に流入ガス及びガスに含まれるダストの種類
を定め、他の物理的条件を変化させて実際に逆電
離が発生している逆電離運転状態でも運転させ、
この時の二次電圧と二次電流との関係曲線を測定
する。この逆電離運転状態で得られる二次電圧と
二次電流との関係は第1図のB0,B1,B2,B3
示すような曲線群として得られる。
In this invention, in order to obtain the determination curve described below,
The same electrostatic precipitator is used in a reverse ionization operation state in which reverse ionization actually occurs by determining the incoming gas and the type of dust contained in the gas in the same way as in the normal charging operation state, and changing other physical conditions. But let me drive,
At this time, the relationship curve between the secondary voltage and the secondary current is measured. The relationship between the secondary voltage and the secondary current obtained in this reverse ionization operating state is obtained as a group of curves as shown in B 0 , B 1 , B 2 , and B 3 in FIG.

この発明においては、正常荷電運転状態で得ら
れた運転二次電圧と運転二次電流との関係曲線群
の中で、同一の運転二次電流値に対して運転二次
電圧値が最も小さい値をとる関係曲線A0を選択
して第2図に示すように第1の関係曲線A0とし
て直交座標系上に表示する。
In this invention, among a group of relationship curves between the operating secondary voltage and the operating secondary current obtained under normal charging operation conditions, the operating secondary voltage value is the smallest value for the same operating secondary current value. The relational curve A 0 that takes the value is selected and displayed on the orthogonal coordinate system as the first relational curve A 0 as shown in FIG.

又逆電離運転状態で得られた関係曲線群の中
で、同一の二次電流値に対して二次電圧値が最も
大きな値をとる関係曲線B0を第2の関係曲線と
して選択して、第2図に示すように第1の関係曲
線と同一の直交座標系上に表示する。従つて第1
及び第2の関係曲線A0,B0を選定するためには、
一般に電気集塵機に対して或る程度の試運転調整
期間が必要である。
Also, among the group of relational curves obtained in the reverse ionization operation state, the relational curve B0 having the largest value of the secondary voltage value for the same secondary current value is selected as the second relational curve, As shown in FIG. 2, it is displayed on the same orthogonal coordinate system as the first relationship curve. Therefore, the first
And in order to select the second relational curves A 0 and B 0 ,
In general, electrostatic precipitators require a certain period of commissioning and adjustment.

このようにして作成された直交座標系上で互に
異なる少なくとも三種の二次電流値を示す直線と
第1及び第2の関係曲線との交点を求め、それぞ
れの二次電流値に対応する交点間を結んで得られ
る各直線を予め設定した一定の比率で分割してそ
れぞれの分割点を求める。
On the orthogonal coordinate system created in this way, find the intersections between the straight lines indicating at least three different secondary current values and the first and second relationship curves, and find the intersections corresponding to the respective secondary current values. Each straight line obtained by connecting the lines is divided at a predetermined ratio to find each dividing point.

第2図に示す例は三種の二次電流を使用したも
のであり、第1の関係曲線A0と第2の関係曲線
B0に対して二次電流i1,i2及びi3に対応する直線
D1,D2及びD3を引き、第1及び第2の関係曲線
A0,B0との交点d1,d2,d3及びe1,e2,e3を求め
る。二次電流i1,i2,i3は第1及び第2の関係曲
線A0及びB0の両方が存在する領域において所定
の間隔をもつて設定することが望ましい。
The example shown in Figure 2 uses three types of secondary currents, and the first relational curve A0 and the second relational curve
Straight lines corresponding to secondary currents i 1 , i 2 and i 3 for B 0
Subtract D 1 , D 2 and D 3 to obtain the first and second relationship curves
Find the intersection points d 1 , d 2 , d 3 and e 1 , e 2 , e 3 with A 0 and B 0 . It is desirable that the secondary currents i 1 , i 2 , i 3 be set at predetermined intervals in a region where both the first and second relationship curves A 0 and B 0 exist.

それぞれの二次電流に対応する交点を結ぶ直線
e1d1,e2d2,e3d3を一定の比率で分割して分割点
c1,c2,c3を求める。第2図に示す例では、それ
ぞれe1c1/c1d1=e2c2/c2d2=e3c3/c3d3=1とし、各
直線の中点 に分割点を設定している。発明者等の検討の結果
前述の分割点c1,c2,c3を求めるための比率設定
においては、 e1c1/c1d1=e2c2/c2d2=e3c3/c3d3=nとして、n
の値は1/5 〜5程度に設定すると望ましい結果が得られるこ
とが確認された。通常第1及び第2の関係曲線
A0,B0が互に最も接近した状態で選定し得た場
合に対してはn≒1に設定すると望ましい結果が
得られる。
A straight line connecting the intersection points corresponding to each secondary current
Divide e 1 d 1 , e 2 d 2 , e 3 d 3 at a certain ratio and set the division points
Find c 1 , c 2 , c 3 . In the example shown in Figure 2, e 1 c 1 / c 1 d 1 = e 2 c 2 / c 2 d 2 = e 3 c 3 / c 3 d 3 = 1, and a dividing point is placed at the midpoint of each straight line. is set. As a result of the inventors' studies, in setting the ratio for determining the above-mentioned dividing points c 1 , c 2 , c 3 , e 1 c 1 /c 1 d 1 = e 2 c 2 /c 2 d 2 = e 3 c 3 /c 3 d 3 =n, n
It has been confirmed that desirable results can be obtained when the value of is set to about 1/5 to 5. Usually first and second relationship curves
If A 0 and B 0 can be selected in a state where they are closest to each other, a desirable result can be obtained by setting n≈1.

これらの分割点を通るかもしくは分割点の近傍
を通り、判定二次電圧値と判定二次電流値間の関
係を示す判定曲線を求める。
A determination curve that passes through or near these division points and indicates the relationship between the determined secondary voltage value and the determined secondary current value is determined.

第3図に示す例では、分割点c1,c2,c3を通る
二次曲線として二次方程式を解くことにより判定
曲線C=f(V)を求めている。一般には二次電
流値を4種以上選定して、最小自乗法により、こ
れらの与えられた分割点の近傍を通る曲線として
判定曲線C=f(V)を求めることが出来る。
In the example shown in FIG. 3, the determination curve C=f(V) is obtained by solving a quadratic equation as a quadratic curve passing through dividing points c 1 , c 2 , and c 3 . Generally, by selecting four or more types of secondary current values, the determination curve C=f(V) can be obtained as a curve passing through the vicinity of these given dividing points by the least squares method.

電気集塵機の運転時における被検二次電圧値に
対する二次電流値と判定曲線Cより得られるこの
被検二次電圧値と同一の判定二次電圧値に対応す
る判定二次電流値との大小から乾式電気集塵機の
逆電離発生状態を検出する。
The magnitude of the secondary current value corresponding to the secondary voltage value to be tested during operation of the electrostatic precipitator and the secondary current value corresponding to the secondary voltage value to be tested and the same secondary voltage value obtained from the determination curve C. Detects the occurrence of reverse ionization in a dry electrostatic precipitator.

例えば第3図に示すように、逆電離発生状態が
検出される電気集塵機の運転時において、電気集
塵機が図中Dで示す作動点で運転されているとす
る。この場合には、電気集塵機の被検二次電圧は
Vdであり、この二次電圧に対応する二次電流は
Idである。この被検二次電圧Vdと同一の判定二
次電圧値Vdに対応する判定二次電流値は判定曲
線C=f(V)においてV=Vdとしてf(Vd)と
して求められる。
For example, as shown in FIG. 3, it is assumed that the electrostatic precipitator is operated at an operating point indicated by D in the figure when the electrostatic precipitator is in operation when a state in which reverse ionization occurs is detected. In this case, the tested secondary voltage of the electrostatic precipitator is
Vd, and the secondary current corresponding to this secondary voltage is
Id. The determined secondary current value corresponding to the determined secondary voltage value Vd, which is the same as the tested secondary voltage Vd, is determined as f(Vd) on the determined curve C=f(V), where V=Vd.

この発明では被検二次電圧値Vdに対応する二
次電流値Idと判定曲線Cより得られる被検二次電
圧値Vdと同一の判定二次電圧値に対応する判定
二次電流値f(Vd)の大小が判定される。
In this invention, the secondary current value Id corresponding to the secondary voltage value Vd to be tested and the secondary current value f( Vd) is determined.

Id/f(Vd)≧1 ……(1) Id/f(Vd)<1 ……(2) この発明においては、(2)式の条件が満足した場
合には、正常荷電状態で運転されていると判定す
る。第4図は、横軸に二次電流、縦軸にI/f(V) を取つて示した関係曲線であり、第4図中直線
Noがこの正常荷電状態での運転に対応する境界
線を示す。I/f(V)がこの直線Np以下に得られる ような運転状態例えば曲線Coに示す運転状態は
正常電荷運転状態であると判定される。
Id/f(Vd)≧1...(1) Id/f(Vd)<1...(2) In this invention, when the condition of equation (2) is satisfied, the operation is performed in a normally charged state. It is determined that the Figure 4 is a relationship curve with secondary current on the horizontal axis and I/f (V) on the vertical axis, and the straight line in Figure 4.
No indicates the boundary line corresponding to operation in this normal charging state. An operating state in which I/f(V) is less than or equal to this straight line Np , for example, an operating state shown by the curve Co, is determined to be a normal charge operating state.

前式(1)式の条件が得られ、正常荷電運転状態で
ないことが検出されると、現在の荷電状態で運転
を続けると電気集塵機が完全に逆電離状態に移行
するものであるかどうかの判定を行なう。
When the condition of the previous equation (1) is obtained and it is detected that the state is not in the normal charging state, it is determined whether the electrostatic precipitator will completely shift to the reverse ionization state if it continues to operate in the current charging state. Make a judgment.

このために、被検二次電圧値に対応する二次電
流値と判定曲線より求められるこの被検二次電圧
値と等しい判定二次電圧値に対応する判定二次電
流値とが比較される。このようにして得られた判
定二次電流値が被検二次電圧値に対応する二次電
流の所定の比率を越えている場合には、この比率
が予め設定した所定値以下になるように電気集塵
機に対する運転二次電圧もしくは運転二次電流が
選定制御される。
For this purpose, the secondary current value corresponding to the secondary voltage value to be tested is compared with the determined secondary current value corresponding to the determined secondary voltage value that is equal to the secondary voltage value to be tested and determined from the determination curve. . If the judgment secondary current value obtained in this way exceeds the predetermined ratio of the secondary current corresponding to the test secondary voltage value, the The operating secondary voltage or operating secondary current for the electrostatic precipitator is selected and controlled.

発明者等の研究及びこれに基づく実測の結果
I/f(V)<3であれば、現在の荷電条件を変化さ せる必要はないことが確認された。
As a result of research by the inventors and actual measurements based on the research, it was confirmed that if I/f(V)<3, there is no need to change the current charging conditions.

第4図及び第5図は、これらの関係を示すもの
で、第4図の曲線Caは電気集塵機に逆電離が発
生した状態での運転を示すもので、荷電状態を二
次電流がI1であるB1点から二次電流を増加させる
ように変化させて運転を行なわせ、二次電流がI2
であるB2点に達するまでは第5図の曲線Kaに示
すように電気集塵機の集塵効率ηは緩かに上昇し
て行く。しかしB2点を越えて二次電流値をさら
に増加させて行くと、第5図の曲線Kaに示すよ
うにB2点を境にして集塵効率ηは次第に低下し
てしまう。
Figures 4 and 5 show these relationships. The curve C a in Figure 4 shows operation in a state where reverse ionization has occurred in the electrostatic precipitator, and the charging state is determined by the secondary current I. The operation is performed by increasing the secondary current from point B 1 , which is 1 , and the secondary current becomes I 2
Until reaching the B2 point, the dust collection efficiency η of the electrostatic precipitator gradually increases as shown by the curve Ka in FIG. However, when the secondary current value is further increased beyond the point B2 , the dust collection efficiency η gradually decreases after the point B2 , as shown by the curve Ka in FIG.

発明者等の検討の結果I/f(V)<3であると、 第4図及び第5図の点B2の運転条件を超えて二
次電流が増大することはないことが確認された。
この発明ではI/f(V)>3であることが確認され た場合には、I/f(V)<3となるように電気集塵 機の二次電圧もしくは二次電流が制御される。
As a result of the inventors' studies, it was confirmed that when I/f (V) < 3, the secondary current does not increase beyond the operating conditions at point B 2 in Figures 4 and 5. .
In the present invention, when it is confirmed that I/f(V)>3, the secondary voltage or secondary current of the electrostatic precipitator is controlled so that I/f(V)<3.

この監視制御を自動的に行なうには、第6図に
その構成を示すような逆電離検出装置が使用され
る。
In order to perform this monitoring control automatically, a reverse ionization detection device whose configuration is shown in FIG. 6 is used.

即ち商用交流電源11の出力信号は、サイリス
タ12を介して変圧器13の一次側端子に接続さ
れる。変圧器13の二次側端子は整流器14を介
して放電電極15に接続されている。この放電電
極15に対向して集塵電極16が設けられ、この
集塵電極16はアースされる。整流器14から電
流用分流器17によつて二次電流が導き出され
る。又同様にして整流器14から電圧用分流器1
8によつて二次電圧が導き出される。
That is, the output signal of the commercial AC power supply 11 is connected to the primary terminal of the transformer 13 via the thyristor 12. A secondary terminal of the transformer 13 is connected to a discharge electrode 15 via a rectifier 14. A dust collecting electrode 16 is provided opposite to this discharge electrode 15, and this dust collecting electrode 16 is grounded. A secondary current is drawn from the rectifier 14 by a current shunt 17. Similarly, from the rectifier 14 to the voltage shunt 1
The secondary voltage is derived by 8.

これらの二次電圧及び二次電流はコンピユータ
システム19に入力され、この発明の判定演算が
行なわれる。
These secondary voltages and secondary currents are input to the computer system 19, and the determination calculations of the present invention are performed.

電流用分流器17の出力信号はAD変換器21
でデイジタル信号に変換され、平均化回路22で
平均化される。一方電圧用分流器18の出力信号
はAD変換器23でデイジタル信号に変換され、
平均化回路24で平均化される。この平均値を用
いて、コンピユータシステム19に記憶されてい
る判定曲線の関数式を使用して判定電流値f(V)
が第1の演算回路25で演算される。
The output signal of the current shunt 17 is sent to the AD converter 21
The signal is converted into a digital signal by the averaging circuit 22, and then averaged by the averaging circuit 22. On the other hand, the output signal of the voltage shunt 18 is converted into a digital signal by the AD converter 23,
The signals are averaged by an averaging circuit 24. Using this average value, the determination current value f(V) is determined using the functional formula of the determination curve stored in the computer system 19.
is calculated by the first calculation circuit 25.

第2の演算回路26には、平均化回路22の出
力と第1の演算回路25の出力とが入力され、判
定定数K=I/f(V)の演算が行なわれる。
The output of the averaging circuit 22 and the output of the first arithmetic circuit 25 are input to the second arithmetic circuit 26, and a determination constant K=I/f(V) is calculated.

判定定数Kの判定が判定回路27で行なわれ、
K<1であることが確認されると、完全な逆電離
状態に移行するおそれのない正常運転状態である
と判定して、正常表示器28が点灯する。一方、
判定回路27でK>1であることが確認される
と、完全な逆電離状態に移行するおそれのある運
転状態であると判定して、警報器29が作動す
る。
The determination constant K is determined by the determination circuit 27,
When it is confirmed that K<1, it is determined that the operating state is normal with no risk of shifting to a complete reverse ionization state, and the normality indicator 28 lights up. on the other hand,
When the determination circuit 27 confirms that K>1, it is determined that the operating state is likely to shift to a complete reverse ionization state, and the alarm 29 is activated.

同時に、駆動器30から駆動信号が発せられ、
K=I/f(V)<3の条件を満足するように例えば 二次電圧が制御される。
At the same time, a drive signal is emitted from the driver 30,
For example, the secondary voltage is controlled so as to satisfy the condition K=I/f(V)<3.

この制御は予め判定曲線を求めておき、監視員
がこの判定曲線を使用して、現在運転中の電気集
塵機の二次電圧及び二次電流から判定電流値を求
めて、I/f(V)<3の条件を満足しているかどう かを判定し、I/f(V)>3の場合には、I/f(V
)が 3以下となるように運転中の電気集塵機の二次電
圧又は二次電流を制御するという手動操作の方法
でも行ない得る。
In this control, a judgment curve is obtained in advance, and the supervisor uses this judgment curve to obtain a judgment current value from the secondary voltage and secondary current of the electrostatic precipitator currently in operation, and then calculates the I/f (V). It is determined whether the condition <3 is satisfied, and if I/f(V)>3, I/f(V
) may be 3 or less by manually controlling the secondary voltage or secondary current of the electrostatic precipitator during operation.

「発明の効果」 この発明ではこのように判定曲線から得た判定
電流と運転中の二次電流Iとを比較して、判定定
数K=I/f(V)により完全な逆電離状態への移行 のおそれがあると判定されると、判定定数Kが所
定値以下になるように二次電圧又は二次電流を制
御するという簡単な操作で逆電離状態への完全な
移行を防止し且つ高集塵率での運転を行なわせる
ことが出来る。
"Effects of the Invention" In this invention, the determination current obtained from the determination curve is compared with the secondary current I during operation, and the determination constant K=I/f(V) is used to determine whether a complete reverse ionization state is reached. If it is determined that there is a risk of transition, a simple operation of controlling the secondary voltage or secondary current so that the determination constant K is below a predetermined value can prevent complete transition to the reverse ionization state and It is possible to operate at the dust collection rate.

第5図の集塵効率ηと二次電流Iとの関係曲線
は、一般には、ガス及びダストの物理的及び化学
的条件さらには、電気集塵機の運転条件に依存し
て第5図Kb,Kcに示すように変化する。
The relationship curve between the dust collection efficiency η and the secondary current I in FIG. 5 generally depends on the physical and chemical conditions of the gas and dust as well as the operating conditions of the electrostatic precipitator . K changes as shown in c .

しかし、発明者等の研究及び実測の結果、所定
の運転状態での二次電流Iと判定電流f(V)と
の比I/f(V)が所定値を越えないという条件 I/f(V)<3を満足するようにさえ制御すれば、 すべての運転条件にそれぞれ対応して、集塵効率
が最大の条件に実現されることが確認された。
However, as a result of research and actual measurements by the inventors, the condition I/f( It was confirmed that as long as control is performed to satisfy V)<3, the dust collection efficiency can be maximized under all operating conditions.

I/f(V)<3の条件を満足させるための制御は、 電気集塵機の二次電圧もしくは二次電流の一方を
制御させることで簡単に実現され得る。
Control to satisfy the condition of I/f(V)<3 can be easily realized by controlling either the secondary voltage or the secondary current of the electrostatic precipitator.

この発明をドロマイト焼成キルンから発生する
排ガスを処理する処理能力200000m3/Hの乾式電
気集塵機に対して適用して得た結果は以下の通り
であ。
The results obtained by applying this invention to a dry electrostatic precipitator with a processing capacity of 200,000 m 3 /H for treating exhaust gas generated from a dolomite firing kiln are as follows.

電気集塵機の運転中において、ガス温度は装置
の入口側でほぼ220℃、ダスト濃度は6〜128/m3
程度であつた。
During operation of the electrostatic precipitator, the gas temperature is approximately 220℃ at the inlet side of the device, and the dust concentration is 6 to 128/ m3.
It was moderately hot.

このガス及びダストの条件下で試運転を行なつ
て得られる正常荷電状態での二次電圧と二次電流
の関係曲線中、同一の二次電圧に対して二次電流
が最大となる曲線F1を第7図に示すように直交
座標上に表示する。
Among the relationship curves between secondary voltage and secondary current in a normal charging state obtained by trial operation under these gas and dust conditions, curve F 1 shows the maximum secondary current for the same secondary voltage. are displayed on orthogonal coordinates as shown in FIG.

一方、逆電離が発生している状態で電気集塵機
を運転して得られる二次電圧と二次電流との関係
曲線中で、二次電圧に対して二次電流が最小とな
る曲線F2を第7図に示すように直交座標上に表
示する。
On the other hand, among the relationship curves between secondary voltage and secondary current obtained by operating an electrostatic precipitator in a state where reverse ionization is occurring, curve F 2 where the secondary current is the minimum with respect to the secondary voltage is selected. It is displayed on orthogonal coordinates as shown in FIG.

第7図の曲線F1,F2対して二次電流値I=30、
60、120及び180mAの直線を引き、それぞれの曲
線F1,F2との交点A1,A2,A3,A4及びB1,B2
B3,B4を求める。次いでA1B1,A2B2,A3B3
びA4B4を二等分する点C1,C2,C3及びC4を求
め、これらの近傍を通る二次曲線を小自乗法で求
めると次式が得られる。
For curves F 1 and F 2 in Fig. 7, secondary current value I = 30,
Draw straight lines of 60, 120 and 180 mA, and intersect with the respective curves F 1 and F 2 at A 1 , A 2 , A 3 , A 4 and B 1 , B 2 ,
Find B 3 and B 4 . Next, find the points C 1 , C 2 , C 3 and C 4 that bisect A 1 B 1 , A 2 B 2 , A 3 B 3 and A 4 B 4 and subtract the quadratic curve passing through these areas . The following equation is obtained by calculating by the square method.

I=1.53925V2−151.373V+3749.06 ……(1) (1)式で示される判定曲線が第7図のC曲線であ
る。
I=1.53925V 2 −151.373V+3749.06 (1) The determination curve shown by equation (1) is curve C in FIG.

この場合判定定数Kの許容最大値を3に設定す
る。電気集塵機の運転中において、二次電圧及び
二次電流を求めて、それぞれ51kV及び160mAが
得られた。この二次電圧51kVと同一の判定電圧
に対する判定電流を判定曲線から求めると35mA
が得られる。
In this case, the maximum allowable value of the determination constant K is set to 3. While the electrostatic precipitator was in operation, the secondary voltage and secondary current were determined to be 51 kV and 160 mA, respectively. The determination current for the same determination voltage as this secondary voltage of 51kV is calculated from the determination curve as 35mA.
is obtained.

これらから判定定数を求めると、 K=I/f(V)=160/35=4.57となり、許容最大
値 3を越えていることが確認される。この判定結果
に基づいて電気集塵機の二次電圧を低下させて行
き49kVに達した時点で、二次電流が32mAとな
り、これに対応する判定電流は27mAで、判定定
数はK=I/f(V)=32/27=1.18となり、正常運転
状 態にあることが確認されたので、以降はこの荷電
状態で高集塵効率の運転を行なわせることが可能
となつた。
When the determination constant is calculated from these, it is found that K=I/f(V)=160/35=4.57, which confirms that it exceeds the maximum allowable value of 3. Based on this judgment result, the secondary voltage of the electrostatic precipitator is lowered and when it reaches 49kV, the secondary current becomes 32mA, the corresponding judgment current is 27mA, and the judgment constant is K = I / f ( V) = 32/27 = 1.18, and it was confirmed that the device was in normal operating condition. From then on, it became possible to operate with high dust collection efficiency in this charged state.

以上詳細に説明したように、この発明による
と、運転時の二次電圧及び二次電流を測定し、そ
の二次電圧に等しい判定電圧に対応する二次電流
を求め、これらから判定定数を求めて、逆電離運
転状態に完全に移行するおそれのある状態が検出
され、この状態が検出された場合には判定定数が
所定値以下になるように二次電圧又は二次電流を
制御するという簡単な操作で逆電離運転状態への
移行のおそれのない運転状態で且つ最大集塵率が
得られる運転を行なわせることが可能となる。
As explained in detail above, according to the present invention, the secondary voltage and secondary current during operation are measured, the secondary current corresponding to the determination voltage equal to the secondary voltage is determined, and the determination constant is determined from these. A simple method is to control the secondary voltage or secondary current so that the determination constant is less than or equal to a predetermined value. With a simple operation, it is possible to perform an operation in which there is no risk of shifting to a reverse ionization operation state and in which the maximum dust collection rate can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1及び第2の関係曲線を示す図、第
2図は第1及び第2の関係曲線に基づいて判定曲
線を作成する方法を示す図、第3図は判定曲線を
用いて判定定数を演算し、運転状態の判定を行な
う方法を示す図、第4図は逆電離発生状態及び正
常荷電状態での二次電流と判定定数I/f(V)との 関係を示す図、第5図は逆電離発生状態での二次
電流と集塵効率との関係を示す図、第6図はこの
発明の実施例に用いる逆電離発生装置の構成を示
す図、第7図はこの発明を適用した実施例におけ
る判定曲線の作成法を示す図である。 A0:第1の関係曲線、B0:第2の関係曲線、
C1,C2,C3:分割点、C:判定曲線、η:集塵
効率、11:商用交流電源、12:サイリスタ、
13:変圧器、14:整流器、15:放電電極、
16:集塵電極、17:電流用分流器、18:電
圧用分流器、19:コンピユータシステム、2
1,23:AD変換器、22,24:平均化回
路、25:演算回路、26:第1の演算回路、2
8:正常表示器、29:警報器、30:駆動器。
Figure 1 is a diagram showing the first and second relationship curves, Figure 2 is a diagram showing a method for creating a determination curve based on the first and second relationship curves, and Figure 3 is a diagram showing a method for creating a determination curve based on the first and second relationship curves. FIG. 4 is a diagram showing the relationship between the secondary current and the determination constant I/f (V) in a reverse ionization occurrence state and a normal charging state. FIG. 5 is a diagram showing the relationship between secondary current and dust collection efficiency in a state where reverse ionization occurs, FIG. 6 is a diagram showing the configuration of a reverse ionization generator used in an embodiment of the present invention, and FIG. It is a figure which shows the creation method of the determination curve in the Example to which the invention is applied. A 0 : first relational curve, B 0 : second relational curve,
C 1 , C 2 , C 3 : Division point, C: Judgment curve, η: Dust collection efficiency, 11: Commercial AC power supply, 12: Thyristor,
13: transformer, 14: rectifier, 15: discharge electrode,
16: Dust collection electrode, 17: Current shunt, 18: Voltage shunt, 19: Computer system, 2
1, 23: AD converter, 22, 24: averaging circuit, 25: arithmetic circuit, 26: first arithmetic circuit, 2
8: Normal indicator, 29: Alarm, 30: Driver.

Claims (1)

【特許請求の範囲】[Claims] 1 乾式電気集塵機の正常運転状態における運転
二次電圧と運転二次電流との関係を示す第1の関
係曲線と前記乾式電気集塵機の逆電離運転状態に
おける二次電圧と二次電流との関係を示す第2の
関係曲線とを同一座標系上に表示し、この座標系
上において互に異なる少なくとも三種の二次電流
値を示す直線と前記第1及び第2の関係曲線との
交点をそれぞれ求め、それぞれの二次電流値に対
応する交点間を結んで得られる各直線を予め設定
した一定の比率で分割してそれぞれの分割点を求
め、これらの分割点を通るかもしくはその近傍を
通り、判定二次電圧値と判定二次電流値間の関係
を示す判定曲線を求め、前記乾式電気集塵機の運
転時における被検二次電圧値に対応する二次電流
値が前記判定曲線より得られる前記被検二次電圧
値と同一の判定二次電圧値に対応する判定二次電
流値を越える場合には、前記被検二次電圧値に対
応する二次電流値に対する前記判定二次電流値の
比率が予め設定した値以下になるように運転二次
電圧もしくは運転二次電流を制御して前記乾式電
気集塵機に対する荷電を行なわせることを特徴と
する電気集塵機の荷電方法。
1 A first relationship curve showing the relationship between the operating secondary voltage and the operating secondary current in the normal operating state of the dry electrostatic precipitator, and the relationship between the secondary voltage and the secondary current in the reverse ionization operating state of the dry electrostatic precipitator. and a second relationship curve shown on the same coordinate system, and on this coordinate system, find the intersections of the straight lines showing at least three different secondary current values and the first and second relationship curves, respectively. , each straight line obtained by connecting the intersection points corresponding to each secondary current value is divided at a predetermined ratio to find each dividing point, passing through or near these dividing points, A determination curve showing the relationship between the determined secondary voltage value and the determined secondary current value is obtained, and a secondary current value corresponding to the tested secondary voltage value during operation of the dry electrostatic precipitator is obtained from the determined curve. If the judgment secondary current value corresponding to the same judgment secondary voltage value as the test secondary voltage value is exceeded, the judgment secondary current value for the secondary current value corresponding to the test secondary voltage value is exceeded. A method for charging an electrostatic precipitator, characterized in that the dry electrostatic precipitator is charged by controlling an operating secondary voltage or an operating secondary current so that the ratio is equal to or less than a preset value.
JP23103384A 1984-10-31 1984-10-31 Method for charging electric precipitator Granted JPS61107961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23103384A JPS61107961A (en) 1984-10-31 1984-10-31 Method for charging electric precipitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23103384A JPS61107961A (en) 1984-10-31 1984-10-31 Method for charging electric precipitator

Publications (2)

Publication Number Publication Date
JPS61107961A JPS61107961A (en) 1986-05-26
JPH0250790B2 true JPH0250790B2 (en) 1990-11-05

Family

ID=16917214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23103384A Granted JPS61107961A (en) 1984-10-31 1984-10-31 Method for charging electric precipitator

Country Status (1)

Country Link
JP (1) JPS61107961A (en)

Also Published As

Publication number Publication date
JPS61107961A (en) 1986-05-26

Similar Documents

Publication Publication Date Title
CA1314924C (en) Method and apparatus for detecting back corona in an electrostatic filter with ordinary or intermittent dc-voltage supply
JPH039780B2 (en)
JPH04504223A (en) Method for controlling current pulse supply to electrostatic precipitator
CN107096644A (en) The high-frequency and high-voltage power supply and its control method of a kind of electrostatic precipitation
CN207557409U (en) A kind of symmetrical insulation detecting circuit and insulation detection device
SE430472B (en) DEVICE FOR IN AN ELECTROFILTER SYSTEM WITH MULTIPLE ELECTRODE GROUPS MAKE A REGULATION OF THE POWER AND / OR VOLTAGE WIRES CONNECTED TO RESP ELECTRODROUP GROUP SAY THAT TOTAL ENERGY REQUIREMENT CAN BE MINIMIZED.
JPH0250790B2 (en)
CN109839412B (en) Measuring device and method for synchronously acquiring capacitance and electrostatic signals in gas-solid two-phase flow
JPH0250787B2 (en)
JPH0250788B2 (en)
JP3405786B2 (en) Frequency change rate detection method for grid connection of distributed power supply
JP2709030B2 (en) Method and apparatus for detecting cleaning time of electric dust collector
JPS6094160A (en) Operation of electric dust collector
CN104549758B (en) Electrostatic field voltage control method and system for electrostatic dust collector
JPH0668398U (en) Discharge monitoring device in static eliminator
SU904784A1 (en) Alternating voltage supply apparatus for electric filter
CN217877528U (en) Intermediate frequency furnace leakage detection system
JPH05200324A (en) Method for controlling charging of electric precipitator
JPH05249175A (en) Partial discharge measuring instrument
JPH0250789B2 (en)
Nouri et al. Analysis of Temperature Effect in laboratory scale electrostatic precipitator
JPS6255622B2 (en)
JPS6064652A (en) Control of electric dust collector
JPS645943B2 (en)
JPS58133849A (en) Detector for abnormal state of electrical dust precipitator