JPH0250788B2 - - Google Patents

Info

Publication number
JPH0250788B2
JPH0250788B2 JP21800484A JP21800484A JPH0250788B2 JP H0250788 B2 JPH0250788 B2 JP H0250788B2 JP 21800484 A JP21800484 A JP 21800484A JP 21800484 A JP21800484 A JP 21800484A JP H0250788 B2 JPH0250788 B2 JP H0250788B2
Authority
JP
Japan
Prior art keywords
charging method
charging
electrostatic precipitator
power consumption
intermittent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21800484A
Other languages
Japanese (ja)
Other versions
JPS6197056A (en
Inventor
Kyoshi Mori
Takeshi Takimoto
Takehiko Hino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP21800484A priority Critical patent/JPS6197056A/en
Publication of JPS6197056A publication Critical patent/JPS6197056A/en
Publication of JPH0250788B2 publication Critical patent/JPH0250788B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は電気集塵機の荷電方法、特に集塵効
率を高めるように荷電方式を選択して運転を行な
わせる電気集塵機の荷電方法に関するものであ
る。
[Detailed Description of the Invention] "Industrial Application Field" This invention relates to a charging method for an electrostatic precipitator, and particularly to a charging method for an electrostatic precipitator that selects and operates a charging method to increase dust collection efficiency. .

「従来の技術」 乾式電気集塵機においては、放電電極と集塵電
極間に電圧を荷電することによりコロナ放電を起
させて電荷を作り、ダストを含んだガスを流入し
てダストに帯電させ集塵電極に静電的にダストを
付着させる。このようにしてガスに含まれて送り
込まれるダストが乾式電気集塵機によつて捕集さ
れる。
``Prior art'' In a dry type electrostatic precipitator, a voltage is applied between a discharge electrode and a dust collection electrode to cause a corona discharge and create an electric charge, and a gas containing dust is flowed in to charge the dust and collect the dust. Dust is electrostatically attached to the electrode. The dust contained in the gas and sent in this way is collected by the dry electrostatic precipitator.

この場合ダストの見掛け上の電気抵抗値が1010
〜1011Ω・cmを越えると、集塵電極に捕集された
ダスト層内の電位勾配が大きくなり、ダスト層内
で絶縁破壊を生じダスト層より正のイオンが供給
されるという逆電離現象が発生することがある。
このような逆電離現象が発生すると集塵に寄与す
る負のイオンが正のイオンによつて中和されるた
めに、放電電流の大部分が無効電流となり、集塵
効率が大幅に低下すると共に電気集塵機における
消費電力も増大する。
In this case, the apparent electrical resistance value of the dust is 10 10
When it exceeds ~10 11 Ω・cm, the potential gradient within the dust layer collected by the dust collecting electrode increases, causing dielectric breakdown within the dust layer and causing a reverse ionization phenomenon in which positive ions are supplied from the dust layer. may occur.
When such a reverse ionization phenomenon occurs, the negative ions that contribute to dust collection are neutralized by positive ions, so most of the discharge current becomes a reactive current, which significantly reduces the dust collection efficiency. Power consumption in the electrostatic precipitator also increases.

第1図は電気集塵機の電極に印加される二次電
圧Vを横軸に、その時に得られる二次電流Iを縦
軸にとつて示した二次電圧と二次電流間の関係曲
線で、図中曲線Aは電気集塵機内に空気のみを流
した場合に得られる関係曲線である。この状態か
ら電気集塵機内に処理対象ガスを流入させて得ら
れる二次電圧と二次電流の関係曲線は第1図でB
に示すように空気のみを流入させた場合に比して
同一の二次電圧に対して二次電流が増大する傾向
が認められる。又第1図に示す関係曲線Cは運転
中の電気集塵機に逆電離現象が発生した場合にお
ける二次電圧と二次電流の関係曲線であり、比較
的小さな所定の二次電圧値で二次電流値が急激に
過大値に達するような傾向が認められる。
Figure 1 is a relationship curve between secondary voltage and secondary current, with the horizontal axis representing the secondary voltage V applied to the electrodes of the electrostatic precipitator and the vertical axis representing the secondary current I obtained at that time. Curve A in the figure is a relational curve obtained when only air flows through the electrostatic precipitator. The relationship curve between the secondary voltage and secondary current obtained by flowing the gas to be treated into the electrostatic precipitator from this state is shown in Figure 1.
As shown in Figure 2, there is a tendency for the secondary current to increase for the same secondary voltage compared to when only air is allowed to flow in. Furthermore, the relationship curve C shown in Figure 1 is a relationship curve between the secondary voltage and the secondary current when a reverse ionization phenomenon occurs in the electrostatic precipitator during operation. There is a tendency for the values to rapidly reach excessive values.

一般に電気集塵機を連続荷電方式で作動させて
いる状態で逆電離現象が発生した場合に放電電極
と集塵電極間の二次電圧の荷電方式を間歇荷電方
式に切換えて運転すると、電気集塵機での消費電
力を減少させ、且つその集塵効率の低下を阻止す
ることができることが知られている。
Generally, if a reverse ionization phenomenon occurs while an electrostatic precipitator is operated in the continuous charging mode, if the charging method of the secondary voltage between the discharge electrode and the collecting electrode is switched to the intermittent charging method, the electrostatic precipitator will It is known that it is possible to reduce power consumption and prevent a decrease in dust collection efficiency.

しかしこれは運転中の電気集塵機に顕著な逆電
離現象が発生し、完全な逆電離状態下での運転が
行なわれている場合に言えることである。過大な
無効電流が流れるような顕著な逆電離現象が発生
していない状態で間歇荷電方式を採用すると、電
気集塵機の集塵効率が連続荷電方式を採用した場
合よりも低下することがある。従来はどのような
運転条件下で間歇荷電方式を採用すると集塵効率
を向上させ、又消費電力を低下させ得るかという
ことは定量的には把握されていない。
However, this is true when a significant reverse ionization phenomenon occurs in the electrostatic precipitator during operation, and the operation is carried out under complete reverse ionization conditions. If an intermittent charging method is adopted in a state where a significant reverse ionization phenomenon such as an excessive reactive current is not occurring, the dust collection efficiency of the electrostatic precipitator may be lower than when a continuous charging method is adopted. Conventionally, it has not been quantitatively understood under what operating conditions the intermittent charging method can improve dust collection efficiency and reduce power consumption.

従つて電気集塵機の運転を常時監視していて第
1図の曲線Cで示すような二次電圧と二次電流と
の関係が明白に認められる運転状態を確認して、
間歇荷電方式に切換えて運転することはできる。
しかしその切換えの条件を定量的におさえること
ができないので、荷電方式を切換えるべき逆電離
現象の発生条件を迅速正確に確認することは困難
である。又電気集塵機の出口側のダスト濃度を連
続的に監視していて、この濃度の変化によつて間
歇荷電方式に切換えることも可能であるが、この
場合にも完全な定量的な関係の把握は困難であ
り、且つ検出の工程が複雑となる。
Therefore, we constantly monitor the operation of the electrostatic precipitator and check the operating conditions in which the relationship between the secondary voltage and secondary current as shown by curve C in Figure 1 is clearly recognized.
It is possible to switch to the intermittent charging method for operation.
However, since the conditions for the switching cannot be quantitatively determined, it is difficult to quickly and accurately confirm the conditions for the occurrence of the reverse ionization phenomenon under which the charging method should be switched. In addition, the dust concentration on the outlet side of the electrostatic precipitator is continuously monitored, and it is possible to switch to the intermittent charging method based on changes in this concentration, but even in this case, it is difficult to understand the complete quantitative relationship. It is difficult and the detection process becomes complicated.

従来はこのために電気集塵機の荷電方式を間歇
荷電方式に切換えてもその切換え時にはすでに長
時間集塵効率の低い状態ので運転が継続されてい
て無駄な電力消費が行なわれた後であつて切換え
の効果が上らなかつたり、或は過大な無効電流が
流れる顕著な逆電離現象が発生しない前に電気集
塵機の荷電方式を間歇荷電方式に切換えてしまつ
て集塵効率を低下させてしまうことがあつた。
Conventionally, for this reason, even if the charging method of an electrostatic precipitator was switched to an intermittent charging method, by the time the charging method was switched, it had already been operating for a long time in a state with low dust collection efficiency, resulting in unnecessary power consumption. The charging method of the electrostatic precipitator may be switched to the intermittent charging method before the effectiveness of the electrostatic precipitator is not improved or a significant reverse ionization phenomenon that causes an excessive reactive current to flow occurs, resulting in a decrease in dust collection efficiency. It was hot.

「発明の解決すべき問題点」 この発明は乾式電気集塵機の運転において逆電
離現象が荷電方式の切換えを行なうべき条件下で
発生していることを迅速正確に把握して、荷電方
式の切換えを適切な運転時期において行なわせる
ことを可能とする電気集塵機の荷電方法を提供し
ようとするものである。
"Problems to be Solved by the Invention" This invention quickly and accurately grasps that the reverse ionization phenomenon occurs under the conditions under which the charging method should be switched in the operation of a dry electrostatic precipitator, and allows the switching of the charging method to be carried out. It is an object of the present invention to provide a method for charging an electrostatic precipitator that allows charging to be carried out at appropriate operating times.

電気集塵機のダストの電気抵抗logPを横軸に
とり、二次電圧もしくは二次電流を縦軸にとり、
これら間の関係を示すと第2図に示す関係曲線が
得られる。図中Dは正常放電域、Eはコロナ放電
抑止域、Fは逆電離域と呼ばれている。従来は逆
電離域Fにおいてのみ間歇荷電による電気集塵機
の集塵効率を向上させ得るとされていたが、発明
者等の研究の結果、逆電離域F以外の領域におい
ても所定の判定条件を満足していると電気集塵機
の集塵効率を向上させ得ることが可能であること
を見出した。
The electrical resistance logP of the dust from the electrostatic precipitator is plotted on the horizontal axis, and the secondary voltage or secondary current is plotted on the vertical axis.
When the relationship between these is shown, a relationship curve shown in FIG. 2 is obtained. In the figure, D is called a normal discharge region, E is called a corona discharge suppression region, and F is called a reverse ionization region. Previously, it was thought that intermittent charging could improve the dust collection efficiency of an electrostatic precipitator only in the reverse ionization region F, but as a result of research by the inventors, the predetermined judgment conditions were satisfied even in regions other than the reverse ionization region F. We have found that it is possible to improve the dust collection efficiency of an electrostatic precipitator by doing so.

この発明により前述の目的とする課題が解決さ
れ、この発明で与えられる特定の判定条件を満た
すか否かを確認することにより、乾式電気集塵機
の連続荷電と間歇荷電を判定条件に対応させて切
換えて運転させて常に最適の集塵効率下での運転
が可能となる。
This invention solves the above-mentioned problem, and by checking whether the specific judgment conditions given by this invention are satisfied, continuous charging and intermittent charging of the dry electrostatic precipitator can be switched in accordance with the judgment conditions. It is possible to operate with optimum dust collection efficiency at all times.

「発明の構成」 この発明では乾式電気集塵機の運転中におい
て、所定の判定操作時間だけ放電電極に荷電する
電圧の荷電方式を、連続荷電方式と荷電率γの間
歇荷電方式の内現在荷電していない荷電方式に切
換える。この切換えの前後における連続荷電方式
での消費電力要素値PW(C)から得られるPW(C)γ
と間歇荷電方式での消費電力要素値PW(I)と
が比較される。
"Structure of the Invention" In this invention, during the operation of a dry electrostatic precipitator, the charging method of the voltage that charges the discharge electrode for a predetermined judgment operation time is currently selected from the continuous charging method and the intermittent charging method with a charging rate γ. Switch to a charging method that does not. PW(C)γ obtained from the power consumption element value PW(C) in the continuous charging method before and after this switching
and the power consumption element value PW(I) in the intermittent charging method are compared.

この比較によつてPW(I)<PW(C)・γと判定
されると連続荷電方式が選択され、PW(I)>
PW(C)・γと判定されると間歇荷電方式が選択さ
れて電気集塵機に対する荷電が行なわれ電気集塵
機の運転が継続される。
If it is determined by this comparison that PW(I)<PW(C)・γ, the continuous charging method is selected, and PW(I)>
When it is determined that PW(C)・γ, the intermittent charging method is selected, the electrostatic precipitator is charged, and the electrostatic precipitator continues to operate.

「実施例」 以下この発明の電気集塵機の荷電方法を実施例
に基づき図面を使用して詳細に説明する。
``Example'' Hereinafter, a method for charging an electrostatic precipitator according to the present invention will be described in detail based on an example using the drawings.

第4図はこの発明の電気集塵機の荷電方法の実
施に使用される回路の例を示すもので、商用交流
電源11の出力信号がサイリスタ12を介して変
圧器13の一次側に印加される。変圧器13の二
次側は整流器14を介して放電電極15に接続さ
れ、この放電電極15は電気集塵機の集塵電極1
6に対向して配設され、集塵電極16はアースさ
れている。
FIG. 4 shows an example of a circuit used to carry out the method of charging an electrostatic precipitator according to the present invention, in which an output signal from a commercial AC power source 11 is applied to the primary side of a transformer 13 via a thyristor 12. The secondary side of the transformer 13 is connected to a discharge electrode 15 via a rectifier 14, and this discharge electrode 15 is connected to the dust collection electrode 1 of an electrostatic precipitator.
6, and the dust collecting electrode 16 is grounded.

変圧器13の二次側には二次電圧計17及び二
次電流計18がそれぞれ接続され、二次電圧及び
二次電流の検出が可能な構成となつている。又商
用交流電源11の出力端子には電力計19が接続
されている。一方間歇荷電制御回路20の出力が
サイリスタ制御回路21に与えられ、サイリスタ
制御回路21の出力はサイリスタ12の制御端子
22に印加されている。
A secondary voltmeter 17 and a secondary ammeter 18 are connected to the secondary side of the transformer 13, respectively, so that the secondary voltage and secondary current can be detected. Further, a wattmeter 19 is connected to the output terminal of the commercial AC power supply 11. On the other hand, the output of the intermittent charge control circuit 20 is applied to the thyristor control circuit 21, and the output of the thyristor control circuit 21 is applied to the control terminal 22 of the thyristor 12.

商用交流電源11の出力信号は変圧器13によ
り20〜100KVに昇圧され、この昇圧された出力
信号が放電電極15と集塵電極16間に荷電され
コロナ放電が誘起される。
The output signal of the commercial AC power supply 11 is boosted to 20 to 100 KV by the transformer 13, and this boosted output signal is charged between the discharge electrode 15 and the dust collection electrode 16 to induce corona discharge.

この発明に用いる電気集塵機は連続荷電方式及
び間歇荷電方式での運転が切換え可能な構成とさ
れていて、その切換えは後述するように間歇荷電
制御回路20、サイリスタ制御回路21及びサイ
リスタ12により行なわれる。
The electrostatic precipitator used in this invention is configured to be able to switch between continuous charging mode and intermittent charging mode, and the switching is performed by an intermittent charging control circuit 20, a thyristor control circuit 21, and a thyristor 12, as will be described later. .

第3図a,bはそれぞれこの発明の電気集塵機
の荷電方法における間歇荷電時の電圧波形及び電
流波形を示す図であり、横軸は時間軸であり、周
期時間Tごとに間歇荷電が行なわれる。
FIGS. 3a and 3b are diagrams respectively showing the voltage waveform and current waveform during intermittent charging in the charging method of the electrostatic precipitator of the present invention, where the horizontal axis is the time axis, and the intermittent charging is performed every cycle time T. .

即ち周期時間Tの始点から荷電時間t1の間二次
電圧Vが放電電極15と集塵電極間に荷電され、
その後荷電休止時間t2の間は二次電圧Vの荷電は
停止される。電気集塵機内へ流入される処理ガス
やダストの物理的及び化学的条件、例えばガス組
成、ガス圧、ガス温度、ダスト粒度などに応じて
この周期時間T及び二次電圧の荷電時間t1が選定
され、間歇荷電方式においてはこの周期時間Tご
とに間歇荷電が行なわれる。この場合荷電時間中
の平均二次電圧及び平均二次電流は、荷電時間t1
中での平均二次電圧及び平均二次電流を表わし、
荷電率γはγ=t1/t1+t2で表わされ、連続荷電状 態ではγ=1となる。
That is, the secondary voltage V is charged between the discharge electrode 15 and the dust collection electrode during the charging time t1 from the start point of the period time T,
Thereafter, charging of the secondary voltage V is stopped during a charging pause time t2 . The period time T and the charging time t1 of the secondary voltage are selected depending on the physical and chemical conditions of the processing gas and dust flowing into the electrostatic precipitator, such as gas composition, gas pressure, gas temperature, and dust particle size. In the intermittent charging method, intermittent charging is performed every cycle time T. In this case, the average secondary voltage and average secondary current during the charging time are charging time t 1
represents the average secondary voltage and average secondary current in
The charge rate γ is expressed as γ=t 1 /t 1 +t 2 , and in a continuously charged state, γ=1.

第4図の間歇荷電制御回路20からは電気集塵
機の運転条件に応じた所定の周期時間T及び荷電
時間t1を有する制御信号がサイリスタ制御回路2
1に与えられる。このサイリスタ制御回路21の
出力信号が制御端子22に与えられてサイリスタ
12が制御され、変圧器13の二次側から整流器
14を介して第3図aに示すような二次電圧信号
が得られ、この二次電圧信号が電気集塵機の放電
電極15に印加される。
From the intermittent charging control circuit 20 in FIG.
1 is given. The output signal of the thyristor control circuit 21 is applied to the control terminal 22 to control the thyristor 12, and a secondary voltage signal as shown in FIG. 3a is obtained from the secondary side of the transformer 13 via the rectifier 14. , this secondary voltage signal is applied to the discharge electrode 15 of the electrostatic precipitator.

連続荷電時の消費電力要素値をPW(C)、間歇荷
電時の消費電力要素値をPW(I)、荷電率をγと
すると荷電時間t1中の平均二次電圧をV、平均二
次電流をIとしてそれぞれ次式が得られる。
If the power consumption element value during continuous charging is PW(C), the power consumption element value during intermittent charging is PW(I), and the charging rate is γ, then the average secondary voltage during charging time t 1 is V, and the average secondary voltage is The following equations are obtained by setting the current to I.

PW(C)=V・I ……(1) PW(I)=V・I・γ ……(2) 発明者等は各種の荷電率において電気集塵機の
運転を行なわせ、それぞれの場合に得られる消費
電力量、消費電力要素値、集塵効率の関係につい
て研究を進め、実測を行なつて解析を進めた結
果、消費電力要素値は消費電力量に比例し、集塵
効率ηと荷電率γとの間には、第5図a,b,c
にそれぞれ示す三状態があることが判明した。こ
の場合の集塵効率ηは電気集塵機の入口及び出口
側において測定されるガス中のダストの含有量の
比率で定義される。
PW(C)=V・I ……(1) PW(I)=V・I・γ ……(2) The inventors operated the electrostatic precipitator at various charge rates and found the benefits in each case. As a result of conducting research on the relationship between power consumption, power consumption element value, and dust collection efficiency, conducting actual measurements, and proceeding with analysis, we found that the power consumption element value is proportional to the power consumption, and the dust collection efficiency η and charging rate γ and Fig. 5 a, b, c.
It turns out that there are three states shown in the following. The dust collection efficiency η in this case is defined by the ratio of the dust content in the gas measured at the inlet and outlet sides of the electrostatic precipitator.

第5図a,b,cは電気集塵機をそれぞれ荷電
率γが0.25に設定された場合と連続荷電でγが
1.0に設定された場合で運転させ、それぞれの場
合について集塵効率ηを測定したものである。第
5図aは連続荷電方式での運転の場合が荷電率が
0.25での間歇荷電方式での運転の場合よりも集塵
効率ηが高く、第5図bでは連続荷電方式での運
転の場合が荷電率が0.25での間歇荷電方式での運
転の場合よりも集塵効率ηが低い。又第5図cで
は連続荷電方式での運転の場合と荷電率が0.25で
の間歇荷電方式での運転の場合とで集塵効率が変
化しない。
Figure 5 a, b, and c show the electrostatic precipitator when the charging rate γ is set to 0.25 and when γ is continuously charged.
The dust collection efficiency η was measured for each case by operating with the setting set to 1.0. Figure 5a shows that when operating in the continuous charging mode, the charging rate is
The dust collection efficiency η is higher than that in the case of intermittent charging mode operation at a charging rate of 0.25, and in Figure 5b, the case of continuous charging mode operation is higher than that in the case of intermittent charging mode operation at a charging rate of 0.25. Dust collection efficiency η is low. Further, in FIG. 5c, the dust collection efficiency does not change between the continuous charging method and the intermittent charging method at a charging rate of 0.25.

これは第2図において正常放電域D、コロナ放
電抑止域E及び逆電離域Fの境界附近のダストの
電気抵抗値によつて放電状態が微妙に影響を受け
ることによるものであることが発明者等の実測及
び実測データの解析の結果明らかにされている。
The inventor believes that this is because the discharge state is subtly affected by the electric resistance value of dust near the boundaries of the normal discharge region D, corona discharge suppression region E, and reverse ionization region F in Figure 2. This has been clarified as a result of actual measurements and analysis of actual measurement data.

一方第6図は発明者等により実測された荷電率
に対する消費電力要素値の関係であり、連続荷電
状態γ=1.0での運転時の平均二次電圧及び平均
二次電流により消費電力要素値PW=V・Iを測
定して第6図a乃至cのP点が得られる。次いで
このP点と座標系の原点を結んでそれぞれ直線を
作成する。これらの直線は連続荷電での条件をそ
のまま維持させて実現可能な理論的なVIγを表示
する直線である。即ち現在連続荷電方式で運転中
の電気集塵機を間歇荷電方式に切換えて運転を行
なえば、理論的にはこの時の消費電力要素値PW
はこれらの直線上に乗るはずである。実際に運転
中の電気集塵機を荷電率0.25の間歇荷電方式での
運転に切換えて得られる消費電力要素値PW(I)
はそれぞれ第6図a,b,cにおいてS点とな
る。
On the other hand, Figure 6 shows the relationship between the power consumption element value and the charging rate actually measured by the inventors, and the power consumption element value PW is determined by the average secondary voltage and average secondary current during operation in a continuous charging state γ = 1.0. By measuring =V·I, points P shown in FIGS. 6a to 6c are obtained. Next, a straight line is created by connecting this point P to the origin of the coordinate system. These straight lines represent the theoretical VIγ that can be realized by maintaining the continuous charging conditions as they are. In other words, if the electrostatic precipitator that is currently operating in the continuous charging method is switched to the intermittent charging method, the power consumption element value PW at this time can theoretically be reduced.
should lie on these straight lines. Power consumption element value PW (I) obtained by switching an actually operating electrostatic precipitator to an intermittent charging method with a charging rate of 0.25
are points S in FIG. 6a, b, and c, respectively.

第6図aは荷電率0.25の間歇荷電方式での運転
時η消費電力要素値が荷電率1.0である連続荷電
方式での運転時の消費電力要素値に荷電率を乗じ
て得た値以下となる場合である。bは荷電率0.25
の間歇荷電方式での運転時の消費電力要素値が荷
電率1.0である連続荷電方式での運転時の消費電
力要素値に荷電率を乗じて得た値よりも大きな場
合であり、Cは荷電率0.25の間歇荷電方式での運
転時の消費電力要素値が荷電率1.0である連続荷
電方式での運転時の消費電力要素値に荷電率を乗
じて得られる値にほぼ等しい場合である。
Figure 6a shows that the power consumption element value η when operating in the intermittent charging method with a charging rate of 0.25 is less than or equal to the value obtained by multiplying the power consumption element value when operating in the continuous charging method with a charging rate of 1.0 by the charging rate. This is the case. b is charge rate 0.25
This is a case where the power consumption element value during operation in the intermittent charging method is larger than the value obtained by multiplying the power consumption element value during operation in the continuous charging method with a charging rate of 1.0 by the charging rate, and C is the charging This is a case where the power consumption element value during operation in the intermittent charging method with a charging rate of 0.25 is approximately equal to the value obtained by multiplying the power consumption element value during operation in the continuous charging method with a charging rate of 1.0 by the charging rate.

発明者等の研究及びそれに基づく実測の結果、
第6図a,b,cのそれぞれの状態に対応して、
連続荷電方式での運転時及び間歇荷電方式での運
転時に得られる電気集塵機の集塵効率の間には一
定の関係があることが確認された。即ち各荷電方
式での運転時に得られる電気集塵機の集塵効率η
を示す第5図と各荷電方式での運転時における消
費電力要素値を示す第6図との間には、両図の
a,b,cがそれぞれ互に対応していることが明
らかにされた。発明者等により荷電率が0.1乃至
0.5の範囲においてはこの対応条件が満足するこ
とが確認されている。
The results of the inventor's research and actual measurements based on the research,
Corresponding to each state of Fig. 6 a, b, c,
It was confirmed that there is a certain relationship between the dust collection efficiency of the electrostatic precipitator obtained when operating with the continuous charging method and when operating with the intermittent charging method. In other words, the dust collection efficiency η of the electrostatic precipitator obtained when operating with each charging method
It is clear that a, b, and c in both figures correspond to each other between Fig. 5 showing the power consumption element values during operation with each charging method and Fig. 6 showing the power consumption element values during operation with each charging method. Ta. According to the inventors, the charge rate is 0.1 to
It has been confirmed that this correspondence condition is satisfied within the range of 0.5.

従つてこの発明によると電気集塵機の運転中に
おいて、連続荷電方式での運転時における消費電
力要素値を基にして得られる理論的な間歇荷電方
式での運転時における消費電力要素値と間歇荷電
方式での運転時に得られる実際の消費電力要素値
とを比較することにより、いずれの荷電方式で運
転させた方が集塵効率が優れているかを判定する
ことができる。従つてこの判定結果に基づいて現
在運転中の電気集塵機の荷電方式を高い集塵効率
が得られる荷電方式に切換えて運転させることが
できる。
Therefore, according to the present invention, while an electrostatic precipitator is in operation, the theoretical power consumption element value when operating in the intermittent charging method and the intermittent charging method are obtained based on the power consumption element value during operation in the continuous charging method. By comparing the actual power consumption element values obtained during operation, it is possible to determine which charging method has better dust collection efficiency. Therefore, based on this determination result, the charging method of the electrostatic precipitator currently in operation can be switched to a charging method that provides high dust collection efficiency.

即ち連続荷電方式で電気集塵機を運転中には、
その運転を短時間だけ間歇荷電方式での運転に切
換え、切換前後でのそれぞれの荷電方式での消費
電力要素値PW(C)及びPW(I)を測定する。次い
で連続荷電方式での運転時に得られる消費電力要
素値からPW(C)γを求め、これを間歇荷電方式で
の運転時に得られる消費電力要素値と比較して、
PW(I)<PW(C)γであるのか、PW(I)>PW(C)
γであるのかを判定する。
In other words, while operating an electrostatic precipitator using the continuous charging method,
The operation is switched to the intermittent charging method for a short time, and the power consumption element values PW(C) and PW(I) in each charging method are measured before and after the switching. Next, PW(C)γ is determined from the power consumption element value obtained during operation in the continuous charging method, and this is compared with the power consumption element value obtained during operation in the intermittent charging method.
Is PW(I)<PW(C)γ or PW(I)>PW(C)
Determine whether it is γ.

この結果PW(I)<PW(C)γの判定結果が得ら
れ、第6図aに対応する状態と判定されれば、こ
の場合には第5図aにより連続荷電方式での運転
の方が集塵効率が高いことになるので、従来の運
転状態である連続荷電方式での運転を行なわせ
る。
As a result, if the judgment result of PW(I)<PW(C)γ is obtained and it is judged that the state corresponds to Fig. 6a, in this case, the continuous charging method is recommended as shown in Fig. 5a. Since this results in high dust collection efficiency, the conventional operating state, ie, the continuous charging method, is used.

判定結果がPW(I)>PW(C)γとなり、第6図
bに対応する状態と判定されれば、第5図bによ
り間歇荷電方式での運転の方が集塵効率がよいこ
とになるので、間歇荷電方式での運転を行なわせ
る。この場合には、消費電力要素値の比較を行な
うために行なつた切換状態をそのまま維持させ
て、電気集塵機の運転を行なわせる。
If the judgment result is PW(I)>PW(C)γ, and it is judged that the state corresponds to Fig. 6b, then according to Fig. 5b, the intermittent charging method has better dust collection efficiency. Therefore, the intermittent charging method is used. In this case, the switching state performed for comparing the power consumption element values is maintained as it is, and the electrostatic precipitator is operated.

判定結果がPW(I)=PW(C)・γである場合に
は処理ガスの条件や電気集塵機の作動条件により
間歇荷電方式での運転の方が集塵効率がよい場合
と、連続荷電方式での運転の方が集塵効率がよい
場合とがある。この場合は電気集塵機の試運転時
においてPW(I)=PW(C)の場合にいずれの荷電
方式での運転の方が高い集塵効率が得られるかを
処理ガス条件や電気集塵機の作動条件にそれぞれ
対応させて予め設定しておく。
If the judgment result is PW(I) = PW(C)・γ, depending on the processing gas conditions and operating conditions of the electrostatic precipitator, intermittent charging method may have better dust collection efficiency, or continuous charging method may result. There are some cases where dust collection efficiency is better when operating at In this case, during the trial run of the electrostatic precipitator, it is necessary to determine which charging method will yield higher dust collection efficiency when PW(I) = PW(C), depending on the processing gas conditions and operating conditions of the electrostatic precipitator. The settings are made in advance to correspond to each other.

従つて判定の結果PW(I)=PW(C)が得られた
場合には、予め設定しておいた条件に対応させて
電気集塵機を連続荷電方式もしくは間歇荷電方式
のいずれで運転させるかを決定し、その荷電方式
での運転を行なわせる。
Therefore, if PW(I) = PW(C) is obtained as a result of the determination, it is necessary to decide whether to operate the electrostatic precipitator in the continuous charging method or the intermittent charging method in accordance with the preset conditions. The charging method is determined and the operation is performed using that charging method.

このようにして電気集塵機の運転時の荷電方式
を運転中に判定操作時間だけ切換え、切換前後に
おける異なる荷電方式での運転、即ち連続荷電方
式と間歇荷電方式とでの運転時における消費電力
要素値を求め、これらから得られるPW(I)と
PW(C)γとを比較していずれの荷電方式で運転す
るのが高集塵効率が得られるかを判定して、いず
れかの選択された荷電方式での運転を行なわせ
る。この場合間歇荷電方式での運転を行なわせる
場合には、判定操作時に測定に使用した荷電率で
の運転を行なわせる。
In this way, the charging method during operation of the electrostatic precipitator is switched during operation for a determined operation time, and the power consumption element value when operating with different charging methods before and after switching, that is, when operating with continuous charging method and intermittent charging method. Find PW(I) obtained from these and
PW(C)γ is compared to determine which charging method will result in higher dust collection efficiency, and the selected charging method is operated. In this case, if the intermittent charging method is used, the charging rate used in the measurement at the time of the determination operation is used.

この荷電方式を変化させて行なう判定操作の間
隔は処理ガスの条件、電気集塵機の作動条件に対
応して定められる。発明者等の研究及びこれに基
づく実測によると処理ガスの条件や電気集塵機の
作動の条件が余り変化しない状態では、1〜2時
間ごとに判定操作を行なえば充分であることが確
認された。しかし処理ガスの条件が激しく変動す
るような場合には、10〜30分ごとに判定操作を行
なわせる必要がある。
The interval between the determination operations performed by changing the charging method is determined depending on the processing gas conditions and the operating conditions of the electrostatic precipitator. According to research by the inventors and actual measurements based on the research, it has been confirmed that it is sufficient to perform the determination operation every 1 to 2 hours when the processing gas conditions and the operating conditions of the electrostatic precipitator do not change much. However, if the processing gas conditions fluctuate drastically, it is necessary to perform the determination operation every 10 to 30 minutes.

又荷電方式を切換えて消費電力要素値を求め、
これに基づいて判定操作を行なうための判定操作
時間は荷電状態が安定するまで最低1秒位は必要
であり、荷電方式の切換を頻繁に行なう場合には
数秒間は必要である。この判定操作時間を余り長
くすると、この判定操作中に電気集塵機の集塵効
率が低下してしまうことがあるので、10秒以上の
判定操作時間は避けることが必要である。
Also, change the charging method and calculate the power consumption element value.
The determination operation time for performing the determination operation based on this requires at least one second until the charging state becomes stable, and several seconds are required if the charging method is frequently switched. If this judgment operation time is too long, the dust collection efficiency of the electrostatic precipitator may decrease during this judgment operation, so it is necessary to avoid a judgment operation time of 10 seconds or more.

判定操作に使用する荷電率γの値は0.1〜0.5が
用いられる。荷電率γがγ<0.1では集塵効率を
最適状態に維持できないことが多く、γ>0.5で
は省エネルギ効果が得られないことがある。又高
圧変圧器のヒステリシス曲線で片側飽和を避ける
ために取扱い得る最小単位は半サイクルである
が、この発明においては荷電時間t1と荷電休止時
間t2とは、交流1サイクル又はその整数倍を単位
として取扱うことが可能である。
The value of charge rate γ used in the determination operation is 0.1 to 0.5. When the charge rate γ is γ<0.1, it is often not possible to maintain the dust collection efficiency at an optimum state, and when γ>0.5, the energy saving effect may not be obtained. Furthermore, in the hysteresis curve of a high-voltage transformer, the minimum unit that can be handled in order to avoid one-sided saturation is a half cycle, but in this invention, the charging time t 1 and the charging pause time t 2 are defined as one AC cycle or an integral multiple thereof. It is possible to treat it as a unit.

この発明における以上の荷電方式の切換運転、
二次電圧、二次電流の測定による消費電力要素値
の演算、連続荷電方式での消費電力要素値からの
PW(C)γの演算、切換前後において得られるPW
(I)とPW(C)γとの比較演算、その比較演算結
果に基づく判定による荷電方式の選択などの諸動
作はマイクロコンピユータシステムを使用して行
なわせることができる。
The switching operation of the above charging method in this invention,
Calculation of power consumption element values by measuring secondary voltage and secondary current, calculation from power consumption element values in continuous charging method
Calculation of PW(C)γ, PW obtained before and after switching
Operations such as a comparison operation between (I) and PW(C)γ and selection of a charging method based on a determination based on the result of the comparison operation can be performed using a microcomputer system.

例えばドロマイト焼成キルンから発生する排ガ
スを処理する処理能力200000m3/Hの乾式電気集
塵機に対してこの発明を適用した実際の運転状態
は以下のようであつた。
For example, the actual operating conditions in which the present invention was applied to a dry electrostatic precipitator with a processing capacity of 200,000 m 3 /H for treating exhaust gas generated from a dolomite firing kiln were as follows.

この場合ガスの温度は入口側でほぼ220℃、ダ
スト濃度は6〜12g/m3であつた。γ=1.0の連
続荷電方式での運転時における二次電圧、二次電
流はそれぞれ54.2KV、266mAであり、この場合
PW(C)=14.4VAとなる。
In this case, the gas temperature was approximately 220° C. on the inlet side, and the dust concentration was 6 to 12 g/m 3 . The secondary voltage and secondary current when operating in the continuous charging method with γ = 1.0 are 54.2 KV and 266 mA, respectively, and in this case
PW(C)=14.4VA.

電気集塵機の連続荷電方式での運転中において
3秒間γ=0.25の間歇荷電方式に荷電方式を変更
して運転を行なわせた所、二次電圧及び二次電流
はそれぞれ50.4KV及び421.7mAとなつた。この
場合PW(I)=50.4×421.7×0.25=5.31VAとな
り、PW(C)×γ=14.4×0.25=3.6VAとなる。こ
の両者を比較するとPW(I)>PW(C)γが得られ
るので、それ以降は荷電率γ=0.25の間歇荷電方
式での運転を行なわせた。
While the electrostatic precipitator was operating in the continuous charging mode, when the charging method was changed to the intermittent charging mode with γ = 0.25 for 3 seconds, the secondary voltage and secondary current were 50.4 KV and 421.7 mA, respectively. Ta. In this case, PW(I)=50.4×421.7×0.25=5.31VA, and PW(C)×γ=14.4×0.25=3.6VA. Comparing the two, it was found that PW(I)>PW(C)γ, so from then on, operation was performed using an intermittent charging method with a charging rate γ=0.25.

同様の電気集塵機をγ=0.25の間歇荷電方式で
運転中に得られた二次電圧、二次電流はそれぞれ
55KV、256mAであつた。この場合PW(I)=55
×256×0.25=3.52VAであり、3秒間γ=1.0とし
て連続荷電方式で運転を行なわせると、二次電
圧、二次電流がそれぞれ56KV、225mAとなつ
た。
The secondary voltage and secondary current obtained while operating a similar electrostatic precipitator with intermittent charging method of γ = 0.25 are
It was 55KV and 256mA. In this case PW(I)=55
×256 × 0.25 = 3.52 VA, and when operating in a continuous charging mode with γ = 1.0 for 3 seconds, the secondary voltage and secondary current were 56 KV and 225 mA, respectively.

この場合PW(C)=18.2VAとなり、PW(C)γ=
18.2×0.25=4.55が得られ、切換前後のPW(C)γと
PW(I)とを比較するとPW(I)<PW(C)×γと
なるので、以降は連続荷電方式で電気集塵機の運
転を行なわせる。
In this case, PW(C)=18.2VA, and PW(C)γ=
18.2×0.25=4.55 was obtained, and PW(C)γ before and after switching
When compared with PW(I), PW(I)<PW(C)×γ, so from then on, the electrostatic precipitator is operated in a continuous charging mode.

「発明の効果」 この発明によると運転中の乾式電気集塵機での
荷電方式の切換えが必要な顕著な逆電離現象の発
生を定量的に把握して、いずれの荷電方式での運
転が高集塵効率を得られるかを判定し、集塵効率
の高い状態で電気集塵機を運転させることができ
る。
"Effects of the Invention" According to this invention, it is possible to quantitatively understand the occurrence of a remarkable reverse ionization phenomenon that requires switching of the charging method in a dry electrostatic precipitator during operation, and to determine whether the operation with any charging method will result in high dust collection. It is possible to determine whether efficiency can be achieved and operate the electrostatic precipitator in a state with high dust collection efficiency.

この判定操作は運転中に短時間だけ電気集塵機
の荷電方式を現在の運転中とは異なる方式に切換
えて運転を行ない、切換前後の消費電力要素値に
基づいて得られる値を比較演算するという簡単な
操作であり、この判定操作でいずれの荷電方式で
の運転が集塵効果がよいかが直ちに判定される。
この判定結果により荷電方式を選択することによ
つて集塵効果のよい荷電方式での運転を行なわせ
ることが可能であり、その消費電力をも減少させ
ることができる。
This determination operation is as simple as switching the charging method of the electrostatic precipitator to a different method than the one currently in operation for a short period of time during operation, and comparing and calculating the values obtained based on the power consumption element values before and after switching. This determination operation immediately determines which charging method has the best dust collection effect.
By selecting a charging method based on this determination result, it is possible to perform operation using a charging method that provides a good dust collection effect, and the power consumption can also be reduced.

以上詳細に説明したように、この発明によると
運転中の電気集塵機に対してその荷電方式を変更
させて判定操作を行なわせ、その判定操作に基づ
いて集塵効率の優れた荷電方式を選択して高集塵
効率及び低消費電力の条件下で電気集塵機を運転
させることが可能な電気集塵機の荷電方法を提供
することが可能となる。
As explained in detail above, according to the present invention, an operating electrostatic precipitator is caused to perform a judgment operation by changing its charging method, and a charging method with excellent dust collection efficiency is selected based on the judgment operation. Thus, it is possible to provide a charging method for an electrostatic precipitator that allows the electrostatic precipitator to be operated under conditions of high dust collection efficiency and low power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電気集塵機における運転時の二次電圧
と二次電流との関係曲線を示す図で、Aは空気の
みを流通させた状態で得られる関係曲線、Bはガ
スを流入させた状態で得られる関係曲線、Cは逆
電離現象発生状態で得られる関係曲線、第2図は
電気集塵機におけるダストの電気抵抗値と二次電
圧及び二次電流との関係を示す図、第3図a,b
はそれぞれ電気集塵機の間歇荷電時の二次電圧波
形及び二次電流波形を示す図、第4図はこの発明
の実施に用いる制御回路の一例を示すブロツク
図、第5図a,b,cは荷電率と集塵効率との関
係を示す図、第6図a,b,cは荷電率と消費電
力要素値との関係を示す図である。 11:商用交流電源、12:サイリスタ、1
3:変圧器、14:整流器、15:放電電極、1
6:集塵電極、17:二次電圧計、18:二次電
流計、19:電力計、20:間歇荷電制御回路、
21:サイリスタ制御回路、T:周期時間、t1
荷電時間、t2:荷電休止時間、γ:荷電率、PW
(C):連続荷電時の消費電力要素値、PW(I):間
歇荷電時の消費電力要素値。
Figure 1 shows the relationship curve between secondary voltage and secondary current during operation in an electrostatic precipitator, where A is the relationship curve obtained when only air is flowing, and B is the relationship curve obtained when gas is flowing. The obtained relational curve, C is the relational curve obtained in the state where the reverse ionization phenomenon occurs, Fig. 2 is a diagram showing the relation between the electrical resistance value of dust and the secondary voltage and secondary current in an electrostatic precipitator, Fig. 3a, b
are diagrams showing the secondary voltage waveform and secondary current waveform during intermittent charging of the electrostatic precipitator, respectively. FIG. 4 is a block diagram showing an example of the control circuit used for carrying out this invention. FIG. 5 a, b, and c are FIGS. 6A, 6B, and 6C are diagrams showing the relationship between the charging rate and the dust collection efficiency, and FIGS. 6A, 6B, and 6C are diagrams showing the relationship between the charging rate and the power consumption element value. 11: Commercial AC power supply, 12: Thyristor, 1
3: Transformer, 14: Rectifier, 15: Discharge electrode, 1
6: dust collection electrode, 17: secondary voltmeter, 18: secondary ammeter, 19: wattmeter, 20: intermittent charging control circuit,
21: Thyristor control circuit, T: cycle time, t 1 :
Charging time, t2 : Charging pause time, γ: Charging rate, PW
(C): Power consumption element value during continuous charging, PW (I): Power consumption element value during intermittent charging.

Claims (1)

【特許請求の範囲】[Claims] 1 乾式電気集塵機の運転中において放電電極と
集塵電極間に荷電される電圧の荷電方式を連続荷
電方式と荷電率γの間歇荷電方式の内の現在荷電
されていない荷電方式に切換え、この切換の前後
における連続荷電方式での消費電力要素値PW(C)
から得られるPW(C)・γと間歇荷電方式での消費
電力要素値PW(I)とを比較し、PW(I)<PW
(C)・γでは連続荷電方式を選択し、PW(I)>
PW(C)・γでは荷電率γの間歇荷電方式を選択し
て前記乾式電気集塵機の荷電を行ない運転を継続
させる電気集塵機の荷電方法。
1. During operation of the dry electrostatic precipitator, switch the charging method of the voltage applied between the discharge electrode and the dust collecting electrode to the charging method that is currently not being charged, either the continuous charging method or the intermittent charging method with a charging rate γ, and switch this. Power consumption element value PW(C) in continuous charging method before and after
Compare PW(C)・γ obtained from PW(I) with the power consumption element value PW(I) in the intermittent charging method,
For (C) and γ, select the continuous charging method, and PW (I)>
In PW(C)/γ, an intermittent charging method with a charging rate γ is selected to charge the dry electrostatic precipitator and continue its operation.
JP21800484A 1984-10-17 1984-10-17 Charging method of electrical dust precipitator Granted JPS6197056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21800484A JPS6197056A (en) 1984-10-17 1984-10-17 Charging method of electrical dust precipitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21800484A JPS6197056A (en) 1984-10-17 1984-10-17 Charging method of electrical dust precipitator

Publications (2)

Publication Number Publication Date
JPS6197056A JPS6197056A (en) 1986-05-15
JPH0250788B2 true JPH0250788B2 (en) 1990-11-05

Family

ID=16713115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21800484A Granted JPS6197056A (en) 1984-10-17 1984-10-17 Charging method of electrical dust precipitator

Country Status (1)

Country Link
JP (1) JPS6197056A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410700B1 (en) * 1989-07-25 1996-09-25 Canon Kabushiki Kaisha Image processing apparatus
US7295949B2 (en) * 2004-06-28 2007-11-13 Broadcom Corporation Energy efficient achievement of integrated circuit performance goals
US7272523B1 (en) * 2006-02-28 2007-09-18 Texas Instruments Incorporated Trimming for accurate reference voltage

Also Published As

Publication number Publication date
JPS6197056A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
US5378978A (en) System for controlling an electrostatic precipitator using digital signal processing
US5217504A (en) Method for controlling the current pulse supply to an electrostatic precipitator
US4626261A (en) Method of controlling intermittent voltage supply to an electrostatic precipitator
US5288309A (en) Flue gas conditioning agent demand control apparatus
JPH039780B2 (en)
JPS6125650A (en) Method for controlling electrical charge of electrical dust precipitator
JP2009039593A (en) Electric dust collector
JPH0250788B2 (en)
JPH05200324A (en) Method for controlling charging of electric precipitator
JPH0250789B2 (en)
JPS6094160A (en) Operation of electric dust collector
JPH08108094A (en) Method for detecting time to clean electrostatic precipitator and device therefor
JPH0250790B2 (en)
JP3139220B2 (en) Pulsed power supply for electric dust collector
JPH0250787B2 (en)
JPS6136468B2 (en)
JPS5879560A (en) Electrical dust precipitator
CN104549758A (en) Electrostatic field voltage control method and system for electrostatic dust collector
JPS61136454A (en) Charging control system of electric precipitator
JPS58143859A (en) Control apparatus of electric dust collecting device
JPH0250786B2 (en)
JPH06328006A (en) Electric power controlling method of electric dust collector
JPH0461695B2 (en)
JPH0777630B2 (en) Charge control method for pulse charge type electrostatic precipitator
SU1428473A1 (en) Method of charging particles in apparatus for electronic ionic technology under conditions of reverse corona discharge

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees