JPS6255622B2 - - Google Patents

Info

Publication number
JPS6255622B2
JPS6255622B2 JP6622980A JP6622980A JPS6255622B2 JP S6255622 B2 JPS6255622 B2 JP S6255622B2 JP 6622980 A JP6622980 A JP 6622980A JP 6622980 A JP6622980 A JP 6622980A JP S6255622 B2 JPS6255622 B2 JP S6255622B2
Authority
JP
Japan
Prior art keywords
electrode
electrodes
ion current
positive
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6622980A
Other languages
Japanese (ja)
Other versions
JPS56162043A (en
Inventor
Senichi Masuda
Yutaka Nonogaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6622980A priority Critical patent/JPS56162043A/en
Publication of JPS56162043A publication Critical patent/JPS56162043A/en
Publication of JPS6255622B2 publication Critical patent/JPS6255622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/60Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrostatic variables, e.g. electrographic flaw testing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】 本発明は正イオンと負イオンの双方が共存する
電界中で正イオン電流密度と負イオン電流密度を
同時に、かつ別個に分離測定する両極性電流プロ
ーブに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bipolar current probe that simultaneously and separately measures positive ion current density and negative ion current density in an electric field where both positive ions and negative ions coexist.

例えば電気抵抗の著るしく高いダストを捕集す
る電気集塵装置にあつては、集塵極上に堆積した
ダスト層の電圧降下が過大となつて絶縁破壊を生
じ、ここから負極性にある放電極に向つて異常正
コロナ放電を生ずる、いわゆる逆電離を発生、こ
れが集塵性能を著るしく阻害する要因をなして来
た。これは放電極の負コロナ放電からの負イオン
電流の射突によつて荷電されたダストの負電荷が
上記の異常正コロナ放電により供給される正イオ
ン電流により中和されて減少し、その結果集塵に
必要なクーロン力が大巾に低下するためである。
この場合ダストの電荷量Qは逆電離発生のない正
常運転時に放電極からの負イオンにより得る理想
値QOに対して、正イオン電流密度i+の負イオ
ン電流密度i−に対する割合β=i+/i−がわ
ずか10%でも50%に低下し、βが20%、30%、40
%と上昇するにつれ電荷量QがQOの30%、20
%、10%と大巾に低下して、その分だけ著るしい
集塵性能の低下を生ずる。この様な異常現象を究
明したり、その阻害の程度を把握したり、これに
もとづいて集塵装置の電圧・電流等を適切に制御
するためには、正負両イオン電流が共存している
電界中で、正イオン電流密度i+と負イオン電流
密度i−を別個に分離して測定する必要がある。
しかし従来この様な分離測定は不可能とされ、そ
のため大きな困難が未解決のまま残されて現在に
至つている。
For example, in an electrostatic precipitator that collects dust with extremely high electrical resistance, the voltage drop of the dust layer deposited on the dust collection electrode becomes excessive, causing dielectric breakdown, and from this, negative polarity is emitted. So-called reverse ionization, which causes an abnormal positive corona discharge toward the electrode, has been a factor that significantly inhibits dust collection performance. This is because the negative charge of the dust charged by the impact of the negative ion current from the negative corona discharge of the discharge electrode is neutralized and reduced by the positive ion current supplied by the abnormal positive corona discharge. This is because the Coulomb force required for dust collection is greatly reduced.
In this case, the electric charge Q of the dust is the ratio β of the positive ion current density i+ to the negative ion current density i- with respect to the ideal value Q O obtained by negative ions from the discharge electrode during normal operation without the occurrence of back ionization. Even if i- is only 10%, it will drop to 50%, and β will be 20%, 30%, 40
%, the charge Q becomes 30% of Q O , 20
%, it decreases by a wide range of 10%, resulting in a significant decrease in dust collection performance. In order to investigate such abnormal phenomena, understand the extent of their inhibition, and appropriately control the voltage and current of the precipitator based on this, it is necessary to investigate the electric field where both positive and negative ion currents coexist. Among them, it is necessary to separately measure the positive ion current density i+ and the negative ion current density i-.
However, in the past, such separate measurements have been considered impossible, and as a result, major difficulties remain unresolved to this day.

本発明は従来不可能であつた正負イオン電流密
度の電界中における分離測定を可能ならしめる手
段を提供したものである。しかして本発明はこれ
を以下に述べる如き両極性電流プローブ装置によ
り達成する。
The present invention provides a means that enables separate measurement of positive and negative ion current densities in an electric field, which was previously impossible. The present invention thus accomplishes this with a bipolar current probe device as described below.

すなわち本発明による新規の両極性電流プロー
ブ装置は、ある対称面に対して面対称の形状を有
する小形の仮想面と該対称面とが交叉する交叉線
S上に小さな巾をもつた長形の中心電極Cを絶縁
配設し、その両側の該仮想面上に該交叉線Sに対
して互に対称に、かつ該両側仮想面全体を実質的
に覆う如くに、かつ中心電極Cより一定の小間隔
をへだてて測定電極A,Bを絶縁配設して一つの
三電極プローブを構成し、これを支持用中空金属
柱により絶縁支持し、該電極C,A,Bにそれぞ
れ絶縁導線を接続の上これらを該支持用金属柱の
内部を通して絶縁貫通し、これら導線の他端をそ
れぞれ微小電流計DC,DA,DBの端子に接続
し、該DC,DA,DBのいま一つの端子と該支持
用中空金属柱とを共通の導線に接続の上、これを
可変直流電源に接続して一つの測定系を構成し、
該三電極プローブを正イオン電流と負イオン電流
が共存する電界中の測定点に挿入の上、A,B両
電極の一つを負イオン源、いま一つを正イオン源
に向けて該対称面が電界の方向と直交する様に配
設し、該可変直流電源の電圧Vを変化することに
より、該三電極プローブの電極C,A,Bおよび
該支持用中空金属柱の電位を変化して中心電極C
に接続せる電流計DCの電流ICが実質的にゼロと
なる様にし、その時の電極A,Bに接続せる電流
計DA,DBの電流IA,IBの読みを求め、このI
A,IBの値がそれぞれ実質的に正負イオン電流密
度に比例することを利用してIAとIBの値から正
負イオン電流密度を同時にかつ分離して測定する
ことを特徴とする。
That is, the novel bipolar current probe device according to the present invention has a small imaginary surface having a plane-symmetrical shape with respect to a certain plane of symmetry, and a rectangular shape having a small width on the intersection line S where the plane of symmetry intersects. A center electrode C is insulated and arranged on the imaginary planes on both sides thereof, symmetrically with respect to the intersection line S, so as to substantially cover the entire imaginary planes on both sides, and with a constant distance from the center electrode C. Measuring electrodes A and B are insulated and arranged at a small interval to form one three-electrode probe, which is insulated and supported by a supporting hollow metal column, and an insulated conductor wire is connected to each of the electrodes C, A, and B. These conductors are insulated through the interior of the support metal pillar, and the other ends of these conductors are connected to the terminals of microammeters D C , D A , and D B , respectively . The other terminal and the supporting hollow metal column are connected to a common conductive wire, and this is connected to a variable DC power source to configure one measurement system,
Insert the three-electrode probe into a measurement point in an electric field where positive ion current and negative ion current coexist, and point one of the A and B electrodes toward the negative ion source and the other toward the positive ion source so that they are symmetrical. The probe is arranged so that its surface is perpendicular to the direction of the electric field, and by changing the voltage V of the variable DC power supply, the potential of the electrodes C, A, and B of the three-electrode probe and the supporting hollow metal pillar can be changed. Center electrode C
Make sure that the current I C of the ammeter D C connected to the electrode becomes substantially zero, and then find the readings of the currents I A and I B of the ammeter D A and D B connected to the electrodes A and B at that time. I
The present invention is characterized in that the positive and negative ion current densities are measured simultaneously and separately from the values of I A and I B by utilizing the fact that the values of A and I B are each substantially proportional to the positive and negative ion current densities.

この場合、上記電極A,B,Cは適当な絶縁物
をもつて互に絶縁の上所定の形状を保持する如く
担時してもよいが、また上記仮想面を外表面とす
る絶縁物を担体として用いてもよく、更に該絶縁
物担体の表面に電極A,B,Cを蒸着、メツキ、
厚膜技術、導電性塗料の塗着等の方法で附着形成
せしめてもよい。また3個の微小電流計DC,D
A,DBを用いる代りに1ケの電流計のみを用い、
スイツチによりこれを切りかえてIC,IA,IB
を測定してもよい。またICを見乍らVを手動に
より変化してIC=Oの平衡点を決定する代りに
Cの出力信号を上記可変直流電源にフイードバ
ツタし、自動制御によりVを変化してIC=Oな
らしめる様にしてもよい。またIC=Oにより正
負イオン電流密度を求める代りにVとICの関係
曲線を手動又は自動で求め、これから後述の方法
で正負イオン電流密度を求めてもよい。
In this case, the electrodes A, B, and C may be insulated from each other with a suitable insulator and held in a predetermined shape. It may be used as a carrier, and electrodes A, B, and C may be further deposited, plated, or
The deposit may be formed by thick film technology, application of conductive paint, or the like. In addition, three microcurrent meters D C , D
Instead of using A and D B , only one ammeter is used,
Switch this to I C , I A , I B
may be measured. Also, instead of determining the equilibrium point of I C =O by manually changing V while looking at I C , the output signal of D C is fed to the variable DC power supply, and V is changed by automatic control to determine I C =O may be set. Furthermore, instead of determining the positive and negative ion current density using I C =O, the relationship curve between V and I C may be determined manually or automatically, and the positive and negative ion current density may be determined from this using the method described below.

以下本発明の特徴及び構造の詳細を実施例及び
図面により説明する。
The features and structure of the present invention will be explained in detail below with reference to embodiments and drawings.

第1図は本発明の一実施例で上述の仮想面を円
筒面とする円筒型両極性電流プローブの特に三電
極プローブ部の構造を明示した斜視図、第2図は
その縦断面図、第3図はその横断面図である。ま
た第4図bはその3電極プローブ部分の外観図で
ある。云うまでもなく上記の仮想円筒面はその中
心軸を通る平面に対して面対称であり、両者の交
叉線Sは円筒上で中心軸に対称な二本の直線とな
る。この直線を中心線として該円筒面上に細長い
短冊状の電極C1,C2が設けられ導線1により相
互に接続されて一つの中心電極Cを形成してい
る。但し本図ではすべての電極を絶縁担持する絶
縁物は省略し、画かれていない。このC1,C2
両側にこれより小間隔をへだてて、二つの半円筒
状の測定電極A,Bが該円筒仮想面上に絶縁配設
されており、該測定電極A,Bは中心電極Cと共
に円筒状の三電極プローブ2を形成している。3
はこのプローブと同軸でかつ同一外径の本例では
円筒状の支持用中空金属柱で、図には示されてい
ない絶縁物を介して該三電極プローブ2を支持し
ている。また4は該三電極プローブ2の他端への
電界集中を防止するためにこれと同軸に絶縁の上
設けられた同一外径の金属カツプより成るガード
電極で導線5により該支持用中空金属柱3に接続
されている。
FIG. 1 is a perspective view showing the structure of a cylindrical bipolar current probe in which the above-mentioned virtual surface is a cylindrical surface according to an embodiment of the present invention, particularly the structure of the three-electrode probe part, and FIG. 2 is a longitudinal sectional view thereof. Figure 3 is its cross-sectional view. FIG. 4b is an external view of the three-electrode probe portion. Needless to say, the virtual cylindrical surface described above is plane symmetrical with respect to a plane passing through its central axis, and the intersection lines S thereof become two straight lines on the cylinder that are symmetrical with respect to the central axis. Elongated strip-shaped electrodes C 1 and C 2 are provided on the cylindrical surface with this straight line as the center line, and are interconnected by a conductive wire 1 to form one center electrode C. However, in this figure, the insulators that insulate and support all the electrodes are omitted and are not drawn. Two semi-cylindrical measuring electrodes A and B are insulated on the cylindrical virtual surface and spaced apart from each other by a smaller distance on both sides of C 1 and C 2 , and the measuring electrodes A and B are placed in the center. Together with the electrode C, a cylindrical three-electrode probe 2 is formed. 3
is a cylindrical supporting hollow metal column in this example which is coaxial with the probe and has the same outer diameter, and supports the three-electrode probe 2 via an insulator not shown in the figure. In addition, 4 is a guard electrode consisting of a metal cup of the same outer diameter installed coaxially and insulated with the three-electrode probe 2 to prevent electric field concentration at the other end of the three-electrode probe 2, and a conductor 5 is connected to the hollow metal pillar for supporting the three-electrode probe 2. Connected to 3.

中心電極C1−C2、測定電極A,Bは該支持用
中空金属柱3の内部を貫通する3本の導線6,
7,8に接続されている。該導線は該中空金属柱
3の基部出口9よりその外部に導かれ、微小電流
計DA,DC,DBの一端にそれぞれ接続される。
該電流計の他端は導線6′,7′,8′に接続さ
れ、該支持用中空金属柱3に接続された導線10
と共に共通導線11により、本例では正極性端子
を接地せる可変直流高圧電源12の負極性端子に
接続されている。13は該電源12の端子電圧を
指示する電圧計である。
The center electrodes C 1 -C 2 and the measurement electrodes A and B are three conductive wires 6 passing through the interior of the supporting hollow metal column 3.
7 and 8. The conductive wires are guided to the outside of the hollow metal column 3 through the base outlet 9 and are connected to one ends of minute ammeters D A , D C , and D B , respectively.
The other end of the ammeter is connected to conductors 6', 7', 8', and a conductor 10 connected to the supporting hollow metal column 3.
At the same time, it is connected by a common conducting wire 11 to a negative terminal of a variable DC high voltage power supply 12 whose positive terminal is grounded in this example. 13 is a voltmeter that indicates the terminal voltage of the power source 12;

いま該三電極プローブ部2を該支持用中空金属
柱を介して、正イオン流と負イオン流の共存する
電界中の測定点に挿入し、第3図に示す如く該3
電極プローブの電極C1−C2の中心線を含む対称
面14を電界Eと直交する如く、電極Aを負イオ
ン源へ、電極Bを正イオン源に向けて支持する。
いま該可変直流高圧電源12の電圧Vを変化して
該3電極プローブ部2の電位が挿入点の空間の原
電位と等しくする。この状態を平衡状態と呼ぶ。
このときの電位を平衡電位とよぶ。このとき接点
14′で示す電気力線は図示の通り対称面14に
対して完全に上下対称となる。但しこの図では電
気力線の方向は下方より電極Bへ入り、電極Aよ
り上方に出る向きをとる。この場合電極Bへ入り
込む電気力線の本数は電極Aより出る電気力線の
本数と完全に一致する。また電極C1,C2におい
てはそれぞれ入り込む電気力線の本数と出て行く
電気力線の本数とが等しくなるので、その合計は
ゼロである。
Now, insert the three-electrode probe part 2 through the supporting hollow metal column into a measurement point in an electric field where positive ion flow and negative ion flow coexist, and as shown in FIG.
Electrode A is supported toward the negative ion source and electrode B toward the positive ion source so that the symmetry plane 14 including the center line of electrodes C 1 -C 2 of the electrode probe is perpendicular to the electric field E.
Now, the voltage V of the variable DC high voltage power supply 12 is changed to make the potential of the three-electrode probe section 2 equal to the original potential of the space at the insertion point. This state is called an equilibrium state.
The potential at this time is called the equilibrium potential. At this time, the lines of electric force indicated by the contact point 14' are completely vertically symmetrical with respect to the plane of symmetry 14 as shown. However, in this figure, the electric lines of force enter electrode B from below and exit upward from electrode A. In this case, the number of electric lines of force entering electrode B completely matches the number of lines of electric force exiting from electrode A. Further, in electrodes C 1 and C 2 , the number of electric lines of force entering and the number of lines of electric force going out are equal, so the total is zero.

正イオンは下方より電気力線に沿つて電極Bに
流入し、その全正イオン電流I+が電流計DB
正の電流IB=I+として指示される。また負イ
オン電流は上方から電気力線に沿つて電極Aに流
入し、その全負イオン電流I−が電流計DAに負
の電流IA=I−として指示される。平衡状態の
もとで電極B,Aに流入する正負イオン電流IB
=I+O,IA=I-Oを平衡イオン電流という。正
イオン電流密度i+と負イオン電流密度i−が異
る時は平衡状態のもとでも電極C1−C2にわずか
乍ら電流ICOが流れ、ICOはi+>i−の時は
正、i−<i+の時は負となるが、いずれにせよ
中心電極の巾を充分小さくするとICOは極めて小
さい値をとる。この平衡状態のもとでは、測定し
ようとする正負イオン電流密度i+,i−〔A/
m2〕と電極B,Aに検出される正負の平衡イオン
電流I+O,I-O〔A〕との間には、理論的に次の
関係が成立する。
Positive ions flow into the electrode B from below along the lines of electric force, and the total positive ion current I+ is indicated on the ammeter D B as a positive current I B =I+. Further, the negative ion current flows into the electrode A from above along the lines of electric force, and the total negative ion current I- is indicated to the ammeter D A as a negative current I A =I-. Positive and negative ion currents I B flowing into electrodes B and A under equilibrium conditions
=I +O , I A =I -O is called equilibrium ion current. When the positive ion current density i+ and the negative ion current density i- are different, a small current I CO flows through the electrodes C 1 - C 2 even in an equilibrium state, and I CO is positive when i+ > i-. , i-<i+, it becomes negative, but in any case, if the width of the center electrode is made sufficiently small, I CO takes an extremely small value. Under this equilibrium state, the positive and negative ion current densities to be measured i+, i- [A/
m 2 ] and the positive and negative balanced ion currents I +O and I -O [A] detected at the electrodes B and A, the following relationship holds theoretically.

+O=4alCos(d/2a)i+〔A〕 (1) I-O=4alCos(d/2a)i−〔A〕 (2) 但しa=円筒半径〔m〕、d=中心電極C1,C2
の巾〔m〕、l=電極A,B,C1,C2の軸方向長
さ〔m〕。
I +O = 4alCos (d/2a) i + [A] (1) I -O = 4alCos (d/2a) i - [A] (2) where a = cylinder radius [m], d = center electrode C 1 ,C 2
width [m], l = axial length of electrodes A, B, C 1 , C 2 [m].

すなわち平衡イオン電流I+O,I-Oはi+,i
−に比例し、I+O,I-Oの測定値から直ちにi
+,i−を得ることが出来るのである。次に平衡
状態を設定する方法としては次の方法がある。第
1の方法は外挿法である。Vを変化しつつ電極
C,A,Bからの電流IC,IA=I−,IB=I
+を測定すると第5図の曲線IC,IA,IBが得
られる。これらの曲線はいづれも2本の直線部分
とその中間の曲線部分から成る。そして曲線IC
の直線部分を外挿したものと横軸との交点Pが上
記の平衡電位VOを与え、図示の如くV=VOにお
けるIB,IAがそれぞれ式(1)、(2)に用いるべき正
確な平衡イオン電流I+O,I-Oを与える。この時
には図示の通り電極C1−C2には小さな平衡イオ
ン電流ICOが流れている。外挿法によるI+O,I
-Oの決定は予めプログラムされたコンピユーター
により直ちに自動的に実行しうる。
In other words, the equilibrium ion currents I +O and I -O are i+, i
-, and immediately i from the measured values of I +O and I -O
+, i- can be obtained. Next, there are the following methods for setting the equilibrium state. The first method is extrapolation. Currents from electrodes C, A, and B while changing V, I C , I A =I-, I B =I
When + is measured, the curves I C , I A , and I B shown in FIG. 5 are obtained. Each of these curves consists of two straight parts and a curved part in between. and the curve I C
The intersection point P of the extrapolation of the straight line part of Give accurate equilibrium ion currents I +O and I -O . At this time, as shown in the figure, a small equilibrium ion current I CO flows through the electrodes C 1 -C 2 . I +O , I by extrapolation
-O determination can be immediately and automatically performed by a pre-programmed computer.

いま一つの平衡状態の設定方法は擬似平衡法で
ある。すなわち、中心電極Cからの電流ICがゼ
ロをとる電位VO′(Q点)をもつて平衡電位VO
を近似する。これを擬似平衡電位と呼ぶ。そして
この時のIB,IAの値I+O′,I-O′を擬似平衡イ
オン電流とよび、真の平衡イオン電流I+O,I-O
の近似値として式(1)、(2)に代入の上i−,i+を
求める。この方法は中心電極Cの巾を狭くするほ
ど精度が上るが、一方これに伴つてIC=Oの検出
感度は低下する。したがつてこれを救う方法とし
て、電極Cの巾をある程度大きくし、IC=Oの時
に測定電極B,Aに得られる正負の擬似平衡イオ
ン電流I+O′,I-O′の値のそれぞれ理論的に定ま
る修正係数k+,k-(IBとIAの比の関数として
理論的に与えられる。)を乗じて正しい正負の平
衡イオン電流I+O=k+I+O′とI−=k-I-O′を決定
する方法を用いることが出来る。またこの修正操
作を含めて、擬似平衡法によるI+OとI-Oの決定
は予めプログラムされたコンピユーターにより直
ちに実行することが出来る。
Another method for setting an equilibrium state is the pseudo-equilibrium method. That is, the equilibrium potential V O has a potential V O ' (point Q) at which the current I C from the center electrode C is zero
Approximate. This is called a pseudo-equilibrium potential. The values of I B and I A at this time I +O ′, I -O ′ are called pseudo-equilibrium ion currents, and the true equilibrium ion currents I +O , I -O
As approximate values of , i− and i+ are obtained by substituting them into equations (1) and (2). The accuracy of this method increases as the width of the center electrode C becomes narrower, but the detection sensitivity of I C=O decreases accordingly. Therefore, as a way to solve this problem, the width of electrode C is increased to a certain extent, and the values of positive and negative pseudo-equilibrium ion currents I +O ′ and I -O ′ obtained at measurement electrodes B and A when I C=O are The correct positive and negative equilibrium ion currents I + O = k + I +O ' are obtained by multiplying them by the theoretically determined correction coefficients k + and k - (given theoretically as a function of the ratio of I B and I A ), respectively. A method for determining I-=k - I -O ' can be used. Furthermore, the determination of I +O and I -O by the pseudo-equilibrium method, including this correction operation, can be immediately executed by a pre-programmed computer.

第6図は上述の仮想面として球面を用いて本発
明を実施せる例、すなわち球型両極性電流プロー
ブの縦断面図、第4図aはその三電極プローブ部
の側面図である。図において2は三電極プローブ
部で、該球状仮想面とその一つの対称面14が交
叉する交叉線Sは一つの赤道曲線をなし、これを
中心とし、円環状の小巾の中心電極C、その両側
の該仮想球面状に相互に対称な半球状の測定電極
A,Bが中心電極Cから等しい小間隔をへだてて
絶縁配設されている。図における3から13まで
の番号の要素の名称及び機能は第1図、第2図、
第3図、第4図bにおける同一番号の要素のそれ
と同一である。そして本実施例の原理と動作はす
でにのべた円筒型のものと異る所がなく、上述の
説明で自明であるからその説明は省略する。ただ
本球型両極性電流プローブでは、ガード電極4は
なく、またVを平衡電位VOに一致させた時の
B,A両測定電極に検出される正負の平衡イオン
電流IB=I+O〔A〕,IA=I-O〔A〕と正負の
イオン電流密度i+,i−〔A/m2〕との間には
次の理論的関係がある。
FIG. 6 is a longitudinal cross-sectional view of a spherical bipolar current probe, which is an example in which the present invention can be practiced using a spherical surface as the above-mentioned virtual surface, and FIG. 4a is a side view of the three-electrode probe portion thereof. In the figure, 2 is a three-electrode probe part, and the intersection line S where the spherical virtual surface intersects with one symmetry plane 14 forms one equatorial curve, and with this as the center, a small annular central electrode C, Hemispherical measurement electrodes A and B, which are symmetrical to each other on both sides of the virtual spherical surface, are insulated and spaced apart from the center electrode C by an equal small distance. The names and functions of the elements numbered 3 to 13 in the figures are shown in Figure 1, Figure 2,
It is the same as that of the elements with the same numbers in FIGS. 3 and 4b. The principle and operation of this embodiment are the same as those of the cylindrical type described above, and are self-evident from the above explanation, so the explanation thereof will be omitted. However, in this spherical bipolar current probe, there is no guard electrode 4, and when V is made to match the equilibrium potential V O , the positive and negative equilibrium ion currents detected by both measurement electrodes B and A are I B =I +O [A], I A =I -O There is the following theoretical relationship between [A] and the positive and negative ion current densities i+, i- [A/m 2 ].

+O=3πa2cos2(d/2a)i+〔A〕 (3) I-O=3πa2cos2(d/2a)i−〔A〕 (4) 但しa=球半径〔m〕、d=中心電極Cの巾
〔m〕。したがつてI+O,I-Oの測定値から直ちに
i+,i−が得られる。平衡状態を設定する方法
はすでに述べた円筒型両極性電流プローブの場合
とまつたく同様である。本球型両極性電流プロー
ブは3電極プローブ部2が球状をなしているので
3次元の電界中におけるある一点でのi+,i−
を正確に測定するのに適しているが、一方支持用
中空金属柱3による電界とイオン電流の乱れの影
響が出るので、3を出来る限り細くする必要があ
る。
I +O = 3πa 2 cos 2 (d/2a) i + [A] (3) I -O = 3πa 2 cos 2 (d/2a) i - [A] (4) where a = sphere radius [m], d=width of center electrode C [m]. Therefore, i+ and i- can be obtained immediately from the measured values of I +O and I -O . The method for setting the equilibrium state is exactly the same as for the cylindrical bipolar current probe described above. This spherical bipolar current probe has a 3-electrode probe part 2 that is spherical, so i+, i- at a certain point in a three-dimensional electric field.
However, since the supporting hollow metal column 3 causes disturbances in the electric field and ion current, it is necessary to make the column 3 as thin as possible.

なお第4図は各種の3電極プローブ部2の例を
示した図で、同図cは仮想面を円板面とし、中心
電極Cはその側面に設けた円環状電極、電極A,
Bはその上下の円形平面に設けた、これよりやや
半径の小さな円形電極をもつて構成する。又同図
dは仮想面を四角柱とし、中心電極C1,C2はそ
の両側面に設けた矩形状の電極、測定電極A,B
はその上下の面に設けられた矩形状の電極をもつ
て構成し、本例にあつては、ガード電極4、支持
用中空金属柱3はいづれも四角柱をなしている。
FIG. 4 is a diagram showing examples of various three-electrode probe sections 2, and in FIG.
B is constituted by circular electrodes with a radius slightly smaller than that provided on the circular planes above and below. In addition, in Figure d, the virtual plane is a square prism, and the center electrodes C 1 and C 2 are rectangular electrodes provided on both sides, and measurement electrodes A and B.
has rectangular electrodes provided on its upper and lower surfaces, and in this example, the guard electrode 4 and the supporting hollow metal column 3 are both square prisms.

本発明による両極性電流プローブを用いると極
めて感度よく正確に逆電離の発生とその障害度を
検出できるので、これを用いて各種の電気集塵装
置に対して逆電離を抑制するための自動制御を行
うことができる。
By using the bipolar current probe according to the present invention, it is possible to detect the occurrence of back ionization and its degree of failure with extremely high sensitivity and accuracy, so this can be used to automatically control various electrostatic precipitators to suppress back ionization. It can be performed.

第7図はその一例で本発明による新規の円筒型
の両極性電流プローブを、本発明者の別発明「パ
ルス荷電型電気集塵装置」(特願昭51−073004
号、特開昭52−156473号)の最適制御を行うため
の検出部として使用せるものの系統図を示す。図
において15,15′は接地された集塵極、16
はふその中間に絶縁張架された放電極で直流高圧
電源17により導線18を介してコロナ開始電圧
Cよりもやや低い負の直流高電圧Vdcを印加さ
れ、両電極間の集塵空間19,19′に主電界E
をつくる。同時にVdcに重ねてパルス巾τP、波
高値VP、周波数Pの負パルス電圧20が、パル
ス電源21より導線22、結合コンデンサ23を
介して放電極16に供給される。その結果パルス
印加時のみパルスコロナ放電が放電極16に発生
し、負イオン電流が集塵極15へ向つて流れる。
したがつて集塵空間19に進入したダスト粒子は
この負イオン電流の射突をうけて負に荷電され、
上記主電界Eの作用でクーロン力をうけて集塵極
15,15′に駆動除去され、その上に附着堆積
してダスト層24,24′を形成する。25はパ
ルス電圧20の直流高圧電源17への進入を防ぐ
整流素子である。いま捕集すべきダストの電気抵
抗が高いとダスト層24,24′は上記の負イオ
ン電流に対して絶縁層となるので、その両端間に
著るしく大きな電圧降下を生じ、遂に絶縁破壊を
生じてここから集塵空間に向つて正コロナを生
じ、逆電離現象を発生する。その結果ここから正
イオン電流が流れ、これが集塵に必要な上記ダス
ト負電荷を中和して集塵性能を著るしくそこな
う。この逆電離現象を上記パルス荷電型電気集塵
装置で完全に阻止しつつ運転するためには、逆電
離の発生を検知し、 パルス電圧20のパルス巾τP、パルス波高
値電圧VP、ないしパルス周波数Pを制御する
ことにより、負イオン電流密度i−を絞つて、
その平均値−をダスト層の電気抵抗率ρdに
対して −×ρd<Eds (5) (但しEds=ダスト層の絶縁破壊電界強度)と
しこれによつてダスト層の絶縁破壊を防ぐ。
FIG. 7 shows an example of this, in which a new cylindrical bipolar current probe according to the present invention is shown in another invention of the present inventor, ``Pulse Charging Type Electrostatic Precipitator'' (Patent Application No. 51-073004).
Fig. 1 shows a system diagram of a device that can be used as a detection unit for optimal control of the invention (Japanese Patent Application Laid-open No. 52-156473). In the figure, 15 and 15' are grounded dust collecting electrodes, 16
A negative DC high voltage Vdc, which is slightly lower than the corona starting voltage V C , is applied by a DC high voltage power supply 17 via a conductor 18 to a discharge electrode that is insulated between the two electrodes, and a dust collection space 19 is created between the two electrodes. , 19' is the main electric field E
Create. At the same time, a negative pulse voltage 20 having a pulse width τ P , a peak value V P , and a frequency P is supplied to the discharge electrode 16 from the pulse power source 21 via the conductor 22 and the coupling capacitor 23 superimposed on Vdc. As a result, a pulsed corona discharge occurs in the discharge electrode 16 only when the pulse is applied, and a negative ion current flows toward the dust collecting electrode 15.
Therefore, the dust particles that have entered the dust collection space 19 are bombarded with this negative ion current and become negatively charged.
The dust is driven and removed by the dust collection electrodes 15, 15' under Coulomb force by the action of the main electric field E, and is deposited thereon to form dust layers 24, 24'. 25 is a rectifying element that prevents the pulse voltage 20 from entering the DC high voltage power supply 17. If the electrical resistance of the dust to be collected is high, the dust layers 24 and 24' will act as an insulating layer against the negative ion current, and a significantly large voltage drop will occur between both ends, eventually leading to dielectric breakdown. A positive corona is generated from there toward the dust collection space, and a reverse ionization phenomenon occurs. As a result, a positive ion current flows from here, which neutralizes the dust negative charge necessary for dust collection, significantly impairing the dust collection performance. In order to operate the above-mentioned pulse charging type electrostatic precipitator while completely preventing this reverse ionization phenomenon, the occurrence of reverse ionization is detected, and the pulse width τ P of the pulse voltage 20, the pulse wave peak voltage V P , or By controlling the pulse frequency P , the negative ion current density i- is narrowed down,
The average value - is set to -xρd<Eds (5) (where Eds = dielectric breakdown electric field strength of the dust layer) with respect to the electrical resistivity ρd of the dust layer, thereby preventing dielectric breakdown of the dust layer.

主電界強度Eを常に逆電離の生長と広い領域
への伝播を抑制する如き一定値Ep以下に保つ
様直流電圧Vdcを制御する。
The DC voltage Vdc is controlled so that the main electric field strength E is always kept below a constant value E p that suppresses the growth of back ionization and its propagation over a wide area.

の二条件を満足しつつ運転する必要がある。It is necessary to drive while satisfying the following two conditions.

26はこの逆電離検出用として用いられた本発
明による新規の両極性電流プローブで、放電極1
6、集塵極24′の間の集塵空間19′にこれらに
平行に上方から挿入されている。但しその3電極
プローブ部2は支持用中空金属柱3に接続せる金
網27によつて正負イオン電流の通過は許しつ
つ、電界的にはシールドされ、パルス電圧20に
よる誘導ノイズ電圧を各プローブA,B,Cが検
出するのを防いでいる。また該プローブ26には
可変直流電源12より導線10を介して負の直流
電圧が印加されるが、バイパスコンデンサ28が
電源12に並列に接続され、金網27と支持用中
空金属柱3にパルス電圧20により誘導されるノ
イズ電圧を大地に逃がし、実質的にノイズ電圧が
測定結果に障害を及ぼさない様になつている。こ
の場合ノイズの防止を完全にするためには該支持
用中空金属柱3および金網27は二重構造とした
二重シールド方式を採用するのがよい。さていま
本プローブの先端の3電極プローブ部2を測定点
に位置せしめ、すでにのべた如く中心電極Cを含
む対称面を電界に垂直ならしめる。この時中心電
極C1,C2に流入するイオン電流ICは電流検出制
御装置DC′により検出増巾され、その出力信号が
導線29を介して可変直流電源12の電圧調整部
にフイドバツクされて、ICがゼロとなる様にそ
の出力電圧Vが自動制御され擬似平衡状態を達成
する。この時測定電極B,Aに流入する正負の擬
似平衡電流IB=I+O′,IA=I-O′は微小電流検
出装置DB′,DA′により検出され、その出力信号
は更に導線30,31により信号処理変換装置3
2に送られて、比I+O′/I-O′に応じた修正係数
k+、k−を算出の上、正しい平衡イオン電流I
+O=k+I+O′、I-O=k−I-O′を算出、更にこれ
ら正負のイオン電流密度i+とi−を決定する。
そしてこれをそれぞれ高電位にある信号処理変換
装置32から大地電位にある制御部に伝送するた
め、i+,i−を光信号に変換、これが光フアイ
バー33を介して電源制御部34に送られる。制
御部27ではi+の値ないしi+/i−の比を制
御変数とし、この値をゼロ又は予め定めたゼロに
近い一定値以下にする様に、制御信号を導線3
5,36を介して放電極16に直流電圧を印加し
ている直流高圧電源17および放電極にパルス電
圧を供給しているパルス電源21に送り、その直
流電圧Vdcおよびパルス電圧の波高値VP、パル
ス巾τP、ないしパルス周波数Pをそれぞれ制御
することにより最適値、すなわち逆電離の発生を
抑制する範囲内でもつとも大きな主電界強度と負
イオン電流密度i−を与える様に自動制御する。
26 is a new bipolar current probe according to the present invention used for this reverse ionization detection, and the discharge electrode 1
6. It is inserted from above into the dust collecting space 19' between the dust collecting electrodes 24' in parallel thereto. However, the three-electrode probe part 2 is shielded from the electric field by a wire mesh 27 connected to the supporting hollow metal column 3, while allowing the passage of positive and negative ion currents, and the induced noise voltage caused by the pulse voltage 20 is transmitted to each probe A, This prevents B and C from being detected. Further, a negative DC voltage is applied to the probe 26 from the variable DC power supply 12 via the conductor 10, but a bypass capacitor 28 is connected in parallel to the power supply 12, and a pulse voltage is applied to the wire mesh 27 and the supporting hollow metal column 3. The noise voltage induced by the sensor 20 is dissipated to the ground, so that the noise voltage does not substantially interfere with the measurement results. In this case, in order to completely prevent noise, it is preferable to adopt a double shield system in which the supporting hollow metal column 3 and the wire mesh 27 have a double structure. Now, the three-electrode probe section 2 at the tip of this probe is positioned at the measurement point, and the plane of symmetry containing the center electrode C is made perpendicular to the electric field as described above. At this time, the ion current I C flowing into the center electrodes C 1 and C 2 is detected and amplified by the current detection control device D C ', and its output signal is fed back to the voltage adjustment section of the variable DC power supply 12 via the conductor 29. The output voltage V is automatically controlled so that I C becomes zero, achieving a pseudo-equilibrium state. At this time, the positive and negative pseudo-balanced currents I B =I +O ′, I A =I -O ′ flowing into the measurement electrodes B and A are detected by minute current detection devices D B ′ and D A ′, and their output signals are Furthermore, the signal processing conversion device 3 is connected by conductors 30 and 31.
2, and after calculating the correction coefficients k+ and k- according to the ratio I +O ′/I -O ′, the correct equilibrium ion current I
+O =k + I +O ' and I -O =k-I -O ' are calculated, and these positive and negative ion current densities i+ and i- are determined.
In order to transmit these from the signal processing conversion device 32 at a high potential to the control section at ground potential, i+ and i- are converted into optical signals, which are sent to the power supply control section 34 via the optical fiber 33. The control unit 27 uses the value of i+ or the ratio of i+/i- as a control variable, and sends a control signal to the conductor 3 so that this value is zero or less than a predetermined constant value close to zero.
5 and 36 to the DC high-voltage power supply 17 applying DC voltage to the discharge electrode 16 and the pulse power supply 21 supplying pulse voltage to the discharge electrode, and transmitting the DC voltage Vdc and the peak value V P of the pulse voltage. , pulse width τ P , or pulse frequency P are automatically controlled so as to provide optimum values, that is, the largest main electric field strength and negative ion current density i- within the range that suppresses the occurrence of back ionization.

この他本発明による新規の両極性電流プローブ
装置は凡ゆる種類の電気集塵装置(例えば放電極
と集塵極の他に第3電極を有する三電極型電気集
塵装置)の自動制御や粉体塗装置、静電分離等の
コントロールに使用することができるのである。
In addition, the novel bipolar current probe device according to the present invention can be used for automatic control of all types of electrostatic precipitators (for example, three-electrode electrostatic precipitators having a third electrode in addition to the discharge electrode and the collection electrode). It can be used to control body coating systems, electrostatic separation, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による新規の両極性電流プロー
ブ装置の一実施例の主要構造を示す斜視図、第2
図はその縦断面図、第3図はその横断面図であ
る。第4図は本発明の主要部たる三電極プローブ
部の各種構成形態を示す外観図、第5図は本発明
のプローブ電圧とプローブ電流の関係を示す特性
図、第6図は本発明のいま一つの実施例を示す縦
断面図である。第7図は本発明による新規の両極
性電流プローブ装置を逆電離検出装置として利用
し、パルス荷電型電気集塵装置の最適制御を実現
せるものの系統図である。図における主要部分を
示すと次の通りである。 1,5,6,6′,7,7′,8,8′,10,
11,18,22,29,30,31,33,3
5,36……導線、2……3電極プローブ部、
A,B……測定電極、C,C1,C2……中心電
極、3……支持用中空金属柱、4……ガード電
極、DA,DB,DC……微小電流計、DA′,DB
……微小電流検出装置、DC′……電流検出制御装
置、12……可変直流電源、13……電圧計、1
4……対称面、15,15′……集塵極、16…
…放電極、17……直流高圧電源、19,19′
……集塵空間、21……パルス電源、23……結
合コンデンサー、24,24′……ダスト層、2
5……整流素子、26……両極性電流プローブ装
置、27……シールド用金網、28……バイパス
コンデンサー、32……信号処理変換装置、33
……光フアイバー、34……電源制御部。
FIG. 1 is a perspective view showing the main structure of an embodiment of the novel bipolar current probe device according to the present invention;
The figure is a longitudinal cross-sectional view thereof, and FIG. 3 is a cross-sectional view thereof. FIG. 4 is an external view showing various configurations of the three-electrode probe section which is the main part of the present invention, FIG. FIG. 2 is a vertical cross-sectional view showing one embodiment. FIG. 7 is a system diagram of a system in which optimal control of a pulse charging type electrostatic precipitator can be realized by using the novel bipolar current probe device according to the present invention as a reverse ionization detection device. The main parts in the figure are as follows. 1, 5, 6, 6', 7, 7', 8, 8', 10,
11, 18, 22, 29, 30, 31, 33, 3
5, 36...Conducting wire, 2...3 electrode probe part,
A, B...Measurement electrode, C, C1 , C2 ...Center electrode, 3...Hollow metal column for support, 4...Guard electrode, D A , D B , D C ... Microcurrent meter, D A ′、D B
...Minute current detection device, D C ′ ...Current detection control device, 12 ...Variable DC power supply, 13 ...Voltmeter, 1
4... Symmetry plane, 15, 15'... Dust collection pole, 16...
...Discharge electrode, 17...DC high voltage power supply, 19, 19'
... Dust collection space, 21 ... Pulse power supply, 23 ... Coupling capacitor, 24, 24' ... Dust layer, 2
5... Rectifying element, 26... Bipolar current probe device, 27... Shield wire mesh, 28... Bypass capacitor, 32... Signal processing conversion device, 33
...Optical fiber, 34...Power control unit.

Claims (1)

【特許請求の範囲】 1 対称面に対して面対称の形状を有する小形の
仮想面と該対称面とが交叉する交叉線S上に小さ
な巾を持つた長形の中心電極Cを絶縁配設し、そ
の両側の該仮想面上に、該交叉線Sに対して互に
対称にかつ該両側仮想面全体を実質的に覆う如く
にかつ該中心電極Cより一定の小間隔をへだてて
測定電極A,Bを絶縁配設して一つの三電極プロ
ーブを構成し、これを支持用中空金属柱により絶
縁支持し、該電極C,A,Bにそれぞれ絶縁導線
を接続の上これらを該支持用中空金属柱の内部を
通して絶縁貫通し、これら導線の他端をそれぞれ
微小電流計DC,DA,DBの端子に接続し、該D
C,DA,DBのいま一つの端子と該支持用中空金
属柱とを共通の導線に接続の上、これを可変直流
電源に接続して一つの測定系を構成し、該三電極
プローブを正イオン電流と負イオン電流が共存す
る電界中の測定点に挿入の上、A,B両電極の一
つを負イオン源、いま一つを正イオン源に向けて
該対称面が電界の方向と直交するように配設し、
該可変直流電源の電圧Vを変化することにより該
三電極プローブの電極C,A,Bおよび該支持用
中空金属柱の電位を変化して中心電極Cに接続せ
る該微小電流計DCの電流ICが実質的にゼロとな
るようにし、その時の電極A,Bに接続せる前記
微小電流計DA,DBの電流IA,IBの読みを求
め、このIA,IBの値が実質的にそれぞれ正負イ
オン電流密度に比例することを利用してIAとIB
の値から正負イオン電流密度を同時にかつ分離し
て測定することを特徴とする所の両極性イオン電
流プローブ装置。 2 対称面に対して面対称の形状を有する小形の
仮想面と該対称面とが交叉する交叉線S上に小さ
な巾を持つた長形の中心電極Cを絶縁配設し、そ
の両側の該仮想面上に、該交叉線Sに対して互に
対称にかつ該両側仮想面全体を実質的に覆う如く
にかつ該中心電極Cより一定の小間隔をへだてて
測定電極A,Bを絶縁配設して一つの三電極プロ
ーブを構成し、これを支持用中空金属柱により絶
縁支持し、該電極C,A,Bにそれぞれ絶縁導線
を接続の上これらを該支持用中空金属柱の内部を
通して絶縁貫通し、これら導線の他端をそれぞれ
微小電流計DC,DA,DBの端子に接続し、該D
C,DA,DBのいま一つの端子と該支持用中空金
属柱とを共通の導線に接続の上、これを可変直流
電源に接続して一つの測定系を構成し、該三電極
プローブを正イオン電流と負イオン電流が共存す
る電界中の測定点に挿入の上、A,B両電極の一
つを負イオン源、いま一つを正イオン源に向けて
該対称面が電界の方向と直交するように配設し、
該可変直流電源の電圧Vを変化することにより該
三電極プローブの電極C,A,Bおよび該支持用
中空金属柱の電位を変化して中心電極Cに接続せ
る該微小電流計DCの電流ICが実質的にゼロとな
るようにし、その時の電極A,Bに接続せる前記
微小電流計DA,DBの電流IA,IBの読みを求
め、このIA,IBの値が実質的にそれぞれ正負イ
オン電流密度に比例することを利用してIAとIB
の値から正負イオン電流密度を同時にかつ分離し
て測定することを特徴する所の両極性イオン電流
プローブ装置を、電気集塵装置の逆電離電流検出
装置として使用し、これによつて電気集塵装置に
電圧を印荷する電源の出力を自動制御する所の電
気集塵装置の自動制御装置。
[Claims] 1. An elongated central electrode C having a small width is insulated and disposed on a cross line S where a small virtual surface having a plane-symmetrical shape with respect to a plane of symmetry intersects the plane of symmetry. Measurement electrodes are placed on the imaginary planes on both sides thereof, symmetrically with respect to the intersection line S, so as to substantially cover the entire imaginary planes on both sides, and spaced apart from the center electrode C by a certain small distance. A and B are arranged insulated to form one three-electrode probe, which is insulated and supported by a hollow metal pillar for support, and insulated conductive wires are connected to electrodes C, A, and B, respectively, and these are connected to the support. The insulation is penetrated through the interior of the hollow metal column, and the other ends of these conductors are connected to the terminals of minute current meters D C , D A , and D B , respectively.
Another terminal of C , D A , D B and the supporting hollow metal column are connected to a common conductive wire, and this is connected to a variable DC power supply to configure one measurement system, and the three-electrode probe Insert the electrode into a measurement point in an electric field where positive ion current and negative ion current coexist, and point one of the A and B electrodes toward the negative ion source and the other toward the positive ion source so that the plane of symmetry is in the electric field. arranged perpendicular to the direction,
By changing the voltage V of the variable DC power supply, the potentials of the electrodes C, A, B of the three-electrode probe and the supporting hollow metal column are changed, and the current of the microammeter D C connected to the center electrode C is changed. Make sure that I C becomes substantially zero, and then obtain the readings of the currents I A and I B of the microammeters D A and D B connected to electrodes A and B, and calculate the values of I A and I B. I A and I B are substantially proportional to the positive and negative ion current densities, respectively.
A bipolar ion current probe device characterized in that positive and negative ion current densities are measured simultaneously and separately from the values of . 2. An elongated center electrode C having a small width is insulated and arranged on the intersection line S where a small virtual plane having a plane-symmetrical shape with respect to the plane of symmetry intersects the plane of symmetry, and Measuring electrodes A and B are insulated and arranged on the virtual plane symmetrically with respect to the intersection line S so as to substantially cover the entire virtual plane on both sides and spaced apart from the center electrode C by a certain small distance. This is insulated and supported by a supporting hollow metal column, and insulated conductive wires are connected to each of the electrodes C, A, and B, and these are passed through the inside of the supporting hollow metal column. Penetrate the insulation and connect the other ends of these conductors to the terminals of microcurrent meters D C , D A , and D B , respectively.
Another terminal of C , D A , D B and the supporting hollow metal column are connected to a common conductive wire, and this is connected to a variable DC power supply to configure one measurement system, and the three-electrode probe Insert the electrode into a measurement point in an electric field where positive ion current and negative ion current coexist, and point one of the A and B electrodes toward the negative ion source and the other toward the positive ion source so that the plane of symmetry is in the electric field. arranged perpendicular to the direction,
By changing the voltage V of the variable DC power supply, the potentials of the electrodes C, A, B of the three-electrode probe and the supporting hollow metal column are changed, and the current of the microammeter D C connected to the center electrode C is changed. Make sure that I C becomes substantially zero, and then obtain the readings of the currents I A and I B of the microammeters D A and D B connected to electrodes A and B, and calculate the values of I A and I B. I A and I B are substantially proportional to the positive and negative ion current densities, respectively.
A bipolar ion current probe device, which is characterized by simultaneously and separately measuring positive and negative ion current densities from the values of An automatic control device for electrostatic precipitators that automatically controls the output of the power supply that applies voltage to the device.
JP6622980A 1980-05-19 1980-05-19 Bipolar ion current probe device Granted JPS56162043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6622980A JPS56162043A (en) 1980-05-19 1980-05-19 Bipolar ion current probe device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6622980A JPS56162043A (en) 1980-05-19 1980-05-19 Bipolar ion current probe device

Publications (2)

Publication Number Publication Date
JPS56162043A JPS56162043A (en) 1981-12-12
JPS6255622B2 true JPS6255622B2 (en) 1987-11-20

Family

ID=13309802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6622980A Granted JPS56162043A (en) 1980-05-19 1980-05-19 Bipolar ion current probe device

Country Status (1)

Country Link
JP (1) JPS56162043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212608A (en) * 1993-01-19 1994-08-02 Hiroshi Tomomatsu Shock absorber for automobile in safety lamp, etc.

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076670A (en) * 1983-10-03 1985-05-01 Nippon Kagaku Kogyo Kk Minute current detecting apparatus under high voltage
JP2002228635A (en) * 2001-01-30 2002-08-14 Mit:Kk Suction type ion-measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212608A (en) * 1993-01-19 1994-08-02 Hiroshi Tomomatsu Shock absorber for automobile in safety lamp, etc.

Also Published As

Publication number Publication date
JPS56162043A (en) 1981-12-12

Similar Documents

Publication Publication Date Title
US3718029A (en) Electrostatic mass per unit volume dust monitor
US5214386A (en) Apparatus and method for measuring particles in polydispersed systems and particle concentrations of monodispersed aerosols
US4435681A (en) Bipolar ionic current probe unit and method for measuring positive and negative current densities by means of the same probe unit
JPH063406B2 (en) Device for detecting pressure fluctuations in the combustion chamber of an internal combustion engine
CA1328679C (en) Apparatus for particle determination in liquid metals
US3178930A (en) Monitor and spectrometer for atmospheric particulate matter
JPS6255622B2 (en)
US3612994A (en) Cable insulation tester having a liquid immersed annular electrode
US4251775A (en) Ion flux density probe
Masuda et al. Sensing of back discharge and bipolar ionic current
Kubuki et al. Breakdown characteristics in air gaps with artificial floating metals under DC voltage
WO1988005535A2 (en) Ion mobility detector
Metwally Factors affecting corona on twin-point gaps under dc and ac HV
JPS6138415B2 (en)
JPH029311B2 (en)
Collins et al. Spherical probes for corona discharges
JPH11297145A (en) Insulator dirt detecting device
Khayam et al. Partial discharge measurement on three phase construction
JPS5469701A (en) Insulation deterioration detecting device for rotary electric machine coil
JP2579281B2 (en) Conductivity measurement sensor
RU2740797C1 (en) Electrolyte solution density and level meter in battery
Lehtimäki New current measuring technique for electrical aerosol analyzers
FI75674C (en) ANORDNING FOER MAETNING AV DISPERSIONSKONSISTENSEN HOS PULVER.
Langer et al. Development of a Simple, High‐Resolution Mobility Analyzer for Small, Charged Particles
JPS6371632A (en) Ultrafine particle detecting and counting device