JP3139221B2 - Power control method of electric dust collector - Google Patents

Power control method of electric dust collector

Info

Publication number
JP3139221B2
JP3139221B2 JP05147064A JP14706493A JP3139221B2 JP 3139221 B2 JP3139221 B2 JP 3139221B2 JP 05147064 A JP05147064 A JP 05147064A JP 14706493 A JP14706493 A JP 14706493A JP 3139221 B2 JP3139221 B2 JP 3139221B2
Authority
JP
Japan
Prior art keywords
discharge
voltage
ionization phenomenon
slope
reverse ionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05147064A
Other languages
Japanese (ja)
Other versions
JPH06328006A (en
Inventor
行雄 近藤
章男 赤坂
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP05147064A priority Critical patent/JP3139221B2/en
Publication of JPH06328006A publication Critical patent/JPH06328006A/en
Application granted granted Critical
Publication of JP3139221B2 publication Critical patent/JP3139221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電気集塵機の電力制御方
法に係り、特に電気集塵機の集塵室に設けられた放電極
と集塵極の間に高電圧を印加する消費電力を低減する電
気集塵機の電力制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric power control method for an electric precipitator, and more particularly to an electric power control method for applying a high voltage between a discharge electrode and a precipitating electrode provided in a dust collecting chamber of the electric precipitator. The present invention relates to a power control method for a dust collector.

【0002】[0002]

【従来の技術】電気集塵機は、石油や石炭等の各種燃焼
炉から排出される燃焼ガス中のダスト捕集装置として工
業用に広く採用されている。そして、電気集塵機の集塵
性能は、捕集しようとするダストの電気抵抗率に左右さ
れ、電気抵抗率が1012Ωcmを越えると、集塵極上の
ダストから放電極に向かって放電が起こる、所謂、逆電
離現象によって集塵性能が大幅に低下するという問題が
あった。この対策としては電気集塵機の高電圧電源装置
として、直流バイアス電源からの直流ベース電圧に、パ
ルス電源からのパルス電圧を重畳するパルス荷電方式が
提案されている。このパルス荷電方式により、電気抵抗
率が1012Ωcmを越える逆電離現象時での集塵性能が
従来の直流電圧のみの直流荷電に比べ改良されるように
なった。
2. Description of the Related Art An electric dust collector is widely used in industry as a device for collecting dust in combustion gas discharged from various combustion furnaces for petroleum and coal. And, the dust collecting performance of the electric dust collector depends on the electric resistivity of the dust to be collected. When the electric resistivity exceeds 10 12 Ωcm, discharge occurs from the dust on the dust collecting electrode toward the discharge electrode. There has been a problem that the so-called reverse ionization phenomenon significantly reduces dust collection performance. As a countermeasure for this, a pulse charging method in which a pulse voltage from a pulse power supply is superimposed on a DC base voltage from a DC bias power supply has been proposed as a high-voltage power supply device for an electrostatic precipitator. With this pulse charging method, the dust collection performance during the reverse ionization phenomenon in which the electrical resistivity exceeds 10 12 Ωcm has been improved compared to the conventional DC charging using only a DC voltage.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、パルス
荷電を行う従来の電気集塵機は、逆電離現象時にも放電
極と集塵極の間に印加する供給電力が一定であった。こ
の結果、逆電離現象時においては効率の良い集塵性能を
得ることができないと共に、電力消費の点で無駄が発生
するという問題がある。
However, the conventional electric precipitator that performs pulse charging has a constant power supply applied between the discharge electrode and the precipitating electrode even during the reverse ionization phenomenon. As a result, there is a problem that efficient dust collection performance cannot be obtained during the reverse ionization phenomenon, and that there is waste in terms of power consumption.

【0004】なぜなら、本発明の発明者は、種々の実験
により以下の知見を得た。即ち、パルス荷電方式で荷電
する場合でも、図2に示すように、逆電離現象が発生し
ていない正常時での集塵性能は電気集塵機に供給する供
給電力の増加に伴って向上し、放電電流が0.2〜0.
5mA/m2 の時の供給電力時に最高の集塵性能を示
す。一方、前記逆電離現象時での集塵性能は供給電力の
増加に伴って次第に上昇し、その後は逆に低下する。そ
して、最大の集塵性能は、放電電流で0.05mA/m
2 となる供給電力時である。このことから、正常時と逆
電離現象時では、電気集塵機に供給する供給電力を変え
て効率の良い集塵性能が得られる放電電流に制御するこ
とが必要である。
[0004] The inventors of the present invention have obtained the following findings through various experiments. That is, even when charging is performed by the pulse charging method, as shown in FIG. 2, the dust collection performance in a normal state in which the reverse ionization phenomenon does not occur is improved with an increase in the power supplied to the electric dust collector, and the discharge is performed. When the electric current is 0.2-0.
It shows the highest dust collection performance when the supply power is 5 mA / m 2 . On the other hand, the dust collection performance at the time of the reverse ionization phenomenon gradually increases with an increase in the supplied power, and thereafter decreases conversely. The maximum dust collection performance is 0.05 mA / m in discharge current.
This is the time when the supply power is 2. For this reason, it is necessary to change the supply power supplied to the electrostatic precipitator to control the discharge current to obtain an efficient dust collection performance between the normal state and the reverse ionization phenomenon.

【0005】そして、図3に示すように、正常時と逆電
離現象時では、放電極と集塵極の間に印加される印加電
圧及び放電電流で表される放電特性は異なる曲線を描
き、その曲線の違いは前記放電特性曲線の傾きの違いと
して捉えることができる。即ち、図3から正常時の傾き
はΔI1 /ΔVで表され、逆電離現象時の傾きはΔi2
/ΔVで表すことができる。
As shown in FIG. 3, in a normal state and a reverse ionization phenomenon, a discharge characteristic represented by an applied voltage and a discharge current applied between the discharge electrode and the dust collection electrode draws different curves, The difference between the curves can be regarded as the difference between the slopes of the discharge characteristic curves. That is, from FIG. 3, the slope at the normal time is represented by ΔI 1 / ΔV, and the slope at the time of the reverse ionization phenomenon is Δi 2
/ ΔV.

【0006】本発明はこのような事情に鑑みてなされた
もので、電気集塵機の捕集性能を向上すると共に省エネ
になる電気集塵機の電力制御方法を提供することを目的
とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a power control method for an electric dust collector that improves the collection performance of the electric dust collector and saves energy.

【0007】[0007]

【課題を解決する為の手段】本発明は、前記目的を達成
する為に、直流ベース電圧にパルス電圧を重畳したパル
ス荷電方式の高電圧を、電気集塵機の放電極と集塵極と
の間に印加する電気集塵機の電力制御方法に於いて、前
記放電極と前記集塵極の間に印加される印加電圧及び放
電電流から放電特性曲線を求め、前記放電特性曲線の前
記印加電圧の電圧変化に対する前記放電電流の電流変化
から前記放電特性曲線の傾きを算出し、前記算出した傾
きと予め求めた逆電離現象時又は非逆電離現象時の放電
特性曲線のうち少なくとも一方の放電特性曲線の基準傾
きとを比較して前記傾きが逆電離現象時か非逆電離現象
時かを判定し、前記判定した判定結果に基づいて前記放
電電流の大小を制御するようにしたことを特徴とする。
According to the present invention, in order to achieve the above object, a high voltage of a pulse charging system in which a pulse voltage is superimposed on a DC base voltage is applied between a discharge electrode and a dust collection electrode of an electrostatic precipitator. In the power control method of the electrostatic precipitator applied to the discharge electrode, a discharge characteristic curve is obtained from an applied voltage and a discharge current applied between the discharge electrode and the dust collection electrode, and a voltage change of the applied voltage in the discharge characteristic curve is obtained. The slope of the discharge characteristic curve is calculated from the current change of the discharge current with respect to the discharge characteristic curve, and the calculated slope and the discharge characteristic curve at the time of the reverse ionization phenomenon or the non-reverse ionization phenomenon determined in advance are used as the reference of the discharge characteristic curve. It is characterized by comparing the gradient with the gradient to determine whether the gradient is during reverse ionization or non-reverse ionization, and controlling the magnitude of the discharge current based on the determined result.

【0008】[0008]

【作用】本発明は、直流ベース電圧にパルス電圧を重畳
するパルス荷電方式を採用した場合でも、前記正常時
(逆電離現象時でない場合)と前記逆電離現象時とで
は、電気集塵機の集塵性能は電気集塵機に供給する供給
電力、即ち、放電電流の大小により大きく異なる。そし
て、正常時と逆電離現象の場合とでは、放電極と集塵極
との間に印加される印加電圧と放電電流で表される放電
特性は異なる曲線を描くという知見を得たことにより達
成することができた。
According to the present invention, even when a pulse charging method in which a pulse voltage is superimposed on a DC base voltage is employed, the dust collection of the electrostatic precipitator is performed in the normal state (when the reverse ionization phenomenon is not performed) and in the reverse ionization phenomenon. The performance varies greatly depending on the power supplied to the electrostatic precipitator, that is, the magnitude of the discharge current. This was achieved by the knowledge that the discharge characteristics represented by the applied voltage and discharge current applied between the discharge electrode and the dust collection electrode draw different curves in the normal state and in the case of the reverse ionization phenomenon. We were able to.

【0009】そして、本発明によれば、前記放電極と前
記集塵極の間に印加される印加電圧及び放電電流から放
電特性曲線を求め、前記放電特性曲線の前記印加電圧の
電圧変化に対する前記放電電流の電流変化から前記放電
特性曲線の傾きを算出し、該傾きと、予め求めた逆電離
現象時又は非逆電離現象時の放電特性曲線のうち少なく
とも一方の放電特性曲線の基準傾きとを比較して前記傾
きが逆電離現象時か非逆電離現象時否かを判定する。そ
して、判定した判定結果に基づいて前記放電電流の大小
を制御するようにした。例えば、前記判定結果が逆電離
現象でない場合は前記放電電流が0.2〜0.5mA/
2 になるように制御する。又、前記判定結果が逆電離
現象の場合は放電電流値が0.05mA/m2 になるよ
うに制御する。
According to the present invention, a discharge characteristic curve is obtained from an applied voltage and a discharge current applied between the discharge electrode and the dust collection electrode, and the discharge characteristic curve with respect to a change in the applied voltage of the discharge characteristic curve. The slope of the discharge characteristic curve is calculated from the current change of the discharge current, and the slope and the reference slope of at least one of the discharge characteristic curves at the time of the reverse ionization phenomenon or the non-reverse ionization phenomenon determined in advance. In comparison, it is determined whether the inclination is a reverse ionization phenomenon or a non-reverse ionization phenomenon. The magnitude of the discharge current is controlled based on the result of the determination. For example, when the determination result is not the reverse ionization phenomenon, the discharge current is 0.2 to 0.5 mA /
m 2 . If the result of the determination is a reverse ionization phenomenon, the discharge current value is controlled to be 0.05 mA / m 2 .

【0010】これにより、正常時、逆電離現象時に応じ
て効率の良い集塵性能を得ることができる。
As a result, it is possible to obtain an efficient dust collection performance according to the normal state and the reverse ionization phenomenon.

【0011】[0011]

【実施例】以下添付図面に従って本発明に係る電気集塵
機の電力制御方法の好ましい実施例について詳説する。
図1は、本発明の電気集塵機の電力制御方法に用いる高
電圧電源装置の一実施例を示す回路図である。同図に示
すように、高電圧電源装置は、主として直流ベース電圧
を発生する直流ベース電圧発生回路10、パルス電圧を
発生するパルス電圧発生回路12、直流ベース電圧にパ
ルス電圧を重畳する結合コンデンサー14、放電極と集
塵極の間に印加される印加電圧及び放電電流を逐次測定
する測定回路16、測定回路16での測定値から放電特
性曲線を求め、その傾きを算出すると共に、前記傾きと
予め求めた正常時(電気抵抗率が1012Ωcmより小さ
い、所謂、逆電離現象でない場合)の放電特性曲線の基
準傾きとを比較して前記傾きが正常時か逆電離現象時か
を判定する演算器17と、前記演算器17からの指示に
より前記直流ベース電圧発生回路10の電圧を増減させ
るゲート制御回路18で構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the power control method for an electric dust collector according to the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a circuit diagram showing an embodiment of a high-voltage power supply device used in the power control method for an electric dust collector according to the present invention. As shown in FIG. 1, the high-voltage power supply includes a DC base voltage generating circuit 10 for mainly generating a DC base voltage, a pulse voltage generating circuit 12 for generating a pulse voltage, and a coupling capacitor 14 for superimposing a pulse voltage on the DC base voltage. A measuring circuit 16 for sequentially measuring an applied voltage and a discharging current applied between the discharge electrode and the dust collecting electrode, obtaining a discharge characteristic curve from the measured values in the measuring circuit 16, calculating a slope thereof, and calculating the slope. It is determined whether the slope is normal or reverse ionization by comparing with a reference slope of a discharge characteristic curve obtained in a normal state (electric resistivity is smaller than 10 12 Ωcm, that is, when there is no reverse ionization). It comprises an arithmetic unit 17 and a gate control circuit 18 for increasing or decreasing the voltage of the DC base voltage generation circuit 10 according to an instruction from the arithmetic unit 17.

【0012】また、直流ベース電圧発生回路10は、第
1の交流電源24が第1のサイリスタ26を経由して第
1のトランス28の一次コイル側に接続され、第1の交
流電源回路を形成している。また、前記第1のサイリス
タ26とは導通の向きが逆に接続された第2のサイリス
タ30が、前記第1のサイリスタ26と並列に配設され
ている。そして、第1及び第2のサイリスタ26、30
のゲート端子26A、30Aは前記ゲート制御回路18
に接続されている。これにより、ゲート制御回路18で
前記第1及び第2のサイリスタをスイッチングすること
により第1の交流電源回路の電圧を増減できるようにな
っている。また、前記第1のトランス28の二次コイル
側は4個のダイオードブリッジ32、32…と第1のリ
アクトル34により整流回路が形成され、所定の直流ベ
ース電圧が得られる。また、整流回路には前記変流器2
2が配設され、電気集塵機20の図示しない放電極と集
塵極との間に放電される放電電流値をゲート制御回路1
8にフィードバックする。
In the DC base voltage generating circuit 10, a first AC power supply 24 is connected to a primary coil side of a first transformer 28 via a first thyristor 26 to form a first AC power supply circuit. are doing. Further, a second thyristor 30 connected to the first thyristor 26 in a direction opposite to that of the first thyristor 26 is provided in parallel with the first thyristor 26. Then, the first and second thyristors 26, 30
Of the gate control circuit 18
It is connected to the. This allows the gate control circuit 18 to switch the first and second thyristors to increase or decrease the voltage of the first AC power supply circuit. A rectifier circuit is formed on the secondary coil side of the first transformer 28 by the four diode bridges 32, 32,... And the first reactor 34, and a predetermined DC base voltage is obtained. The rectifier circuit includes the current transformer 2
2, a gate control circuit 1 for controlling a discharge current value discharged between a discharge electrode (not shown) of the electrostatic precipitator 20 and the precipitating electrode.
Feedback to 8

【0013】また、パルス電圧発生回路12は、第2の
交流電源36が第3のサイリスタ38を経由して第2の
トランス40の一次コイル側に接続され、第2の交流電
源回路を形成している。また、前記第3のサイリスタ3
8とは導通の向きが逆に接続された第4のサイリスタ4
2が、前記第3のサイリスタ38と並列に配設されてい
る。また、前記第2のトランス40の二次コイル側はパ
ルス回路を形成しており、4個のダイオードブリッジ4
4、44…と第2のリアクトル46により交流電源電圧
の位相角制御と整流が行われて所定の直流電圧に充電さ
れる電源コンデンサ48、電源コンデンサ48とパルス
トランス50の一次側コイルの中間タップとの間に配設
され電源コンデンサ48に蓄えられた電荷を放出する方
向に導通可能な第5のサイリスタ52、電源コンデンサ
48とパルストランス50の一次側コイルの他の端子と
の間に配設され第5のサイリスタ52と導通の向きが逆
に接続された第6のサイリスタ54で構成されている。
そして、第5及び第6のサイリスタ52、54のゲート
端子52A、54Aは第2のゲート制御回路56に接続
されている。このパルス電圧発生回路12の回路構成に
より、任意のパルス幅の矩形波パルス電圧を得ることが
できると共に、電気集塵機20の蓄積電荷を前記電源コ
ンデンサ48に効率良く回収することができる。
In the pulse voltage generating circuit 12, a second AC power supply 36 is connected to a primary coil side of a second transformer 40 via a third thyristor 38 to form a second AC power supply circuit. ing. Further, the third thyristor 3
4th thyristor 4 connected in the reverse direction to 8
2 are arranged in parallel with the third thyristor 38. A pulse circuit is formed on the secondary coil side of the second transformer 40, and four diode bridges 4 are provided.
, 44, and the second reactor 46 perform a phase angle control and rectification of an AC power supply voltage, and are charged to a predetermined DC voltage. A power supply capacitor 48 and an intermediate tap between the power supply capacitor 48 and a primary coil of the pulse transformer 50 are provided. A fifth thyristor 52 disposed between the power supply capacitor 48 and the other terminal of the primary coil of the pulse transformer 50, the fifth thyristor 52 being capable of conducting in the direction of discharging the electric charge stored in the power supply capacitor 48; And a sixth thyristor 54 connected to the fifth thyristor 52 in the opposite direction of conduction.
The gate terminals 52A and 54A of the fifth and sixth thyristors 52 and 54 are connected to a second gate control circuit 56. With the circuit configuration of the pulse voltage generation circuit 12, a rectangular wave pulse voltage having an arbitrary pulse width can be obtained, and the electric charge stored in the electric precipitator 20 can be efficiently collected in the power supply capacitor 48.

【0014】また、パルストランス50の二次側コイル
に接続された結合コンデンサ14により、パルス電圧は
前記直流ベース電圧に重畳されて電気集塵機20の放電
極に印加される。次に、上記の如く構成された本発明の
電気集塵機の電力制御方法の作用について説明する。
尚、本発明は、従来技術でも述べたように、直流ベース
電圧にパルス電圧を重畳するパルス荷電方式を採用した
場合でも、前記正常時と前記逆電離現象時とでは、電気
集塵機20の集塵性能は電気集塵機20に供給する供給
電力、即ち、放電電流の大小により大きく異なる。ま
た、正常時と逆電離現象時とでは、放電極と集塵極との
間に印加される印加電圧と放電電流で表される放電特性
曲線が異なるという知見を得たことにより成されたもの
であり、これを前提として本発明の作用効果を説明す
る。尚、前記したように、演算器17には、正常時の放
電特性曲線の基準傾きが予め入力されている。即ち、前
記基準傾きは図3で示したΔI1 /ΔVとなる。そし
て、この正常時の放電電流は0.2〜0.5mA/m2
になるようにゲート制御回路18で前記直流ベース電圧
発生回路10の電圧を調整しておく。
The pulse voltage is superimposed on the DC base voltage and applied to the discharge electrode of the electrostatic precipitator 20 by the coupling capacitor 14 connected to the secondary coil of the pulse transformer 50. Next, the operation of the power control method for the electric precipitator of the present invention configured as described above will be described.
Note that, as described in the related art, the present invention employs a pulse charging method in which a pulse voltage is superimposed on a DC base voltage. The performance greatly differs depending on the supply power supplied to the electrostatic precipitator 20, that is, the magnitude of the discharge current. In addition, the fact that the discharge characteristic curve expressed by the applied voltage applied between the discharge electrode and the dust collection electrode and the discharge current differs between the normal state and the reverse ionization phenomenon was obtained. The operation and effect of the present invention will be described on the premise of this. As described above, the reference slope of the normal discharge characteristic curve is input to the computing unit 17 in advance. That is, the reference inclination is ΔI 1 / ΔV shown in FIG. The discharge current in the normal state is 0.2 to 0.5 mA / m 2.
The voltage of the DC base voltage generation circuit 10 is adjusted by the gate control circuit 18 so that

【0015】そして、電気集塵機20の運転を開始する
と、パルス電圧発生回路12で発生するパルス電圧は、
結合コンデンサ14により直流ベース電圧発生回路10
で発生する直流ベース電圧に重畳され、電気集塵機20
の放電極に印加される。同時に、測定回路16では、放
電極と集塵極との間に印加される印加電圧と放電電流が
測定され逐次演算器17に入力される。次に、演算器1
7では、測定回路16で測定された印加電圧と放電電流
から放電特性曲線が求められると共に、その放電特性曲
線の傾きが算出され、予め入力されている基準傾きとが
比較される。そして、前記傾きが前記基準傾きより大き
い場合は逆電離現象時であると判定して、演算器17か
らの指示によりゲート制御回路18で第1の交流電源回
路の電圧が小さくなるように制御し、高電圧電源装置か
ら電気集塵機20に供給する供給電力を減少させて放電
電流値を小さくする。この時の放電電流値が変流器22
からゲート制御回路18にフィードバックされるので、
ゲート制御回路18では、放電電流値が0.05mA/
2 になるように電気集塵機20に供給する供給電力を
制御する。
When the operation of the electric precipitator 20 is started, the pulse voltage generated by the pulse voltage generation circuit 12 is:
DC base voltage generating circuit 10 by coupling capacitor 14
Superposed on the DC base voltage generated by the
Are applied to the discharge electrodes. At the same time, in the measurement circuit 16, the applied voltage and the discharge current applied between the discharge electrode and the dust collection electrode are measured and sequentially input to the arithmetic unit 17. Next, arithmetic unit 1
In step 7, a discharge characteristic curve is obtained from the applied voltage and the discharge current measured by the measurement circuit 16, and the slope of the discharge characteristic curve is calculated, and is compared with a previously input reference slope. When the slope is larger than the reference slope, it is determined that the reverse ionization phenomenon has occurred, and the gate control circuit 18 controls the gate control circuit 18 to decrease the voltage of the first AC power supply circuit in accordance with an instruction from the calculator 17. In addition, the power supplied from the high-voltage power supply to the electrostatic precipitator 20 is reduced to reduce the discharge current value. The discharge current value at this time is
Is fed back to the gate control circuit 18 from
In the gate control circuit 18, the discharge current value is 0.05 mA /
The power supplied to the electric precipitator 20 is controlled so as to be m 2 .

【0016】もし、前記演算器17で算出された前記傾
きが前記基準傾きと同じ場合は正常時であると判定し
て、放電電流を電気集塵機20のスタート時の放電電流
値である0.2〜0.5mA/m2 に維持する。このよ
うに、本発明の電気集塵機の電力制御方法では、正常時
か逆電離現象時かの判定を行い、その判定結果に基づい
て放電電流の大小を制御する。即ち、効率の良い集塵性
能が得られる放電電流になるように高電圧電源装置から
電気集塵機20に供給する供給電力を変化させる。これ
により、正常時、逆電離現象時共に効率のよい集塵性能
を得ることができるので、電気集塵機20の捕集性能を
向上させることができると共に、消費電力に対する捕集
効率が向上するので、省エネになる。
If the slope calculated by the computing unit 17 is the same as the reference slope, it is determined that the operation is normal, and the discharge current is set to 0.2, which is the discharge current value at the start of the electric precipitator 20. to maintain the ~0.5mA / m 2. As described above, in the power control method for the electrostatic precipitator according to the present invention, it is determined whether the current is normal or the time of the reverse ionization phenomenon, and the magnitude of the discharge current is controlled based on the determination result. That is, the power supplied from the high-voltage power supply to the electric precipitator 20 is changed so that the discharge current provides an efficient dust collection performance. As a result, efficient dust collection performance can be obtained in both normal and reverse ionization phenomena, so that the collection performance of the electric dust collector 20 can be improved, and the collection efficiency with respect to power consumption is improved. It saves energy.

【0017】尚、本実施例では、正常時の放電特性曲線
の傾きを基準傾きとしたが、逆電離現象時の傾きを基準
傾きとすることもできる。
In this embodiment, the slope of the discharge characteristic curve at normal time is set as the reference slope, but the slope at the time of reverse ionization may be set as the reference slope.

【0018】[0018]

【発明の効果】以上説明したように、本発明に係る電気
集塵機の電力制御方法によれば、非逆電離現象時(正常
時)か逆電離現象時かの判定を行い、その判定結果に基
づいて放電電流の大小を制御するようにした。即ち、効
率の良い集塵性能が得られる放電電流になるように電気
集塵機に供給する供給電力を変化させる。これにより、
正常時、逆電離現象時共に効率のよい集塵性能を得るこ
とができるので、電気集塵機の捕集性能を向上させるこ
とができると共に、消費電力に対する捕集効率が向上す
るので、省エネになる。
As described above, according to the power control method for an electric precipitator according to the present invention, it is determined whether a non-reverse ionization phenomenon (normal) or a reverse ionization phenomenon, and based on the determination result. Thus, the magnitude of the discharge current is controlled. That is, the power supplied to the electric precipitator is changed so that the discharge current is such that an efficient precipitating performance is obtained. This allows
Efficient dust collection performance can be obtained in both normal and reverse ionization phenomena, so that the collection performance of the electrostatic precipitator can be improved and the collection efficiency with respect to power consumption can be improved, thereby saving energy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電気集塵機の電力制御方法に用い
る高電圧電源装置の一実施例を示す回路図
FIG. 1 is a circuit diagram showing an embodiment of a high-voltage power supply device used in a power control method for an electric dust collector according to the present invention.

【図2】パルス荷電における電気集塵機に供給する供給
電力と集塵性能との関係を、正常時及び逆電離現象時と
で比較した集塵特性図
FIG. 2 is a dust collection characteristic diagram comparing the relationship between the power supplied to an electric dust collector and the dust collection performance in pulse charging in a normal state and a reverse ionization phenomenon.

【図3】正常時の放電特性曲線と逆電離現象時の放電特
性曲線との比較図
FIG. 3 is a comparison diagram of a discharge characteristic curve in a normal state and a discharge characteristic curve in a reverse ionization phenomenon.

【符号の説明】[Explanation of symbols]

10…直流ベース電圧発生回路 12…パルス電圧発生回路 14…結合コンデンサ 16…測定回路 17…演算器 18…ゲート制御回路 20…電気集塵機 22…変流器 DESCRIPTION OF SYMBOLS 10 ... DC base voltage generation circuit 12 ... Pulse voltage generation circuit 14 ... Coupling capacitor 16 ... Measurement circuit 17 ... Calculator 18 ... Gate control circuit 20 ... Electric precipitator 22 ... Current transformer

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B03C 3/00 - 3/88 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) B03C 3/00-3/88

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】直流ベース電圧にパルス電圧を重畳したパ
ルス荷電方式の高電圧を、電気集塵機の放電極と集塵極
との間に印加する電気集塵機の電力制御方法に於いて、 前記放電極と前記集塵極の間に印加される印加電圧及び
放電電流から放電特性曲線を求め、 前記放電特性曲線の前記印加電圧の電圧変化に対する前
記放電電流の電流変化から前記放電特性曲線の傾きを算
出し、 前記算出した傾きと予め求めた逆電離現象時又は非逆電
離現象時の放電特性曲線のうち少なくとも一方の放電特
性曲線の基準傾きとを比較して前記傾きが逆電離現象時
か非逆電離現象時かを判定し、 前記判定した判定結果に基づいて前記放電電流の大小を
制御するようにしたことを特徴とする電気集塵機の電力
制御方法。
1. A power control method for an electrostatic precipitator, wherein a high voltage of a pulse charging system in which a pulse voltage is superimposed on a DC base voltage is applied between the discharge electrode and the precipitating electrode of the electric precipitator. Calculating a discharge characteristic curve from an applied voltage and a discharge current applied between the dust collection electrode, and calculating a slope of the discharge characteristic curve from a change in the discharge current with respect to a change in the applied voltage in the discharge characteristic curve. The calculated slope is compared with a reference slope of at least one of the discharge characteristic curves at the time of the reverse ionization phenomenon or at the time of the non-reverse ionization phenomenon obtained in advance, and the slope is at the time of the reverse ionization phenomenon or non-reverse. A power control method for an electric dust collector, comprising: determining whether an ionization phenomenon has occurred; and controlling the magnitude of the discharge current based on a result of the determination.
【請求項2】前記判定結果が逆電離現象時でない場合は
前記放電電流が0.2〜0.5mA/m2 になるように
制御すると共に、前記判定結果が逆電離現象時の場合は
放電電流値が0.05mA/m2 になるように制御する
ことを特徴とする請求項1の電気集塵機の電力制御方
法。
2. When the determination result is not the reverse ionization phenomenon, the discharge current is controlled so as to be 0.2 to 0.5 mA / m 2, and when the determination result is the reverse ionization phenomenon, the discharge current is controlled. 2. The method according to claim 1, wherein the current value is controlled to be 0.05 mA / m < 2 >.
JP05147064A 1993-05-26 1993-05-26 Power control method of electric dust collector Expired - Fee Related JP3139221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05147064A JP3139221B2 (en) 1993-05-26 1993-05-26 Power control method of electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05147064A JP3139221B2 (en) 1993-05-26 1993-05-26 Power control method of electric dust collector

Publications (2)

Publication Number Publication Date
JPH06328006A JPH06328006A (en) 1994-11-29
JP3139221B2 true JP3139221B2 (en) 2001-02-26

Family

ID=15421675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05147064A Expired - Fee Related JP3139221B2 (en) 1993-05-26 1993-05-26 Power control method of electric dust collector

Country Status (1)

Country Link
JP (1) JP3139221B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10932942B2 (en) 2015-02-02 2021-03-02 C.R. Bard, Inc. Drainage bag systems including at least one indicator element and methods of using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105939785B (en) * 2014-01-29 2018-02-02 三菱日立电力系统环保株式会社 The band electric control method of electric dust collecting means, computer-readable recording medium and electric dust collecting means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10932942B2 (en) 2015-02-02 2021-03-02 C.R. Bard, Inc. Drainage bag systems including at least one indicator element and methods of using the same
US11045345B2 (en) 2015-02-02 2021-06-29 C.R. Bard, Inc. Drainage bag systems including at least one indicator element and methods of using the same

Also Published As

Publication number Publication date
JPH06328006A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
EP0661100B1 (en) Electric dust collector
JPS635876A (en) Arc welding machine
US5639294A (en) Method for controlling the power supply to an electrostatic precipitator
JP3139221B2 (en) Power control method of electric dust collector
SE408761B (en) CIRCUIT COUPLING FOR ELECTROSTATIC DUST SEPARATOR
JP3139220B2 (en) Pulsed power supply for electric dust collector
JP2629661B2 (en) Pulse power supply for electric dust collector
JP3460221B2 (en) Method for preventing glow discharge in electric dust collector
JPH06328005A (en) Electric power controlling method of electric dust collector
JPH05103430A (en) Battery charging circuit
JP4420520B2 (en) Resistance welding power supply
JPH0631680Y2 (en) Discharge lamp lighting device
JPH05317751A (en) Control method of pulse-charge type electrostatic precipitator
JPS5879560A (en) Electrical dust precipitator
JPH0777630B2 (en) Charge control method for pulse charge type electrostatic precipitator
JP2692466B2 (en) Electric dust collector
JPH0250786B2 (en)
JP3083997B2 (en) Electric dust collector by pulse charging
JPH05200324A (en) Method for controlling charging of electric precipitator
JPS6094160A (en) Operation of electric dust collector
JPS6136468B2 (en)
JP2503948B2 (en) DC power supply
JPH0577465B2 (en)
JPS5924374Y2 (en) electrostatic precipitator
JPH0250788B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees