JPS635876A - Arc welding machine - Google Patents

Arc welding machine

Info

Publication number
JPS635876A
JPS635876A JP14947486A JP14947486A JPS635876A JP S635876 A JPS635876 A JP S635876A JP 14947486 A JP14947486 A JP 14947486A JP 14947486 A JP14947486 A JP 14947486A JP S635876 A JPS635876 A JP S635876A
Authority
JP
Japan
Prior art keywords
arc
output
welding
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14947486A
Other languages
Japanese (ja)
Other versions
JPH0452174B2 (en
Inventor
Shinji Tajima
新治 田島
Tsuneo Shinada
常夫 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP14947486A priority Critical patent/JPS635876A/en
Publication of JPS635876A publication Critical patent/JPS635876A/en
Publication of JPH0452174B2 publication Critical patent/JPH0452174B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Abstract

PURPOSE:To discriminate an arc state from a short-circuited state at the time of welding regardless of inductance of a wiring cable between a welding power source and a torch by discriminating whether or not a ratio of a peak value of the positive voltage induced at the time of accumulating the energy of a reactor for smoothing an output power source to an absolute value of a peak value of the negative voltage induced at the time of giving off the energy is more than a prescribed value. CONSTITUTION:The positive voltage induced at the time of accumulating the energy of the reactor 27 for smoothing an output electric current is inputted to a circuit 32 via a diode 31 and the peak value VP of the positive voltage outputted from the circuit 32 is added to a comparator 36 as it is. On the other hand, the negative voltage induced at the time of giving off the accumulated energy of the reactor 27 is inputted to a circuit 34 via a diode 33 and the peak value VN of the negative voltage outputted from the circuit 34 is inversed by an inversing amplifier 35 and amplified and added to the comparator 36. Then, when a ratio of VP/VN to be a discriminating reference of arc/short-circuit is more than the prescribed value, the output of a H level which is a detected signal of the short-circuited state is produced on the comparator 36 and when the ratio of VP/VN is less than the prescribed value, the output of a L level which is the detected signal of the arc state is produced on the comparator 36.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアーク溶接機に係り、特に高周波インバータに
より出力を制御するインバータ制御溶接電源を用いたア
ーク溶接機におけるアーク/短絡検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an arc welding machine, and more particularly to an arc/short circuit detection device in an arc welding machine using an inverter-controlled welding power source whose output is controlled by a high-frequency inverter.

〔従来の技術〕[Conventional technology]

アーク溶接機では、タッチスタート時の電流制御や、短
絡アーク溶接におけるアーク期間と短絡期間の電流制御
などを行うために、溶接時のアーク状態と短絡状態の判
別が可能なアーク/短絡検出装置を必要とする場合があ
る。
Arc welding machines are equipped with an arc/short-circuit detection device that can distinguish between arc conditions and short-circuit conditions during welding, in order to perform current control at touch start and current control during the arc period and short circuit period in short-circuit arc welding. It may be necessary.

従来の商用周波数でのサイリスタ位相制御による溶接電
源(以下、サイリスタ制御溶接電源という)を用いたア
ーク溶接機におけるアーク/短絡検出装置の概要を第3
図に示し、その動作シーケンスを第4図に示す。
Section 3 provides an overview of the arc/short circuit detection device in an arc welding machine using a conventional welding power source with thyristor phase control at commercial frequency (hereinafter referred to as thyristor-controlled welding power source).
The operation sequence is shown in FIG.

第3図において、サイリスタ制御溶接電源1は、変圧器
2、サイリスタ整流回路3で構成される直流整流電源4
と、出力電流平滑用リアクタ5、交流入力端子6、直流
出力端子7を有し、その出力は配線ケーブル8を介して
溶接トーチ9に供給され、母材10との間に溶接アーク
11を発生させる。
In FIG. 3, a thyristor-controlled welding power source 1 includes a DC rectifier power source 4 consisting of a transformer 2 and a thyristor rectifier circuit 3.
It has an output current smoothing reactor 5, an AC input terminal 6, and a DC output terminal 7, and its output is supplied to a welding torch 9 via a wiring cable 8, and a welding arc 11 is generated between it and the base metal 10. let

12は溶接電源1の出力制御のためサイリスタ位相制御
を行う制御回路である。アーク/短終検出装置13は、
アーク/短絡検出用のスレッシュホールドレベルを設定
する基準電圧発生器14と、直流整流電源4から出力電
流平滑用リアクタ5を通して出力される溶接電源1の出
力電圧Eoutを基準電圧と比較する比較器15とで構
成されており、出力電圧E。utが基準電圧以上のとき
はアーク状態の検出信号u Hnを、基準電圧未満のと
きは短絡状態の検出信号II L IFを出力する。
Reference numeral 12 denotes a control circuit that performs thyristor phase control to control the output of the welding power source 1. The arc/short end detection device 13 is
A reference voltage generator 14 that sets a threshold level for arc/short circuit detection, and a comparator 15 that compares the output voltage Eout of the welding power source 1 output from the DC rectifier power source 4 through the output current smoothing reactor 5 with a reference voltage. and the output voltage E. When ut is above the reference voltage, an arc state detection signal u Hn is output, and when it is below the reference voltage, a short circuit state detection signal II L IF is output.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

−般にサイリスタ制御溶接電源を用いたアーク溶接機で
は、商用周波数のリップルを除くため、出力電流平滑用
リアクタ5のインダクタンスL0を250〜350μH
と大きくとってあり、−方、溶接電源1と溶接トーチ9
とを接続する配線ケーブル8のインダクタンスLQは、
5μH/m(ケーブル長を10mとすれば50μH)程
度と出力電源平滑用リアクタ5のインダクタンスL0に
比べて小さいため、アーク/短絡検出に当り、配線ケー
ブル8のインダクタンスL、による誘起電圧は無視する
ことができた。すなわち、溶接電源1の出力電圧E。u
tと溶接アーク電圧vaycの差が小さいことから、上
記のように出力電圧Eoutを基準電圧と比較すること
で問題なくアーク/短絡検出ができた。
- In general, in an arc welding machine using a thyristor-controlled welding power source, in order to remove ripples at the commercial frequency, the inductance L0 of the output current smoothing reactor 5 is set to 250 to 350 μH.
On the - side, welding power source 1 and welding torch 9
The inductance LQ of the wiring cable 8 connecting the
Since it is about 5 μH/m (50 μH if the cable length is 10 m), which is smaller than the inductance L0 of the output power smoothing reactor 5, the induced voltage due to the inductance L of the wiring cable 8 is ignored when detecting arcs/short circuits. I was able to do that. That is, the output voltage E of the welding power source 1. u
Since the difference between t and the welding arc voltage vayc was small, the arc/short circuit could be detected without any problem by comparing the output voltage Eout with the reference voltage as described above.

しかし、最近のインバータ制御溶接電源を用いたアーク
溶接機では、インバータを高周波域(たとえば20kH
z)で作動させることにより変圧器や出力電流平滑用リ
アクタの小形軽量化が図られており、これに使用される
出力電流平滑用リアクタのインダクタンスL0は、前記
サイリスタ制御溶接電源のそれに比べて1710以下(
10μH程度)と小さくなっている。これに伴い、溶接
電源に内蔵された出力電流平滑用リアクタのインダクタ
ンスL0による誘起電圧に比べて配線ケーブルのインダ
クタンスL、による誘起電圧が無視できないほど大きく
なり、その結果、溶接電源の出力電圧Eoutと溶接ア
ーク電圧V a r cとの差が大きくなり。
However, in recent arc welding machines that use inverter-controlled welding power sources, the inverter operates in a high frequency range (for example, 20kHz).
z), the transformer and the output current smoothing reactor are made smaller and lighter, and the inductance L0 of the output current smoothing reactor used therein is 1710 times smaller than that of the thyristor-controlled welding power source. below(
(approximately 10 μH). Along with this, the induced voltage due to the inductance L of the wiring cable becomes so large that it cannot be ignored compared to the induced voltage due to the inductance L0 of the output current smoothing reactor built into the welding power source, and as a result, the output voltage Eout of the welding power source The difference from the welding arc voltage V a r c increases.

かつケーブル長やケーブルの置かれた状態によってその
インダクタンスL魚が変化すると、出力電圧E。utも
大きく変化することになる。このため、前記従来技術に
よるアーク/短絡検出装置では、インバータ制御溶接電
源を有するアーク溶接機に用いた場合、誤動作が多く、
安定したアーク/短絡検出ができないという問題点があ
った。
And if the inductance L varies depending on the cable length and the state in which the cable is placed, the output voltage E. ut will also change significantly. Therefore, when the arc/short circuit detection device according to the prior art is used in an arc welder having an inverter-controlled welding power source, it often malfunctions.
There was a problem that stable arc/short circuit detection was not possible.

よって本発明の目的は、溶接電源・トーチ間の配線ケー
ブルのインダクタンスとは無関係に、溶接時のアーク状
態と短絡状態の判別が可能な信頼性の高いアーク/短絡
検出装置を備えたアーク溶接機を提供することにある。
Therefore, an object of the present invention is to provide an arc welding machine equipped with a highly reliable arc/short circuit detection device that can distinguish between an arc state and a short circuit state during welding, regardless of the inductance of the wiring cable between the welding power source and the torch. Our goal is to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明は、インバータ制御溶接
電源に設けた出力電流平滑用リアクタのエネルギー蓄積
時に誘起する正電圧のピーク値を保持する第1の手段と
、該リアクタの蓄積エネルギー放出時に誘起する負電圧
のピーク値を保持する第2の手段と、上記第1の手段と
第2の手段の出力の絶対値の比率が所定値以上か否かを
判別する第3の手段とを含み、上記第3の手段の出力を
溶接−時のアーク状態と短絡状態の検出信号とするアー
ク/短絡検出装置を備えたことを特徴とするものである
In order to achieve the above object, the present invention provides a first means for maintaining the peak value of the positive voltage induced when energy is stored in an output current smoothing reactor provided in an inverter-controlled welding power source, and a first means for maintaining the peak value of the positive voltage induced when the reactor releases the stored energy. a second means for holding the peak value of the negative voltage; and a third means for determining whether the ratio of the absolute values of the outputs of the first means and the second means is equal to or greater than a predetermined value, The present invention is characterized by comprising an arc/short circuit detection device which uses the output of the third means as a detection signal for an arc state and a short circuit state during welding.

〔作用〕[Effect]

次に、本発明によるアーク/短絡検出装置の動作原理を
述べる。
Next, the operating principle of the arc/short circuit detection device according to the present invention will be described.

第2図はその動作説明図で、インバータ制御による直流
整流電源(第1図21)の出力電圧波形と、該直流整流
電源の出力電流を平滑する出力電流平滑用リアクタのア
ーク状態および短絡状態における誘起電圧の波形を示し
ている。
Figure 2 is an explanatory diagram of its operation, showing the output voltage waveform of the inverter-controlled DC rectifier power supply (Fig. 1, 21) and the output current smoothing reactor that smoothes the output current of the DC rectifier power supply in an arc state and a short circuit state. The waveform of the induced voltage is shown.

パルス幅制御された高周波インバータの交流出力を全波
整流して得られる上記直流整流電源の出力電圧波形は第
2図のvoで示すような断続波形となる。その出力電圧
v0が生じている期間には、出力電流平滑用リアクタに
エネルギーが蓄積され、このとき、該リアクタには出力
電圧v0に対して逆向きの誘起電圧v艷が生じる。この
誘起電圧の向きを正とすれば、出力電流平滑用リアクタ
の蓄積エネルギーが放出される出力電圧v0の零の期間
には、該リアクタに負の誘起電圧Viが生じることにな
る。
The output voltage waveform of the DC rectification power supply obtained by full-wave rectification of the AC output of the high frequency inverter whose pulse width is controlled becomes an intermittent waveform as shown by vo in FIG. During the period when the output voltage v0 is generated, energy is accumulated in the output current smoothing reactor, and at this time, an induced voltage v in the opposite direction to the output voltage v0 is generated in the reactor. If the direction of this induced voltage is positive, a negative induced voltage Vi will be generated in the output current smoothing reactor during a period when the output voltage v0 is zero and the energy stored in the output current smoothing reactor is released.

同様に、溶接電源と溶接トーチを接続する配線ケーブル
のインダクタンスL、にも、出力電圧V。
Similarly, the inductance L of the wiring cable connecting the welding power source and welding torch also has an output voltage V.

が生じている期間と出力電圧v0が零の期間にそれぞれ
出力電流平滑用リアクタのインダクタンスL0による誘
起電圧と同じ向きの誘起電圧が発生し、出力電圧voが
生じている期間には、前記直流整流電源の出力電圧v0
からインダクタンスL0およびり、による誘起電圧を差
引いたものが溶接アーク電圧V a r cとほぼ等し
く、出方電圧v0が零の期間には、インダクタンスL。
An induced voltage in the same direction as the induced voltage due to the inductance L0 of the output current smoothing reactor is generated during the period when the output voltage v0 is zero, and during the period when the output voltage v0 is zero, and during the period when the output voltage vo is generated, the DC rectification Power supply output voltage v0
The value obtained by subtracting the induced voltage due to the inductance L0 and the voltage from the inductance L0 is approximately equal to the welding arc voltage V a r c , and during the period when the output voltage v0 is zero, the inductance L.

およびり、による誘起電圧の和が溶接アーク電圧V a
rcとほぼ等しくなる。
The sum of the induced voltages due to and is the welding arc voltage V a
It becomes almost equal to rc.

したがって、出力電流平滑用リアクタのエネルギー蓄積
時に誘起する正電圧のピーク値Vpと蓄積エネルギー放
出時に誘起する負電圧のピーク値VNは、以下の式(1
)、 (2)で表すことができる。
Therefore, the peak value Vp of the positive voltage induced during energy storage in the output current smoothing reactor and the peak value VN of the negative voltage induced during the release of stored energy are calculated by the following equation (1
), (2).

Vp−r(Vo  Vayc) X Lo/(Lo+ 
Li)  (1)VN#Varc X L o/ (L
 o+ L i)        (2)ここに、Vo
は前記直流整流電源の無負荷出力電圧とする。
Vp-r(Vo Vayc) X Lo/(Lo+
Li) (1) VN#Varc X Lo/ (L
o+L i) (2) Here, Vo
is the no-load output voltage of the DC rectified power supply.

上式(1)、 (2)より、VP/VNの比率は、Vp
/ Vs”= (Vo−Vayc) / Varc  
  (3)で表わされる。
From the above formulas (1) and (2), the ratio of VP/VN is Vp
/ Vs”= (Vo-Vayc) / Varc
It is expressed as (3).

このVP/VNの比率は、電極・母材間がアーク状態か
短絡状態かによって異なり、たとえばvoの値を60V
、アーク状態でのVarCの値を20V、短絡状態での
V a r eの値を8vとすると、アーク状態では、 Vp/VN”=2.0  − 短絡状態では、 Vp/VN:6.5 ということになる、したがって、この場合、アーク/短
絡の判定基準となるVP/VNの所定の値を4とし、前
記第1の手段の出力Vpと前記第2の手段の出力VNの
それぞれの絶対値の比率がVp/VN≧4のときは、前
記第3の手段から短絡状態の検出信号が出力され、VP
/VN<4のときは、前記第3の手段からアーク状態の
検出信号が出力されるようにすれば、アーク/短絡の検
出ができる。
The ratio of VP/VN varies depending on whether the electrode and base material are in an arc state or a short circuit state. For example, if the value of vo is 60V
, if the value of VarC in the arc state is 20V and the value of Vare in the short circuit state is 8V, then in the arc state, Vp/VN"=2.0 - in the short circuit state, Vp/VN: 6.5 Therefore, in this case, the predetermined value of VP/VN, which is the criterion for arc/short circuit, is set to 4, and the absolute value of each of the output Vp of the first means and the output VN of the second means is When the value ratio is Vp/VN≧4, a short circuit state detection signal is output from the third means, and VP
When /VN<4, an arc/short circuit can be detected by outputting an arc state detection signal from the third means.

式(3)より、VP/VNの比率は、溶接アーク電圧と
前記直流整流電源の無負荷出力電圧のみに関係し、出力
電流平滑用リアクタおよび配線ケーブルのインダクタン
スLO+ Lmには無関係であるから、この方式による
アーク/短絡検出装置は、配線ケーブルのインダクタン
スの誘起電圧によって誤動作することがない。
From equation (3), the ratio of VP/VN is related only to the welding arc voltage and the no-load output voltage of the DC rectifier power supply, and is unrelated to the output current smoothing reactor and the inductance LO + Lm of the wiring cable. The arc/short circuit detection device using this method does not malfunction due to the induced voltage of the inductance of the wiring cable.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す回路ブロック図である
FIG. 1 is a circuit block diagram showing one embodiment of the present invention.

インバータ制御溶接電源20は、インバータ制御による
直流整流電源21と、その出力電流を平滑する出力電流
平滑用リアクタ27とを有している。周知のようにイン
バータ制御による直流整流電源21は、交流入力端子2
2に供給される商用周波数の交流入力を直流に変換する
ダイオード整流回路23と。
The inverter-controlled welding power source 20 includes an inverter-controlled DC rectifying power source 21 and an output current smoothing reactor 27 that smooths the output current. As is well known, the DC rectified power supply 21 controlled by an inverter has an AC input terminal 2.
2, and a diode rectifier circuit 23 that converts the commercial frequency AC input supplied to DC into DC.

その直流出力を高周波交流に変換する高周波インバータ
24と、インバータ出力を降圧する変圧器25と、変圧
器二次出力を余波整流するダイオード整流回路26から
なり、この直流整流電源21の出力は出力電流平滑用リ
アクタ27を通り、直流出力端子28に接続された配線
ケーブル8を介して溶接トーチ9に供給され、母材10
との間に溶接アーク11を発生させる。直流整流電源2
1の出力制御は、制御回路29による高周波インバータ
24のパルス幅制御によって行なわれる。直流整流電源
21の出力電圧v0は第2図に示すような断続波形であ
るため、出力電流平滑用リアクタ27はエネルギーの蓄
積と蓄積エネルギーの放出を繰り返し、そのエネルギー
蓄積時には第1図の右から左へ向かう正の誘起電圧Vi
を発生し、蓄積エネルギー放出時には第1図の左から右
へ向かう負の誘起電圧Vuを発生する。第1図に示すよ
うに、出力電流平滑用リアクタ27の右端を接地して左
端からこの正電圧と負電圧を取り出し、本発明によるア
ーク/短絡検出装置30に入力する。本実゛施例では、
アーク/短絡検出装@30が、第1の手段であるダイオ
ード31とピークホールド回路32、第2の手段である
ダイオード33とピークホールド回路34、第3の手段
である反転増幅器35と比較器36から構成されている
It consists of a high-frequency inverter 24 that converts the DC output into high-frequency AC, a transformer 25 that steps down the inverter output, and a diode rectifier circuit 26 that rectifies the secondary output of the transformer. It passes through the smoothing reactor 27, is supplied to the welding torch 9 via the wiring cable 8 connected to the DC output terminal 28, and is supplied to the base material 10.
A welding arc 11 is generated between the two. DC rectifier power supply 2
1 output control is performed by pulse width control of the high frequency inverter 24 by the control circuit 29. Since the output voltage v0 of the DC rectifier power supply 21 has an intermittent waveform as shown in FIG. 2, the output current smoothing reactor 27 repeatedly stores energy and releases the stored energy. Positive induced voltage Vi toward the left
When the stored energy is released, a negative induced voltage Vu is generated from the left to the right in FIG. As shown in FIG. 1, the right end of the output current smoothing reactor 27 is grounded, and the positive voltage and negative voltage are taken out from the left end and input to the arc/short circuit detection device 30 according to the present invention. In this example,
The arc/short circuit detection device @30 includes a diode 31 and a peak hold circuit 32 as a first means, a diode 33 and a peak hold circuit 34 as a second means, and an inverting amplifier 35 and a comparator 36 as a third means. It consists of

本装置は次のように動作する。This device operates as follows.

前記出力電流平滑用リアクタ27のエネルギー蓄積時に
誘起する正電圧はダイオード31を通ってピークホール
ド回路32に入力され、ピークホールド回路32から出
力される正電圧のピーク値Vpはそのまま比較器36の
非反転入力端子に加えられる。
The positive voltage induced during energy storage in the output current smoothing reactor 27 is input to the peak hold circuit 32 through the diode 31, and the peak value Vp of the positive voltage output from the peak hold circuit 32 is directly input to the non-conducting voltage of the comparator 36. Applied to the inverting input terminal.

−方、前記出力電流平滑用リアクタ27の蓄積エネルギ
ー放出時に誘起する負電圧はダイオード33を通ってピ
ークホールド回路34に入力され、ピークホールド回路
34から出力される負電圧のピーク値VNは反転増幅器
35で極性反転され、かつ増幅されて比較器36の反転
入力端子に加えられる。ここに1反転増幅器35の増幅
率は、アーク/短絡の判定基準となるVP/VNの所定
の値と同じ値に設定される。
- On the other hand, the negative voltage induced when the output current smoothing reactor 27 releases the stored energy is input to the peak hold circuit 34 through the diode 33, and the peak value VN of the negative voltage output from the peak hold circuit 34 is controlled by the inverting amplifier. The polarity of the signal is inverted at 35, amplified, and applied to an inverting input terminal of a comparator 36. Here, the amplification factor of the 1-inverting amplifier 35 is set to the same value as the predetermined value of VP/VN, which is a criterion for arc/short circuit.

こうすることにより、VP/VNの比率が所定値以上の
ときは、比較器36に短絡状態の検出信号である゛H″
レベルの出力が生じ、VP/VNの比率が所定値未満の
ときは、比較器36にアーク状態の検出信号であるLL
 L I+レベルの出力が生じる。前述したように、V
P/VNの比率は出力電流平滑用リアクタ27および配
線ケーブル8のインダクタンスLO+L11には無関係
であり、したがって、このアーク/短絡検出装置30を
使用すれば、配線ケーブル8のインダクタンスに関係な
くアーク/短絡の検出が可能である。前記比較器36の
出力信号は制御回路29に入力され、明細書の冒頭に記
載したように、タッチスタート時の電流制御や、短絡ア
ーク溶接におけるアーク期間と短絡期間の電流制御など
に用いられる。
By doing this, when the ratio of VP/VN is equal to or higher than a predetermined value, the comparator 36 receives a short-circuit detection signal ``H''.
When a level output is generated and the ratio of VP/VN is less than a predetermined value, the arc state detection signal LL
An output of L I+ level is generated. As mentioned above, V
The ratio of P/VN is unrelated to the output current smoothing reactor 27 and the inductance LO+L11 of the distribution cable 8. Therefore, if this arc/short circuit detection device 30 is used, arcs/short circuits will be detected regardless of the inductance of the distribution cable 8. It is possible to detect The output signal of the comparator 36 is input to the control circuit 29, and is used for current control during touch start, current control during the arc period and short circuit period in short arc welding, etc., as described at the beginning of the specification.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、溶接電源・トーチ間の配線ケーブルの
インダクタンスとは無関係に溶接時のアーク/短絡検出
ができるので、出力電流平滑用リアクタのインダクタン
スが比較的小さいインバータ制御溶接電源を用いたアー
ク溶接機においても、ケーブル長の変化などの外乱の影
響によってアーク/短絡検出装置が該動作することがな
く、したがって、このアーク/短絡検出装置の出力信号
に基づいて溶接電源の出力制御を行なうことにより、安
定した溶接ができる。
According to the present invention, it is possible to detect arcs/short circuits during welding regardless of the inductance of the wiring cable between the welding power source and the torch. Even in welding machines, the arc/short circuit detection device does not operate due to the influence of disturbances such as changes in cable length, and therefore the output of the welding power source is controlled based on the output signal of this arc/short circuit detection device. This allows for stable welding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路ブロック図、第2
図はインバータ制御による直流整流電源の出力電圧波形
と出力電流平滑用リアクタの誘起電圧の波形を示す説明
図、第3図は従来技術によるアーク/短絡検出装置の回
路ブロック図、第4図はその動作シーケンス図である。 20:インバータ制御溶接電源 24:高周波インバータ 27:出力電流平滑用リアクタ 30:アーク/短絡検出装置 31.32 :第1の手段(31:ダイオード、32:
ピークホールド回路) 33.34:第2の手段(33:ダイオード、34:ピ
ークホールド回路) 35.36:第3の手段(35:反転増幅器、36:比
較器) 代理人弁理士  中 村 純之助 8:a;e稗Y−フ5L       23:ダ’4t
−)”’LL四R3oニア−7/m各1eiJ21−1
流゛!さ1吃電り源     28:直;L弘刀矢←1
22号壇、八1よ!#I)      29j請f缶f
回蓼を矛2閲
FIG. 1 is a circuit block diagram showing one embodiment of the present invention, and FIG.
The figure is an explanatory diagram showing the output voltage waveform of a DC rectified power supply controlled by an inverter and the induced voltage waveform of the output current smoothing reactor. Figure 3 is a circuit block diagram of a conventional arc/short circuit detection device, and Figure 4 is its FIG. 3 is an operation sequence diagram. 20: Inverter controlled welding power source 24: High frequency inverter 27: Output current smoothing reactor 30: Arc/short circuit detection device 31. 32: First means (31: diode, 32:
33. 34: Second means (33: diode, 34: peak hold circuit) 35. 36: Third means (35: inverting amplifier, 36: comparator) Patent attorney Junnosuke Nakamura 8 :a;e 稗Y-fu5L 23:Da'4t
-)”'LL4R3o near-7/m each 1eiJ21-1
Flowing! Sa1 electricity source 28: Direct; L Hirotoya ←1
22nd platform, 81! #I) 29j request f can f
2 reviews of the revolution

Claims (1)

【特許請求の範囲】[Claims] 1、高周波インバータにより出力を制御するインバータ
制御溶接電源を備えたアーク溶接機において、インバー
タ制御溶接電源に設けた出力電流平滑用リアクタのエネ
ルギー蓄積時に誘起する正電圧のピーク値を保持する第
1の手段と、該リアクタの蓄積エネルギー放出時に誘起
する負電圧のピーク値を保持する第2の手段と、上記第
1の手段と第2の手段の出力の絶対値の比率が所定値以
上か否かを判別する第3の手段とを含み、上記第3の手
段の出力を溶接時のアーク状態と短絡状態の検出信号と
するアーク/短絡検出装置を備えたことを特徴とするア
ーク溶接機。
1. In an arc welding machine equipped with an inverter-controlled welding power source whose output is controlled by a high-frequency inverter, a first a second means for holding the peak value of the negative voltage induced when the stored energy of the reactor is released; and whether the ratio of the absolute values of the outputs of the first means and the second means is equal to or greater than a predetermined value. an arc welding machine, comprising: a third means for determining an arc welding machine; and an arc/short circuit detection device that uses the output of the third means as a detection signal for an arc state and a short circuit state during welding.
JP14947486A 1986-06-27 1986-06-27 Arc welding machine Granted JPS635876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14947486A JPS635876A (en) 1986-06-27 1986-06-27 Arc welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14947486A JPS635876A (en) 1986-06-27 1986-06-27 Arc welding machine

Publications (2)

Publication Number Publication Date
JPS635876A true JPS635876A (en) 1988-01-11
JPH0452174B2 JPH0452174B2 (en) 1992-08-21

Family

ID=15475937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14947486A Granted JPS635876A (en) 1986-06-27 1986-06-27 Arc welding machine

Country Status (1)

Country Link
JP (1) JPS635876A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2407116A1 (en) * 2010-07-12 2012-01-18 Tyco Healthcare Group, LP Polarity control of electrosurgical generator
US8653994B2 (en) 2012-03-21 2014-02-18 Covidien Lp System and method for detection of ADC errors
US8932291B2 (en) 2012-04-13 2015-01-13 Covidien Lp Electrosurgical systems
US8968290B2 (en) 2012-03-14 2015-03-03 Covidien Lp Microwave ablation generator control system
US9037447B2 (en) 2012-01-27 2015-05-19 Covidien Lp Systems and methods for phase predictive impedance loss model calibration and compensation
US9192424B2 (en) 2012-05-31 2015-11-24 Covidien Lp AC active load
US9192425B2 (en) 2012-06-26 2015-11-24 Covidien Lp System and method for testing electrosurgical generators
US9198711B2 (en) 2012-03-22 2015-12-01 Covidien Lp Electrosurgical system for communicating information embedded in an audio tone
US9270202B2 (en) 2013-03-11 2016-02-23 Covidien Lp Constant power inverter with crest factor control
US9283028B2 (en) 2013-03-15 2016-03-15 Covidien Lp Crest-factor control of phase-shifted inverter
US9375249B2 (en) 2012-05-11 2016-06-28 Covidien Lp System and method for directing energy to tissue
US9375250B2 (en) 2012-04-09 2016-06-28 Covidien Lp Method for employing single fault safe redundant signals
US9456862B2 (en) 2013-02-19 2016-10-04 Covidien Lp Electrosurgical generator and system
US9480523B2 (en) 2012-01-27 2016-11-01 Covidien Lp Systems and methods for phase predictive impedance loss model calibration and compensation
US9498276B2 (en) 2013-03-15 2016-11-22 Covidien Lp Systems and methods for narrowband real impedance control in electrosurgery
US9504516B2 (en) 2013-05-31 2016-11-29 Covidien LLP Gain compensation for a full bridge inverter
US9519021B2 (en) 2013-03-11 2016-12-13 Covidien Lp Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9526576B2 (en) 2008-09-30 2016-12-27 Covidien Lp Microwave ablation generator control system
US9559594B2 (en) 2013-06-24 2017-01-31 Covidien Lp Dead-time optimization of resonant inverters
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9642670B2 (en) 2013-10-29 2017-05-09 Covidien Lp Resonant inverter with a common mode choke
US9768373B2 (en) 2003-10-30 2017-09-19 Covidien Ag Switched resonant ultrasonic power amplifier system
US9770283B2 (en) 2013-09-24 2017-09-26 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US9782212B2 (en) 2014-12-02 2017-10-10 Covidien Lp High level algorithms
US9839469B2 (en) 2013-09-24 2017-12-12 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US9861425B2 (en) 2012-10-02 2018-01-09 Covidien Lp System and method for using resonance phasing for measuring impedance
US9867651B2 (en) 2013-09-26 2018-01-16 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9895186B2 (en) 2013-03-11 2018-02-20 Covidien Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9901386B2 (en) 2014-01-13 2018-02-27 Covidien Lp Systems and methods for multifrequency cable compensation
US9913679B2 (en) 2013-10-16 2018-03-13 Covidien Lp Electrosurgical systems and methods for monitoring power dosage
US9921243B2 (en) 2012-12-17 2018-03-20 Covidien Lp System and method for voltage and current sensing
US9949783B2 (en) 2014-04-04 2018-04-24 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US9974595B2 (en) 2014-04-04 2018-05-22 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US9987068B2 (en) 2014-04-04 2018-06-05 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US10058374B2 (en) 2013-09-26 2018-08-28 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US10105172B2 (en) 2013-10-16 2018-10-23 Covidien Lp Radiofrequency amplifier impedance optimization
US10130412B2 (en) 2013-09-26 2018-11-20 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10188448B2 (en) 2014-11-21 2019-01-29 Covidien Lp Electrosurgical system for multi-frequency interrogation of parasitic parameters of an electrosurgical instrument
US10188446B2 (en) 2013-10-16 2019-01-29 Covidien Lp Resonant inverter
US10281496B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10278764B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10285750B2 (en) 2013-07-29 2019-05-14 Covidien Lp Systems and methods for operating an electrosurgical generator
US10292753B2 (en) 2014-12-02 2019-05-21 Covidien Lp Electrosurgical generators and sensors
US10492850B2 (en) 2014-04-04 2019-12-03 Covidien Lp Systems and methods for calculating tissue impedance in electrosurgery
US10610285B2 (en) 2013-07-19 2020-04-07 Covidien Lp Electrosurgical generators
US10610287B2 (en) 2016-05-05 2020-04-07 Covidien Lp Advanced simultaneous activation algorithm
US10617463B2 (en) 2015-04-23 2020-04-14 Covidien Lp Systems and methods for controlling power in an electrosurgical generator
US10729484B2 (en) 2013-07-16 2020-08-04 Covidien Lp Electrosurgical generator with continuously and arbitrarily variable crest factor
US10772673B2 (en) 2016-05-02 2020-09-15 Covidien Lp Surgical energy system with universal connection features
US10842563B2 (en) 2013-03-15 2020-11-24 Covidien Lp System and method for power control of electrosurgical resonant inverters
US10869712B2 (en) 2016-05-02 2020-12-22 Covidien Lp System and method for high frequency leakage reduction through selective harmonic elimination in electrosurgical generators
US11006997B2 (en) 2016-08-09 2021-05-18 Covidien Lp Ultrasonic and radiofrequency energy production and control from a single power converter
US11090106B2 (en) 2015-04-23 2021-08-17 Covidien Lp Control systems for electrosurgical generator
US11272975B2 (en) 2017-09-22 2022-03-15 Covidien Lp Systems and methods for controlled electrosurgical dissection
US11534226B2 (en) 2017-09-22 2022-12-27 Covidien Lp Systems and methods for minimizing arcing of bipolar forceps
US11744631B2 (en) 2017-09-22 2023-09-05 Covidien Lp Systems and methods for controlled electrosurgical coagulation

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768373B2 (en) 2003-10-30 2017-09-19 Covidien Ag Switched resonant ultrasonic power amplifier system
US10743935B2 (en) 2008-09-30 2020-08-18 Covidien Lp Microwave ablation generator control system
US9526576B2 (en) 2008-09-30 2016-12-27 Covidien Lp Microwave ablation generator control system
US10070922B2 (en) 2008-09-30 2018-09-11 Covidien Lp Microwave ablation generator control system
EP2407116A1 (en) * 2010-07-12 2012-01-18 Tyco Healthcare Group, LP Polarity control of electrosurgical generator
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US9037447B2 (en) 2012-01-27 2015-05-19 Covidien Lp Systems and methods for phase predictive impedance loss model calibration and compensation
US9480523B2 (en) 2012-01-27 2016-11-01 Covidien Lp Systems and methods for phase predictive impedance loss model calibration and compensation
US8968290B2 (en) 2012-03-14 2015-03-03 Covidien Lp Microwave ablation generator control system
US10022185B2 (en) 2012-03-14 2018-07-17 Covidien Lp Microwave ablation generator control system
US9375277B2 (en) 2012-03-14 2016-06-28 Covidien Lp Microwave ablation generator control system
US8653994B2 (en) 2012-03-21 2014-02-18 Covidien Lp System and method for detection of ADC errors
US9198711B2 (en) 2012-03-22 2015-12-01 Covidien Lp Electrosurgical system for communicating information embedded in an audio tone
US10105174B2 (en) 2012-04-09 2018-10-23 Covidien Lp Method for employing single fault safe redundant signals
US9375250B2 (en) 2012-04-09 2016-06-28 Covidien Lp Method for employing single fault safe redundant signals
US10799282B2 (en) 2012-04-09 2020-10-13 Covidien Lp Method for employing single fault safe redundant signals
US8932291B2 (en) 2012-04-13 2015-01-13 Covidien Lp Electrosurgical systems
US9375249B2 (en) 2012-05-11 2016-06-28 Covidien Lp System and method for directing energy to tissue
US9770284B2 (en) 2012-05-11 2017-09-26 Covidien Lp System and method for directing energy to tissue
US9192424B2 (en) 2012-05-31 2015-11-24 Covidien Lp AC active load
US10682173B2 (en) 2012-06-26 2020-06-16 Covidien Lp System and method for testing electrosurgical generators
US9763726B2 (en) 2012-06-26 2017-09-19 Covidien Lp System and method for testing electrosurgical generators
US9192425B2 (en) 2012-06-26 2015-11-24 Covidien Lp System and method for testing electrosurgical generators
US10073125B2 (en) 2012-06-29 2018-09-11 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US10338115B2 (en) 2012-06-29 2019-07-02 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9861425B2 (en) 2012-10-02 2018-01-09 Covidien Lp System and method for using resonance phasing for measuring impedance
US9921243B2 (en) 2012-12-17 2018-03-20 Covidien Lp System and method for voltage and current sensing
US10258407B2 (en) 2013-02-19 2019-04-16 Covidien Lp Electrosurgical generator and system
US9456862B2 (en) 2013-02-19 2016-10-04 Covidien Lp Electrosurgical generator and system
US9895186B2 (en) 2013-03-11 2018-02-20 Covidien Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9519021B2 (en) 2013-03-11 2016-12-13 Covidien Lp Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9270202B2 (en) 2013-03-11 2016-02-23 Covidien Lp Constant power inverter with crest factor control
US9283028B2 (en) 2013-03-15 2016-03-15 Covidien Lp Crest-factor control of phase-shifted inverter
US10842563B2 (en) 2013-03-15 2020-11-24 Covidien Lp System and method for power control of electrosurgical resonant inverters
US9498276B2 (en) 2013-03-15 2016-11-22 Covidien Lp Systems and methods for narrowband real impedance control in electrosurgery
US9504516B2 (en) 2013-05-31 2016-11-29 Covidien LLP Gain compensation for a full bridge inverter
US11191584B2 (en) 2013-06-24 2021-12-07 Covidien Lp Dead-time optimization of resonant inverters based on an input voltage of a tank
US9559594B2 (en) 2013-06-24 2017-01-31 Covidien Lp Dead-time optimization of resonant inverters
US10729484B2 (en) 2013-07-16 2020-08-04 Covidien Lp Electrosurgical generator with continuously and arbitrarily variable crest factor
US10610285B2 (en) 2013-07-19 2020-04-07 Covidien Lp Electrosurgical generators
US11135001B2 (en) 2013-07-24 2021-10-05 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US10285750B2 (en) 2013-07-29 2019-05-14 Covidien Lp Systems and methods for operating an electrosurgical generator
US9770283B2 (en) 2013-09-24 2017-09-26 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US9839469B2 (en) 2013-09-24 2017-12-12 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US10130412B2 (en) 2013-09-26 2018-11-20 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10980595B2 (en) 2013-09-26 2021-04-20 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US9867651B2 (en) 2013-09-26 2018-01-16 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US11717339B2 (en) 2013-09-26 2023-08-08 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10058374B2 (en) 2013-09-26 2018-08-28 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10188446B2 (en) 2013-10-16 2019-01-29 Covidien Lp Resonant inverter
US10105172B2 (en) 2013-10-16 2018-10-23 Covidien Lp Radiofrequency amplifier impedance optimization
US9913679B2 (en) 2013-10-16 2018-03-13 Covidien Lp Electrosurgical systems and methods for monitoring power dosage
US10898257B2 (en) 2013-10-29 2021-01-26 Covidien Lp Resonant inverter with a common mode choke
US9642670B2 (en) 2013-10-29 2017-05-09 Covidien Lp Resonant inverter with a common mode choke
US9901386B2 (en) 2014-01-13 2018-02-27 Covidien Lp Systems and methods for multifrequency cable compensation
US9901385B2 (en) 2014-01-13 2018-02-27 Covidien Lp Systems and methods for multifrequency cable compensation
US9974595B2 (en) 2014-04-04 2018-05-22 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US9987068B2 (en) 2014-04-04 2018-06-05 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US10492850B2 (en) 2014-04-04 2019-12-03 Covidien Lp Systems and methods for calculating tissue impedance in electrosurgery
US11607264B2 (en) 2014-04-04 2023-03-21 Covidien Lp Systems and methods for calculating tissue impedance in electrosurgery
US9949783B2 (en) 2014-04-04 2018-04-24 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US10568680B2 (en) 2014-11-21 2020-02-25 Covidien Lp Electrosurgical system for multi-frequency interrogation of parasitic parameters of an electrosurgical instrument
US10188448B2 (en) 2014-11-21 2019-01-29 Covidien Lp Electrosurgical system for multi-frequency interrogation of parasitic parameters of an electrosurgical instrument
US9782212B2 (en) 2014-12-02 2017-10-10 Covidien Lp High level algorithms
US10292753B2 (en) 2014-12-02 2019-05-21 Covidien Lp Electrosurgical generators and sensors
US10278764B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10281496B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10987154B2 (en) 2014-12-02 2021-04-27 Covidien Lp Electrosurgical generators and sensors
US11090106B2 (en) 2015-04-23 2021-08-17 Covidien Lp Control systems for electrosurgical generator
US10617463B2 (en) 2015-04-23 2020-04-14 Covidien Lp Systems and methods for controlling power in an electrosurgical generator
US11129667B2 (en) 2015-04-23 2021-09-28 Covidien Lp Systems and methods for controlling power in an electrosurgical generator
US11969201B2 (en) 2015-04-23 2024-04-30 Covidien Lp Control systems for electrosurgical generator
US10869712B2 (en) 2016-05-02 2020-12-22 Covidien Lp System and method for high frequency leakage reduction through selective harmonic elimination in electrosurgical generators
US10772673B2 (en) 2016-05-02 2020-09-15 Covidien Lp Surgical energy system with universal connection features
US11369429B2 (en) 2016-05-05 2022-06-28 Covidien Lp Advanced simultaneous activation algorithm
US10610287B2 (en) 2016-05-05 2020-04-07 Covidien Lp Advanced simultaneous activation algorithm
US11806067B2 (en) 2016-05-05 2023-11-07 Covidien Lp Advanced simultaneous activation algorithm
US11006997B2 (en) 2016-08-09 2021-05-18 Covidien Lp Ultrasonic and radiofrequency energy production and control from a single power converter
US11272975B2 (en) 2017-09-22 2022-03-15 Covidien Lp Systems and methods for controlled electrosurgical dissection
US11534226B2 (en) 2017-09-22 2022-12-27 Covidien Lp Systems and methods for minimizing arcing of bipolar forceps
US11744631B2 (en) 2017-09-22 2023-09-05 Covidien Lp Systems and methods for controlled electrosurgical coagulation

Also Published As

Publication number Publication date
JPH0452174B2 (en) 1992-08-21

Similar Documents

Publication Publication Date Title
JPS635876A (en) Arc welding machine
KR100260654B1 (en) Apparatus of electric source
EP3505286A1 (en) Shielded metal arc welding system and welding power supply for shielded metal arc welding
EP3482863B1 (en) Welding power source apparatus
US5606492A (en) Intermittent on/off regulator type DC power supply
JP2006121797A (en) Charger
JP4275386B2 (en) Power supply
JP6880436B2 (en) Welding power supply
JP4420520B2 (en) Resistance welding power supply
JP3981208B2 (en) Arc machining power supply
JP2018187645A (en) Welding power supply device
JP3139220B2 (en) Pulsed power supply for electric dust collector
JP2905540B2 (en) Power supply for pulse arc welding
JPH0324292Y2 (en)
JP2663535B2 (en) Power supply for arc machining
JP2000042751A (en) Controller for resistance welding machine
JP3463965B2 (en) Plasma arc processing equipment
CN107617806B (en) Welding machine control circuit
KR950003575B1 (en) Output control method and device of welding electric power
JPH0324291Y2 (en)
JP2000125565A (en) Power supply device
JP2021114807A (en) Arc machining power source device
JP2005192269A (en) Power unit
JPS5924374Y2 (en) electrostatic precipitator
JPS63281778A (en) Power unit for ac arc welding machine