JPS5924374Y2 - electrostatic precipitator - Google Patents

electrostatic precipitator

Info

Publication number
JPS5924374Y2
JPS5924374Y2 JP1980136023U JP13602380U JPS5924374Y2 JP S5924374 Y2 JPS5924374 Y2 JP S5924374Y2 JP 1980136023 U JP1980136023 U JP 1980136023U JP 13602380 U JP13602380 U JP 13602380U JP S5924374 Y2 JPS5924374 Y2 JP S5924374Y2
Authority
JP
Japan
Prior art keywords
voltage
current
circuit
signal
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980136023U
Other languages
Japanese (ja)
Other versions
JPS5659156U (en
Inventor
繁雄 小林
Original Assignee
オリジン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリジン電気株式会社 filed Critical オリジン電気株式会社
Priority to JP1980136023U priority Critical patent/JPS5924374Y2/en
Publication of JPS5659156U publication Critical patent/JPS5659156U/ja
Application granted granted Critical
Publication of JPS5924374Y2 publication Critical patent/JPS5924374Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Description

【考案の詳細な説明】 本考案は電気集塵装置の改良に係り、特に火花放電を極
めて確実かつ正確に検出し得る電気集塵装置の火花放電
検出装置を提供することを目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of an electrostatic precipitator, and in particular, an object of the present invention is to provide a spark discharge detection device for an electrostatic precipitator that can detect spark discharge extremely reliably and accurately.

電気集塵装置は気体中におけるコロナ放電現象を利用し
ており、集塵効率はコロナ放電々力が大きい程、すなわ
ち集塵電極に印加供給される荷電々圧が高い程大きい。
Electrostatic precipitators utilize a corona discharge phenomenon in gas, and the dust collection efficiency increases as the corona discharge force increases, that is, as the charge voltage applied to and supplied to the dust collection electrode increases.

従って電気集塵装置においては電極間に可能な限り高い
荷電々圧を加えることが望ましいが、荷電々圧が高くな
るとコロナ放電々流が著しく増加して火花放電が発生し
易い このような火花放電が多発し、また大きな火花放電が発
生すると遂にはアーク、またはグロー放電等の自続放電
へ移行し易くなる。
Therefore, in an electrostatic precipitator, it is desirable to apply as high a charge voltage as possible between the electrodes; however, when the charge voltage increases, the corona discharge flow increases significantly, and spark discharge is likely to occur. If this occurs frequently and large spark discharges occur, it becomes easy to transition to a self-sustaining discharge such as an arc or glow discharge.

これ等火花放電、アーク放電、またはグロー放電はほと
んど短絡状態なので集塵作用には全く寄与しない。
Most of these spark discharges, arc discharges, and glow discharges are in a short-circuit state, so they do not contribute to the dust collection function at all.

特にアーク放電、グロー放電は一旦発生すると、荷電停
止しない限り消滅しないので集塵効率を著しく低下させ
るものであり、また集塵装置や電源装置にとっても極め
て悪い影響を与えるので、それ等の発生は極力防止しな
ければならない。
In particular, once arc discharge and glow discharge occur, they will not disappear unless charging is stopped, which will significantly reduce dust collection efficiency, and will also have an extremely negative effect on dust collectors and power supplies, so their occurrence should be avoided. We must prevent this as much as possible.

従って電気集塵装置において高集塵効率を得るためには
、火花放電の発生状態に着目して荷電々圧を出来る限り
高く制御することか−望ましいが、そのためには火花発
生を確実に、速、やかに検出することが不可欠となって
くる。
Therefore, in order to obtain high dust collection efficiency in an electrostatic precipitator, it is desirable to control the charging voltage as high as possible by paying attention to the state of spark discharge generation. , it is essential to detect them quickly.

先ず斯かる従来の火花検出方法を第1図及び第2図に従
って説明する。
First, such a conventional spark detection method will be explained with reference to FIGS. 1 and 2.

第1図において、1は交流電源端子、2は逆並列接続さ
れた主制御サイリスタなどからなるサイリスタ形制御部
、3は限流リアクトル、4は昇圧トランスT及び高電圧
整流器Recからなる直流高電圧変換器、5は集塵部を
示し、■1及びI。
In Fig. 1, 1 is an AC power supply terminal, 2 is a thyristor type control unit consisting of a main control thyristor connected in anti-parallel, 3 is a current limiting reactor, and 4 is a DC high voltage consisting of a step-up transformer T and a high voltage rectifier Rec. Converter, 5 indicates the dust collection part, ■1 and I.

は夫々直流高電圧変換器4の入力側、出力側を通流する
電流、Eoは荷電々圧を示している。
are the currents flowing through the input side and the output side of the DC high voltage converter 4, respectively, and Eo is the charge voltage.

このような極く一般的な構成の電気集塵装置における火
花放電検出方法は種々あるが、その内股も一般的に使用
されている下記3種類の方法について以下に順次説明す
る。
There are various methods for detecting spark discharge in an electrostatic precipitator having such a very general configuration, and the following three methods, which are also commonly used, will be sequentially explained below.

■ トランスの1次側電流11又は2次側電流りの大き
さに着目した方法。
■ A method that focuses on the magnitude of the primary current 11 or secondary current of the transformer.

この方法は第2図に示すように時刻tで火花が発生する
と電流11又はI。
In this method, as shown in FIG. 2, when a spark occurs at time t, a current of 11 or I is generated.

が増大し、これに伴いピーク値も高くなる点に着目し、
該ピーク値が一定レベルVCをこえた点で火花検出信号
vsを得る方法である。
Focusing on the fact that the value increases and the peak value also increases accordingly,
This is a method of obtaining a spark detection signal vs at a point where the peak value exceeds a certain level VC.

この方法によれば回路構成は簡易であるが、比較的小さ
な火花は検出出来ない。
Although this method has a simple circuit configuration, relatively small sparks cannot be detected.

また第1図に示す限流リアクトル3のインピーダンスは
その目的からなり大きい場合が多いので火花時と通常時
ではその電流ピーク値に顕著な差が現われないことが多
く、火花検出の精度は低くなる。
In addition, the impedance of the current limiting reactor 3 shown in Figure 1 is often large depending on its purpose, so there is often no noticeable difference in the peak current value between sparks and normal times, resulting in low spark detection accuracy. .

■ 荷電々圧の落ち込みに着目した方法。■ A method that focuses on the drop in charge voltage.

この方法は、第2図に示すように時刻tで火花が発生す
ると荷電々圧E。
In this method, as shown in FIG. 2, when a spark occurs at time t, the charge voltage E.

は直ちに低下し、はとんど零になる。decreases immediately and almost reaches zero.

この場合荷電々圧E。が一定レベルve以下になったこ
とにより判別する方法と時刻tでの荷電々圧E。
In this case, the charge voltage E. A method of determining when ve has become below a certain level ve, and the charge voltage E at time t.

の立ち下がりの微分による方法がある。There is a method based on the differentiation of the falling edge of .

前者は回路的に簡単であるが、荷電々圧E。The former is a simple circuit, but the charge voltage E.

の検出が難かしい。一般に荷電々圧は抵抗で分割しフォ
トカップラー等で絶縁して制御回路へ伝達されるが、伝
達の線形性はあまり良くないのが普通であり、抵抗によ
る分割も検出インピーダンスとして高くなりノイズの影
響も無視出来なくなる。
is difficult to detect. Generally, charged voltage is transmitted to the control circuit by dividing it with a resistor and insulating it with a photocoupler, etc. However, the linearity of the transmission is usually not very good, and division by the resistor also increases the detection impedance and causes noise effects. can no longer be ignored.

従って第2図のveの設定が難しくなる。Therefore, setting ve in FIG. 2 becomes difficult.

一方、後者の荷電々圧E。On the other hand, the latter charge voltage E.

の立ち下がり微分による方法も上記伝達の問題のほかに
更にノイズの影響を受は易い。
In addition to the above-mentioned transfer problem, the method using the falling differentiation of is also susceptible to noise.

■ 上記電流■1又はI。■ The above current ■1 or I.

の波形が、火花時には2山になる点に着目した方法。This method focuses on the fact that the waveform becomes two peaks when there is a spark.

この方法は火花が発生するとその時点から電流が増大す
るので電流の立ち上りに変化が生じ、微分信号を得るこ
とが出来る。
In this method, when a spark is generated, the current increases from that point on, so a change occurs in the rise of the current, and a differential signal can be obtained.

この方法は火花電流波形の特異性に着目し、電子回路的
に信号処理をする極めて高度の方法であるが、最終的に
は電流の微分を使っているためにノイズの影響を受は易
く検出精度とノイズマージンの相関々係により調整が難
しくなる。
This method focuses on the uniqueness of the spark current waveform and is an extremely sophisticated method that processes the signal using an electronic circuit, but since it ultimately uses the differentiation of the current, it is easily susceptible to the influence of noise. Adjustment becomes difficult due to the correlation between accuracy and noise margin.

また火花電流波形の2山と云う特徴も負荷の種類等によ
って顕著でなくなることもあり実用上支障をきたすこと
がある。
Moreover, the characteristic of two peaks in the spark current waveform may become less noticeable depending on the type of load, etc., which may cause problems in practical use.

本考案は斯かる従来検出方法の欠点に鑑み、高電圧直流
変換器の入力側に設ける限流リアクトルのインピーダン
スを該高電圧直流変換器における昇圧トランスTのイン
ピーダンスに対し大きな値に設定すると、火花放電発生
時において電流は通流しているものの上記限流リアクト
ルのインピーダンスの大きな電圧降下により上記高電圧
直流変換器の入力電圧が急速に極めて低下乃至はほぼ零
電圧近傍まで低下するという火花放電独特の現象を利用
して火花放電を確実にしかも正確に検出することを特徴
としている。
In view of the shortcomings of the conventional detection method, the present invention has been developed to prevent sparks from occurring when the impedance of the current limiting reactor provided on the input side of a high voltage DC converter is set to a larger value than the impedance of the step-up transformer T in the high voltage DC converter. Although current is flowing when a discharge occurs, the input voltage of the high-voltage DC converter rapidly drops to an extremely low voltage or almost zero voltage due to a large voltage drop due to the impedance of the current limiting reactor, which is unique to spark discharge. It is characterized by the fact that it uses this phenomenon to reliably and accurately detect spark discharge.

以下第3図及び第4図により本考案の電気集塵装置の一
実施例を説明する。
An embodiment of the electrostatic precipitator of the present invention will be described below with reference to FIGS. 3 and 4.

先ず第3図において、第1図と同一参照数字のものは第
1図における部材に相当する部材を示す。
First, in FIG. 3, the same reference numerals as in FIG. 1 indicate members corresponding to those in FIG.

一般に電気集塵装置にあっては、第4図aに示す如く給
電線を流れる1次側交流電流11は電源電圧■1よりも
遅れて流れる。
Generally, in an electrostatic precipitator, as shown in FIG. 4a, the primary AC current 11 flowing through the power supply line flows with a delay from the power supply voltage 1.

この電流■1は変流器のような電流検出器6検出され、
該検出電流は電流−電圧変換器7及び全波整流回路8を
介して第4図すに示すような電圧信号V1として得られ
る。
This current 1 is detected by a current detector 6 such as a current transformer,
The detected current is obtained as a voltage signal V1 as shown in FIG. 4 via a current-voltage converter 7 and a full-wave rectifier circuit 8.

比較回路9はこの信号■1と調整回路10からの設定電
圧Vxとを比較し、信号v1が設定電圧Vxよりも大き
くなる領域で矩形出力信号V、 (v、’0)を出す
る(第4図C)。
The comparator circuit 9 compares this signal 1 with the set voltage Vx from the adjustment circuit 10, and outputs a rectangular output signal V, (v,'0) in the region where the signal v1 is larger than the set voltage Vx. Figure 4C).

一方限流リアクトル3と昇圧トランスT間の給電路の電
圧V□は前記電流■1が流れているとき第4図dに示す
ように、電流■1の零点近傍において著しい変化を呈し
、その波形はほぼ矩形波状になる。
On the other hand, the voltage V□ in the power supply line between the current limiting reactor 3 and the step-up transformer T exhibits a remarkable change near the zero point of the current ■1 when the current ■1 is flowing, as shown in Figure 4d, and its waveform has an almost rectangular wave shape.

この電圧V□について以下に詳述すると、一般にサイリ
スタ制御形電気集塵用電源においては限流リアクトル3
のインピーダンスZLは高電圧直流変換器4における昇
圧トランスTのインピーダンスZ□よりも大きいが、特
に2L>2□になるように夫々を設定すれば、時刻t1
で火花放電が発生すると電流11は流れ続けるが電圧V
、は直ちに激減してほぼ零付近まで低下する。
This voltage V
Although the impedance ZL of is larger than the impedance Z□ of the step-up transformer T in the high voltage DC converter 4, if each is set so that 2L>2□, the time t1
When a spark discharge occurs at , the current 11 continues to flow, but the voltage V
, immediately decreases sharply to almost zero.

つまり火花放電の発生に伴い負荷側は短絡に近い状態を
呈するので、ZLンZ□の場合には限流リアクトル3が
主回路電圧をほとんど負うために電圧■1はほとんど零
になる。
That is, with the occurrence of spark discharge, the load side exhibits a state close to a short circuit, so in the case of ZL-Z□, the current-limiting reactor 3 bears most of the main circuit voltage, so that the voltage 1 becomes almost zero.

例えば火花放電などの際に流れる電流の値を定常時の電
流値の3倍程度以下に抑止するために限流リアクトル3
のインピーダンスZLを主回路の全インピーダンスに対
し約30%〜50%程度に設定すると、通常、昇圧トラ
ンスTのインピーダンスZ□は数%乃至5,6%程度で
あるので、火花放電時にはZL/Z□−6〜10になる
For example, a current limiting reactor 3 is used to suppress the value of current flowing during spark discharge, etc. to about three times the current value during steady state or less.
If the impedance ZL of the step-up transformer T is set to about 30% to 50% of the total impedance of the main circuit, the impedance Z□ of the step-up transformer T is usually a few percent to about 5.6%, so during spark discharge, ZL/Z □Becomes -6 to 10.

特に火花放電電流が流れている期間に亘って限流リアク
トル3の出力側電圧V、を十分低い値に抑止するために
はインピーダンスZL>Z□、好ましくはZ、−/Z1
>5にする必要がある。
In particular, in order to suppress the output side voltage V of the current limiting reactor 3 to a sufficiently low value over the period when the spark discharge current is flowing, the impedance ZL>Z□, preferably Z, -/Z1
>5.

インピーダンス比をこの様に選定することにより検出精
度を向上させることが出来る。
By selecting the impedance ratio in this manner, detection accuracy can be improved.

この電圧V、は変圧器のような電圧検出回路11によっ
て検出され、全波整流回路12を介して第4図eに示す
ような検出電圧信号■1として得られる。
This voltage V is detected by a voltage detection circuit 11 such as a transformer, and is obtained as a detected voltage signal 1 as shown in FIG. 4e through a full-wave rectifier circuit 12.

この電圧信号V□は調整回路13からの設定電圧vYと
比較回路14において比較され、該比較回路は信号■が
設定電圧■7のレベルよりも大きな領域のみで第4図f
に示すような矩形電圧信号■、′を出力する。
This voltage signal V□ is compared with the set voltage vY from the adjustment circuit 13 in the comparator circuit 14, and the comparator circuit compares the voltage signal V□ with the set voltage vY from the adjustment circuit 13 only in the region where the signal ■ is higher than the level of the set voltage ■7, as shown in FIG.
It outputs rectangular voltage signals ■ and ′ as shown in .

従って同図fから分るように、火花放電が発生している
期間T1は電流■1が流れているにも拘らず信号V□′
は零レベル(VT’−〇)にある。
Therefore, as can be seen from f in the same figure, during the period T1 during which spark discharge occurs, even though the current ■1 is flowing, the signal V□'
is at zero level (VT'-〇).

論理回路15は上記信号V、′=0、信号v、 /−1
のレベルにあるときのみ、即ち限流リアクトル3を介し
て電流■1が充分に流れているにも拘らず該ノアクトル
3の出力側の電圧V□が非常に低い値にある期間のみ第
4図gに示すような矩形信号■αを出力する。
The logic circuit 15 receives the above signal V,'=0, signal v, /-1
4, only when the voltage V□ on the output side of the current limiting reactor 3 is at a very low level even though the current ■1 is sufficiently flowing through the current limiting reactor 3. A rectangular signal ■α as shown in g is output.

この矩形信号はそのまま火花検出信号として使用される
か或いは微分回路16を介して微分され、第4図りに示
すような微分信号■5に変換された後端子20から火花
検出信号として使用される。
This rectangular signal may be used as a spark detection signal as it is, or it may be differentiated via a differentiating circuit 16 and converted into a differential signal 5 as shown in the fourth diagram, which is then sent from a terminal 20 and used as a spark detection signal.

ここで調整回路14の設定電圧VYは部分Aで示すよう
に火花放電時における信号■□の値よりも大きくなるよ
うに設定されており、従って昇圧トランスのインピーダ
ンスZ□と限流リアクトルのインピーダンスZLとの大
きさの関係で当然に設定電圧■1のレベルは変り得る。
Here, the set voltage VY of the adjustment circuit 14 is set to be larger than the value of the signal ■□ at the time of spark discharge, as shown in part A, and therefore the impedance Z□ of the step-up transformer and the impedance ZL of the current limiting reactor are Naturally, the level of the set voltage (1) can change depending on the magnitude of the voltage.

次に本考案の他の実施例を第4図及び第5図によって説
明する。
Next, another embodiment of the present invention will be described with reference to FIGS. 4 and 5.

前述の如く火花放電発生時において、電圧■□が非常に
低下乃至は零近傍の値に低下する場合には上記実施例の
様な火花検出方法は非常に有効であるが、時刻t2で発
生する火花放電の場合のように電圧■1が反転、即ちそ
の電圧極性が逆になってしまう場合(第4図d)もあり
、この場合前記実施例のように電圧V1の検出信号を全
波整流すると第4図eで示す信号■□のB部分のように
電圧VYのレベルよりも大きくなってしまい、実際には
火花放電が発生しているのにも拘らず、第4図g、hに
おいて点線で示す如く本来得られるべき火花検出信号が
得られない。
As mentioned above, when a spark discharge occurs, the spark detection method as in the above embodiment is very effective when the voltage ■□ drops significantly or drops to a value close to zero, but the spark discharge occurs at time t2. As in the case of spark discharge, there are cases where the voltage V1 is inverted, that is, the voltage polarity is reversed (Fig. 4 d), and in this case, the detection signal of the voltage V1 is full-wave rectified as in the above embodiment. Then, as shown in part B of the signal ■□ shown in Figure 4e, the voltage becomes higher than the level of voltage VY, and even though spark discharge is actually occurring, in Figure 4g and h As shown by the dotted line, the spark detection signal that should originally be obtained cannot be obtained.

つまり誤検出をすることになる。In other words, false detection will occur.

斯かる電圧V□の極性反転の発生原因は今の処不明であ
るが、この実施例では斯かる現象が発生しようとも確実
かつ正確に火花放電を検出できる。
The cause of the polarity reversal of the voltage V□ is currently unknown, but in this embodiment, spark discharge can be detected reliably and accurately even if such a phenomenon occurs.

この方法に基本的には前記実施例と同じであり、電流■
1及び電圧■□の検出信号を位相が夫々同期するように
正、負半波毎に夫々分別した後夫々の検出信号の位相を
合わせて比較することを特徴としている。
This method is basically the same as the above embodiment, and the current
1 and voltage ■□ are separated into positive and negative half waves so that their phases are synchronized, and then the phases of the respective detection signals are matched and compared.

第5図において、半波弁別回路20は電流11の検出信
号を正、負の半波に振り分け、同様に半波弁別回路21
も電圧V□の検出信号を正、負の半波に振り分ける作用
を行う。
In FIG. 5, the half-wave discrimination circuit 20 distributes the detection signal of the current 11 into positive and negative half-waves, and similarly the half-wave discrimination circuit 21
Also performs the function of distributing the detection signal of voltage V□ into positive and negative half waves.

従って弁別回路20の出力側aには第4図すに示す信号
V1の斜線のない半波が、また出力側a′には斜線で示
す半波が現出すると考えることが出来る。
Therefore, it can be considered that a half-wave of the signal V1 shown in FIG. 4 without the hatching appears on the output side a of the discrimination circuit 20, and a half-wave shown with the hatching appears on the output side a'.

同様に弁別回路21の出力側すには第4図eに示す信号
V□の斜線のない半波が、また出力側b′には斜線で示
した半波部分が現出すると考えることが出来る。
Similarly, it can be considered that the half-wave of the signal V□ shown in FIG. 4e without the hatching appears on the output side of the discriminator circuit 21, and the half-wave shown with the hatching appears on the output side b'. .

この場合aとす、a’とb′に現出する半波信号の位相
と同期していねばならない。
In this case, a must be synchronized with the phase of the half-wave signals appearing at a' and b'.

これら半波部分の各信号は前記実施例と同様に比較回路
10.10’、 14.14’において調整回路9,1
3の設定電圧レベルと比較され、その出力は論理回路1
5.15’において前述と同様に処理され、ダイオード
D1及びD2で結合され、更に微分回路16で微分され
て端子20に火花検出信号として得られる。
Each signal of these half-wave parts is sent to the adjustment circuits 9 and 1 in the comparison circuits 10.10' and 14.14' as in the previous embodiment.
3 and its output is compared to the set voltage level of logic circuit 1.
5.15', the signal is processed in the same manner as described above, combined by diodes D1 and D2, and further differentiated by a differentiating circuit 16, and is obtained as a spark detection signal at a terminal 20.

この様に半波毎に振り分ければ、第4図eに示す火花放
電時における信号■1のB部分はその斜線のない部分か
ら消去された形になるので、出力結合点18には火花放
電電流の通流期間T2に等しい幅をもつ矩形信号(第4
図gの点線で示される)が現出することは容易に理解で
きよう。
By distributing each half wave in this way, the B part of signal 1 during the spark discharge shown in Figure 4e will be erased from the shaded part, so the spark discharge will occur at the output coupling point 18. A rectangular signal (fourth signal) with a width equal to the current flow period T2
It is easy to understand that the result (indicated by the dotted line in Figure g) appears.

以上述べた様にこの考案は、昇圧トランスの1次側に該
トランスのインピーダンスよりも大きなインピーダンス
を有する限流リアクトルを設けた場合、火花放電発生時
には上記昇圧トランスの1次、2次側に電流が通流して
いるにも拘らず昇圧トランスの2次側が短絡状態を呈す
るために上記限流リアクトルが主回路電圧の大部分乃至
はそのほとんど全てを負うことにより該限流リアクトル
を上記昇圧トランスとの間の電圧が著しく低下してしま
うという火花放電に伴い生ずる極めて独特な状態を検出
して、火花放電発生の判断基準にしているため火花放電
を極めて確実かつ正確に検出できる。
As described above, this invention is based on the idea that if a current limiting reactor with an impedance larger than the impedance of the step-up transformer is provided on the primary side of the step-up transformer, when a spark discharge occurs, current flows through the primary and secondary sides of the step-up transformer. Although the current is flowing, the secondary side of the step-up transformer is short-circuited, so the current-limiting reactor bears most or almost all of the main circuit voltage, causing the current-limiting reactor to become the step-up transformer. The extremely unique condition that occurs with a spark discharge, in which the voltage between the two points drops significantly, is detected and used as a criterion for determining the occurrence of a spark discharge, making it possible to detect a spark discharge extremely reliably and accurately.

尚上記実施例では昇圧トランスの1次側で電流を検出し
たが勿論2次側で検出しても良い。
In the above embodiment, the current was detected on the primary side of the step-up transformer, but it may of course be detected on the secondary side.

又上記実施例では限流リアクトルと昇圧トランス間で電
圧を検出したが、電流同様に2次側において電圧を検出
しても良く、この場合には上記限流リアクトルのインピ
ーダンスの大きさに関係なく、特にリップル電圧の大き
いものに有効である。
Also, in the above embodiment, the voltage was detected between the current limiting reactor and the step-up transformer, but the voltage may also be detected on the secondary side in the same way as the current, and in this case, the voltage can be detected regardless of the impedance of the current limiting reactor. , especially effective for those with large ripple voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々従来の火花放電検出方法を説明
するための電気集塵装置のブロック構成図及び電流、電
圧波形を示す図、第3図は本考案に係る電気集塵装置の
一実施例を示す図、第4図は本考案を説明するための各
部の電圧、電流波形を示す図、第5図は本考案に係る電
気集塵装置の火花検出装置の他の実施例を示す図である
。 1・・・・・・交流電源端子、2・・・・・・サイリス
タ形制御部、3・・・・・・限流リアクトル、4・・・
・・・高電圧直流変換器、T・・・・・・昇圧I〜フラ
ンス6・・・・・・電流検出器、7・・・・・・電流−
電圧変換器、8,12・・・・・・全波整流回路、11
・・・・・・電圧検出回路、9,13・・・・・・調整
回路、10、14・・・・・・比較回路、15・・・・
・・論理回路、16・・・・・・微分回路、20.21
・・・・・・半波弁別回路。
1 and 2 are block diagrams and diagrams showing current and voltage waveforms of an electrostatic precipitator for explaining a conventional spark discharge detection method, respectively, and FIG. 3 is a diagram showing an electrostatic precipitator according to the present invention. FIG. 4 is a diagram showing voltage and current waveforms of various parts to explain the present invention. FIG. 5 is a diagram showing another embodiment of the spark detection device for an electrostatic precipitator according to the present invention. FIG. 1... AC power supply terminal, 2... Thyristor type control section, 3... Current limiting reactor, 4...
...High voltage DC converter, T...Step-up I~France 6...Current detector, 7...Current-
Voltage converter, 8, 12...Full wave rectifier circuit, 11
...Voltage detection circuit, 9, 13...Adjustment circuit, 10, 14...Comparison circuit, 15...
...Logic circuit, 16...Differential circuit, 20.21
...Half-wave discrimination circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 交流電源と昇圧トランス間における給電路にサイリスタ
型制御部と、前記昇圧トランスのインピーダンスZ、と
の関係がZL/Z1> 風となる様なインピーダンスZ
Lを有する限流リアクトルとを備えると共に、給電路に
流れる電流を検出する電流検出回路と、前記限流リアク
トルと前記昇圧トランスの1次巻線との間の給電路の電
圧を検出する電圧検出回路と、夫々の設定信号レベルを
与える調整回路と、前記電流検出回路と電圧検出回路か
らの夫々の検出信号を対応する前記設定信号レベルと比
較する比較回路と、これら比較回路の出力信号により動
作し、前記電流の検出信号が前記設定信号レベルより大
きく且つ前記電圧の検出信号がその前記設定信号レベル
より小さい状態に至ったときに火花放電発生信号を発生
する論理回路とを備えたことを特徴とする電気集塵装置
A thyristor-type control unit is provided in the power supply path between the AC power source and the step-up transformer, and the impedance Z is such that the relationship between the impedance Z of the step-up transformer is ZL/Z1>.
A current detection circuit that detects a current flowing in a power supply path, and a voltage detection circuit that detects a voltage in a power supply path between the current limiting reactor and the primary winding of the step-up transformer. an adjustment circuit that provides respective set signal levels, a comparison circuit that compares each detection signal from the current detection circuit and the voltage detection circuit with the corresponding set signal level, and is operated by the output signals of these comparison circuits. and a logic circuit that generates a spark discharge generation signal when the current detection signal is higher than the set signal level and the voltage detection signal is lower than the set signal level. Electrostatic precipitator.
JP1980136023U 1980-09-26 1980-09-26 electrostatic precipitator Expired JPS5924374Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980136023U JPS5924374Y2 (en) 1980-09-26 1980-09-26 electrostatic precipitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980136023U JPS5924374Y2 (en) 1980-09-26 1980-09-26 electrostatic precipitator

Publications (2)

Publication Number Publication Date
JPS5659156U JPS5659156U (en) 1981-05-21
JPS5924374Y2 true JPS5924374Y2 (en) 1984-07-19

Family

ID=29367541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980136023U Expired JPS5924374Y2 (en) 1980-09-26 1980-09-26 electrostatic precipitator

Country Status (1)

Country Link
JP (1) JPS5924374Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495708A (en) * 1972-05-07 1974-01-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495708A (en) * 1972-05-07 1974-01-18

Also Published As

Publication number Publication date
JPS5659156U (en) 1981-05-21

Similar Documents

Publication Publication Date Title
JPS635876A (en) Arc welding machine
JPH0956151A (en) Drive pulse output limiter circuit
JPH07232102A (en) Electrostatic precipitator
JPH0767328A (en) Power supply device for switching regulator
JPS5924374Y2 (en) electrostatic precipitator
JP3122247B2 (en) AC circuit breaker
JP3514603B2 (en) High power factor high intensity discharge lamp lighting device and driving method thereof
JP3636655B2 (en) Electric dust collecting method and electric dust collecting device
JP2663535B2 (en) Power supply for arc machining
EP1639695A1 (en) Switch mode power circuit
JP2905540B2 (en) Power supply for pulse arc welding
JP3139220B2 (en) Pulsed power supply for electric dust collector
JPS619120A (en) Leakage detecting circuit
JP2018187645A (en) Welding power supply device
JP3139221B2 (en) Power control method of electric dust collector
JPH02104B2 (en)
JPH06112775A (en) Capacitor charging power supply device
JPS605704Y2 (en) Undervoltage relay with current compensation
JPS5870850A (en) High voltage power source of electric dust collector
JPS61128719A (en) Circuit breaker
JPH0213095Y2 (en)
JPH03277179A (en) Power supply
JPH0412640Y2 (en)
JPS60102813A (en) Leakage detector
JPH053206B2 (en)