JPS6197029A - Formation of coated film - Google Patents

Formation of coated film

Info

Publication number
JPS6197029A
JPS6197029A JP22010984A JP22010984A JPS6197029A JP S6197029 A JPS6197029 A JP S6197029A JP 22010984 A JP22010984 A JP 22010984A JP 22010984 A JP22010984 A JP 22010984A JP S6197029 A JPS6197029 A JP S6197029A
Authority
JP
Japan
Prior art keywords
silicon
wavelength
pressure
film
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22010984A
Other languages
Japanese (ja)
Other versions
JPH0576545B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP22010984A priority Critical patent/JPS6197029A/en
Publication of JPS6197029A publication Critical patent/JPS6197029A/en
Publication of JPH0576545B2 publication Critical patent/JPH0576545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To eliminate the generation of uncoupled bonds by adding heat energy or heat energy and light energy of <=300nm wavelength to a gaseous silicon fluoride contg. Si2F6, and forming a coated film consisting essentially of silicon on the surface to be coated. CONSTITUTION:Si2F6 is supplied from 11, and discharged by a vacuum pump 14 from a discharge port 7 through a pressure regulating valve 12 and a stop valve 13. Ten lamps 4 (low-voltage mercury-vapor lamp) for generating light of <=300nm wavelength and their related electric power source system 5 are used for the photochemical reaction. Some gaseous hydrogen is introduced into a lamp chamber 28 from 24 to prevent the reflux of a reactive gas, and heated to about 600 deg.C by a heater 25 to decompose a refluxed undercomposed silicon compd. The pressure in the lamp chamber 28 is equalized with the pressure in the reaction chamber 1 by regulating a valve 27 to prevent the breakage of the quartz glass 26 of the window.

Description

【発明の詳細な説明】 この発明は、熱、光化学反応を用いた気相反応方法(以
下CVD法という)により弗素が添加された珪素を主成
分とする被膜、例えば非単結晶半導体またはアモルファ
ス珪素半導体を作製する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a coating mainly composed of silicon to which fluorine is added by a vapor phase reaction method using thermal and photochemical reactions (hereinafter referred to as CVD method), such as a non-single crystal semiconductor or amorphous silicon. The present invention relates to a method of manufacturing a semiconductor.

この発明は弗素が添加され5i−F結合または5i−F
・・・H結合を有するとともに、水素が従来公知の5i
Haにより作製された場合の量に比べて十分少ない珪素
を主成分とする被膜を作製する方法に関する。
In this invention, 5i-F bond or 5i-F bond is added with fluorine.
...Has an H bond, and hydrogen is the conventionally known 5i
The present invention relates to a method for producing a film whose main component is silicon in a sufficiently smaller amount than that when produced from Ha.

この発明は珪素の弗素化物の5izF4と水素とを反応
せしめ、珪素被膜を800℃以下の温度好ましくは10
0〜500℃例えば300℃で形成する方法に関する。
This invention involves reacting 5izF4, a fluoride of silicon, with hydrogen to form a silicon coating at a temperature of 800°C or less, preferably 10°C.
It relates to a method of forming at 0 to 500°C, for example 300°C.

従来、アモルファス珪素膜を作製せんとするには、5i
zF、を用いた光CVD法が知られている。しかしかか
るアモルファス珪素膜はその膜内に珪素の不対結合手が
残存するとともに、残存する水素が10原子%以上を有
しており耐熱性に欠けるものであった。
Conventionally, in order to produce an amorphous silicon film, 5i
A photo-CVD method using zF is known. However, such an amorphous silicon film has dangling bonds of silicon remaining in the film, and has residual hydrogen of 10 atomic % or more, so it lacks heat resistance.

さらにこの残存する不対結合手中和用の水素は比較的強
い電界で結合手が切れ、不対結合手を作ってしまう、そ
の−例として絶縁ゲイト型電界効果半導体装置における
チャネル形成領域を構成する半導体をあげることができ
る。かかる領域ではゲイト電圧法により半導体絶縁膜界
面に電界が集中し、かつキャリアが集中することで5i
−H結合手が切れると、その結果、発生した不対結合手
は即ち界面単位を構成し、特性劣化を誘発してしまった
。このため結合力が強くかつ不対結合手を中和するター
ミネイダが求められていた。
Furthermore, the hydrogen for neutralizing the remaining dangling bonds is broken by a relatively strong electric field, creating dangling bonds.For example, this hydrogen forms a channel forming region in an insulated gate field effect semiconductor device. I can name semiconductors. In such a region, the electric field is concentrated at the semiconductor insulating film interface by the gate voltage method, and carriers are concentrated, resulting in 5i
When the -H bond breaks, the resulting unpaired bond constitutes an interfacial unit, causing property deterioration. For this reason, there has been a need for a terminator that has strong binding strength and neutralizes unpaired bonds.

本発明はかかる目的のため、即ち珪素の弗素化物特に好
ましくは5izF4を用いることにより、珪素を主成分
とする被膜を作製せんとするものである。
For this purpose, the present invention aims to produce a film containing silicon as a main component by using a fluoride of silicon, particularly preferably 5izF4.

その主たる反応式は 5izFb→ 2Si  + 3h  + 3T。The main reaction formula is 5izFb → 2Si + 3h + 3T.

または、 SigFh+  38z  → 2Si  +  6H
Fである。    − このため弗素化珪化物気体として5izF*または5i
3FBで示される5inFzy++t(n≧2)特に好
ましくはSiJ+、を用いたことを特長としている。
Or, SigFh+ 38z → 2Si + 6H
It is F. - Therefore, 5izF* or 5i as a fluorinated silicide gas
It is characterized by using 5inFzy++t (n≧2), particularly preferably SiJ+, represented by 3FB.

以下に図面に従って本発明を記す。The present invention will be described below according to the drawings.

第1図は、本発明に用いられた光CVDまたは熱CVD
装置の概要を示す。
Figure 1 shows the optical CVD or thermal CVD used in the present invention.
An overview of the device is shown.

図面において、反応容器または真空容器(1)はステン
レス類であり、石英窓(26)が設けられている。基板
(2)はハロゲンヒータ(3)で下側から加熱されたホ
ルダ(22)上に配設され、室温〜900℃好ましくは
200〜500℃例えば300℃に加熱される。ドーピ
ング系は流量計(6)、パルプ(7)よりなり、水素が
(10)より供給される。
In the drawing, the reaction vessel or vacuum vessel (1) is made of stainless steel and is provided with a quartz window (26). The substrate (2) is placed on a holder (22) heated from below by a halogen heater (3), and heated to room temperature to 900°C, preferably 200 to 500°C, for example 300°C. The doping system consists of a flow meter (6) and a pulp (7), and hydrogen is supplied from (10).

また珪素の弗素化物は(11)より供給される。珪素の
弗素化物としてここでは5izF、を用いた。
Further, silicon fluoride is supplied from (11). Here, 5izF was used as the silicon fluoride.

さらに排気口(7)より圧力調整パルプ(12)、スト
ップパルプ(13)をへて、真空ポンプ(14)より排
気させた。光化学反応させるため、300rv以下の波
長の発生ランプ(低圧水銀ランプ、ウシオ電機製、υL
l −45EL2− N −1) (4)を10本及び
それに伴う電源系(5)を用いた。さらにこのランプ室
(28)を排気系に連結し、真空引きした。このランプ
室に反応性気体の逆流を防ぐため、(24)より水素ガ
スを若干導入し、ヒータ(25)にて600℃に加熱し
逆流未分解珪素化合物を分解した。さらにランプ室(2
8)には反応室(1)と同じ圧力として窓の石英ガラス
(26)が破損しないようにパルプ(27)にて調整し
た。かくすると発生源で発生した紫外光のうち、特に大
気中の水蒸気により184 nmの短波長光の反応容器
(1)内に至る前での吸収損を防ぐことができた。
Further, the pressure adjusting pulp (12) and the stop pulp (13) were passed through the exhaust port (7), and the mixture was evacuated from the vacuum pump (14). In order to cause a photochemical reaction, a generation lamp with a wavelength of 300 rv or less (low-pressure mercury lamp, manufactured by Ushio Inc., υL) is used.
1-45EL2-N-1) (4) and the associated power supply system (5) were used. Furthermore, this lamp chamber (28) was connected to an exhaust system and evacuated. In order to prevent the backflow of reactive gas into this lamp chamber, a small amount of hydrogen gas was introduced from (24) and heated to 600° C. with a heater (25) to decompose the backflow of undecomposed silicon compounds. In addition, the lamp chamber (2
In 8), the pressure was adjusted to be the same as that in the reaction chamber (1) using pulp (27) so as not to break the quartz glass (26) of the window. In this way, among the ultraviolet light generated at the source, it was possible to prevent the absorption loss of the short wavelength light of 184 nm, especially due to water vapor in the atmosphere, before it reaches the inside of the reaction vessel (1).

以下にその実施例を示す。Examples are shown below.

実施例1 この実施例は5izFaとアンモニアとの光化学反応に
より珪素を主成分とする半導体被膜を作製せんとしたも
のである。
Example 1 In this example, a semiconductor film containing silicon as a main component was prepared by a photochemical reaction between 5izFa and ammonia.

第1図において、ヒータ(3)にて基板を300℃に加
熱して窒化珪素膜を形成するための珪素基板(2)をヒ
ータ上方のボートホルダ(2)上に配設している。さら
にパルプ(10)を開にして、水素を導入した。さらに
5izF、を5izF*/Hz#1/1として導入した
。反応容器内圧力は、0.1〜100 torrの範囲
例えば10 torrとした。すると反応管内に窒化珪
素が184nmおよび254nmの紫外光の照射による
光CVD法において水銀増感を用いることなく0.7人
/秒の成長速度で得ることができた。この被膜成長速度
は3torrとすると0.2人/秒と減少した。
In FIG. 1, a silicon substrate (2) for forming a silicon nitride film by heating the substrate to 300° C. with a heater (3) is placed on a boat holder (2) above the heater. Furthermore, the pulp (10) was opened to introduce hydrogen. Furthermore, 5izF was introduced as 5izF*/Hz#1/1. The internal pressure of the reaction vessel was in the range of 0.1 to 100 torr, for example 10 torr. Then, silicon nitride could be obtained in the reaction tube at a growth rate of 0.7 persons/second without using mercury sensitization by photo-CVD method using irradiation with ultraviolet light of 184 nm and 254 nm. The film growth rate was reduced to 0.2 people/second when set to 3 torr.

さらに形成された被膜の電気特性を調べたところ、暗転
導度3X10’°(0cm)−厘、光転導度6×104
(0cm) −’(AMI 100o+W/cmりを得
た。さらに光学的なエネルギバンド巾は1.6〜1.7
eVであり、400℃の加熱をしてみてもその光学的エ
ネルギバンド巾はほとんど変化しなかった。
Further investigation of the electrical properties of the formed film revealed that the dark conductivity was 3 x 10'° (0 cm)-rin, and the photo conductivity was 6 x 104.
(0cm) -'(AMI 100o+W/cm was obtained. Furthermore, the optical energy band width was 1.6 to 1.7
eV, and the optical energy band width hardly changed even when heated to 400°C.

この反応生成物を0.2μmの厚さとしてIR(赤外線
吸収スペクトル)で調べたところ、2000cm−’お
よび880c+i−’に大きな吸収が見られ、5t−H
,SiF結合が存在することが判明した。さらに本発明
方法において重要なことは、SIMS (二次イオン分
析法、カメカ社製3F型を使用)によりこの被膜中の酸
素濃度を調べたところ、従来より公知の5in4ととの
プラズマ気相反応においてはI X 10”cm−’〜
5 X 10”cm−”の多量の濃度の酸素を含有して
いたが、本発明においては、4 XIO”cm−3以下
であり、従来の1/10以下しか含有していない。その
理由として以下が考えられる。即ち、5izF6とH2
との反応の後の残存ガスとしてHFが発生する。このI
Pが不純物として存在しゃすいSiO□、5iOHと反
応し、Sin、  +  4HP−+SiF4+  H
2Oにより5izFaよりより安定な水と5iFaが生
成される。その結果、水はかかる状態でSiF4と再反
応できないため、結果として被膜形成と同時に高純度化
作用も同時に終えたものと推定される。しかし他方従来
より公知のシランの分解反応においては、シランが室温
においてリーク、残存する酸素、水と反応してしまうた
め、被膜内に酸化珪素、5iOHが存在しやすくなって
いるものと推定される。
When this reaction product was examined by IR (infrared absorption spectrum) with a thickness of 0.2 μm, large absorption was observed at 2000 cm-' and 880c+i-', and 5t-H
, it was found that SiF bonds exist. Furthermore, what is important in the method of the present invention is that when the oxygen concentration in this film was investigated by SIMS (secondary ion spectroscopy, using a 3F model manufactured by Cameca), it was found that the plasma gas phase reaction with the conventionally known 5in4 In I x 10"cm-'~
Although it contained a large concentration of oxygen of 5 X 10"cm-", in the present invention, it is less than 4XIO"cm-3, which is less than 1/10 of the conventional value.The reason is that The following can be considered: 5izF6 and H2
HF is generated as a residual gas after the reaction with. This I
P exists as an impurity and reacts with SiO□, 5iOH to form Sin, + 4HP-+SiF4+ H
2O produces water and 5iFa, which are more stable than 5izFa. As a result, since water cannot react with SiF4 again in such a state, it is presumed that the high purification action was completed at the same time as the film was formed. However, in the conventionally known decomposition reaction of silane, silane leaks at room temperature and reacts with residual oxygen and water, so it is presumed that silicon oxide and 5iOH are likely to exist in the film. .

即ち、本発明方法の5inFia*z (n = 2+
 3+ ・・・)もしくはこの弗素化物と水素との反応
によるもので珪素膜を形成させた。しかしこの反応にG
eHaまたはGeF4を同時に混入せしめると、弗素が
添加されたS i xGe I−x (0<X<2)を
得ることができる。またWF6.MOC14と混入させ
てWSizJOSi2を形成させることも可能である。
That is, 5inFia*z (n = 2+
3+...) or a reaction between this fluoride and hydrogen to form a silicon film. However, this reaction
When eHa or GeF4 is mixed at the same time, fluorine-doped S i xGe I-x (0<X<2) can be obtained. Also WF6. It is also possible to form WSizJOSi2 by mixing it with MOC14.

さらに■価の化合物であるBF3.B2H4また1価の
化合物であるPH3またはAsH,を適量同時に混入し
てPまたはN型の珪素を主成分とする半導体被膜を形成
することは可能である。
In addition, BF3, which is a compound with ■ value. It is possible to form a semiconductor film mainly composed of P or N type silicon by simultaneously mixing an appropriate amount of B2H4 or a monovalent compound PH3 or AsH.

本発明において300nm以下の光エネルギの照射源と
してエキシマレーザ(波長300〜100 rv) ;
f:用いてもよいことはいうまでもない。
In the present invention, an excimer laser (wavelength 300 to 100 rv) is used as an irradiation source of light energy of 300 nm or less;
It goes without saying that f: may be used.

本発明において、光化学反応の励起用に水銀を同時に混
入し、水銀励起法を用いることも可能である。
In the present invention, it is also possible to simultaneously mix mercury for excitation of a photochemical reaction and use a mercury excitation method.

しかし水銀バブラを用いた方法は排気物中に水銀が残り
やすく、公害問題が発生しやすい。
However, methods using mercury bubblers tend to leave mercury in the exhaust gas, which tends to cause pollution problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための光CVO装置の概
要を示す。
FIG. 1 shows an outline of an optical CVO apparatus for carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】 1、Si_2F_6を含む珪素弗素化物気体に熱エネル
ギまたは熱エネルギと300nm以下の波長の光エネル
ギを加えることにより、被形成面上に珪素を主成分とす
る被膜を作製することを特徴とする被膜作製方法。 2、特許請求の範囲第1項において、Si_2F_6と
水素との混合気体に熱エネルギまたは熱エネルギと30
0nm以下の波長の光エネルギを加えることにより、被
形成面上に珪素半導体被膜を作製することを特徴とする
被膜作製方法。
[Claims] 1. Creating a film mainly composed of silicon on a surface to be formed by applying thermal energy or thermal energy and light energy with a wavelength of 300 nm or less to a silicon fluoride gas containing Si_2F_6. A method for producing a film characterized by: 2. In claim 1, thermal energy or thermal energy and 30
A method for producing a film, characterized in that a silicon semiconductor film is produced on a surface to be formed by applying light energy with a wavelength of 0 nm or less.
JP22010984A 1984-10-19 1984-10-19 Formation of coated film Granted JPS6197029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22010984A JPS6197029A (en) 1984-10-19 1984-10-19 Formation of coated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22010984A JPS6197029A (en) 1984-10-19 1984-10-19 Formation of coated film

Publications (2)

Publication Number Publication Date
JPS6197029A true JPS6197029A (en) 1986-05-15
JPH0576545B2 JPH0576545B2 (en) 1993-10-22

Family

ID=16746050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22010984A Granted JPS6197029A (en) 1984-10-19 1984-10-19 Formation of coated film

Country Status (1)

Country Link
JP (1) JPS6197029A (en)

Also Published As

Publication number Publication date
JPH0576545B2 (en) 1993-10-22

Similar Documents

Publication Publication Date Title
JP5075627B2 (en) Low temperature epitaxial growth of silicon-containing films using UV radiation
US20070218203A1 (en) Method and Equipment for Forming Oxide Film
JPH049369B2 (en)
US4717602A (en) Method for producing silicon nitride layers
Bergonzo et al. Rapid photochemical deposition of silicon dioxide films using an excimer lamp
JPS6197029A (en) Formation of coated film
JP2588446B2 (en) Semiconductor device
JPS61284578A (en) Formation of silicon oxide
JPS60190566A (en) Preparation of silicon nitride
JPS6199676A (en) Manufacture of silicon nitride
JPS60144940A (en) Method of producing silicon oxide
JPS60190564A (en) Preparation of silicon nitride
JPH0674502B2 (en) Semiconductor device
JPH0573830B2 (en)
JPS59147435A (en) Formation of silicon oxide film
JPS62158321A (en) Preparing method for film
JPS62158865A (en) Preparation of silicon oxide
JPS61113771A (en) Manufacture of aluminum nitride
KR900001237B1 (en) Semiconductor device manufacturing method
JPS6027121A (en) Photo chemical vapor deposition device
JPS62115710A (en) Manufacture of semiconductor device
JPH06158327A (en) Thin film depositing method
JP2620063B2 (en) Semiconductor device
JPS6366920A (en) Manufacture of semiconductor device
JPH03108753A (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term