JPS60144940A - Method of producing silicon oxide - Google Patents

Method of producing silicon oxide

Info

Publication number
JPS60144940A
JPS60144940A JP59001086A JP108684A JPS60144940A JP S60144940 A JPS60144940 A JP S60144940A JP 59001086 A JP59001086 A JP 59001086A JP 108684 A JP108684 A JP 108684A JP S60144940 A JPS60144940 A JP S60144940A
Authority
JP
Japan
Prior art keywords
silicon oxide
substrate
gas
thermal energy
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59001086A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP59001086A priority Critical patent/JPS60144940A/en
Publication of JPS60144940A publication Critical patent/JPS60144940A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Abstract

PURPOSE:To obtain SiO2 added with F on the surface to be formed, by providing a mixture of silicon fluoride gas and silicon oxide gas with electric energy together with thermal energy through thermal energy or light (with a wavelength of 300nm or less). CONSTITUTION:An Si substrate 2 is put in a quartz tube 1. Ar, NO2 or N2O and SiF2 are introduced into the quartz tube 1 from valves 9, 10 and 7, respectively, such that SiF2/O2 is about 0.3. The substrate 2 is heated to 1,050 deg.C at 2Torr and an SiO2 film is formed on the substrate 2 by the vacuum CVD method. Alternatively, the substrate 2 is heated to 300 deg.C while electric energy (13.56 MHz) is supplied at 2Torr so as to convert the reactive gas into plasma, whereby an SiO2 film is deposited on the substrate from SiF4 and N2O. Alternatively, the optical CVD method may be used with radiation of light having a wavelength of 300nm or less. SiO2 produced by any one of these methods contains no residual H2 or OH, and an excellent protective film can be obtained.

Description

【発明の詳細な説明】 この発明は、熱、光またはプラズマ化学反応を用いた気
相反応方法(以下CVD法という)により弗素が添加さ
れた酸化珪素、例えば光フアイバー用の原料石英、また
半導体エレクトロニクス用のパッシベイション被膜を作
製する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to silicon oxide doped with fluorine by a vapor phase reaction method using heat, light or plasma chemical reaction (hereinafter referred to as CVD method), such as quartz as a raw material for optical fibers, and semiconductors. The present invention relates to a method of making a passivation film for electronics.

この発明は弗素が添加され5t−F結合を有するととも
に、水素が弗素の1 /1000以下の量しか残存しな
い酸化珪素を作製すi方法に関する。
The present invention relates to a method for producing silicon oxide to which fluorine is added and has a 5t-F bond, and in which hydrogen remains in an amount less than 1/1000 of fluorine.

この発明は珪素の弗素化物と酸素または酸素の窒素化物
とを反応せしめ、酸化珪素被膜を1200℃以下の温度
好ましくは100〜400℃例えば300℃で形成する
方法に関する。
The present invention relates to a method of reacting a fluoride of silicon with oxygen or a nitride of oxygen to form a silicon oxide film at a temperature of 1200°C or less, preferably 100 to 400°C, for example 300°C.

従来、酸化珪素膜を作製せんとするには、グロー放電法
を用いたプラズマ気相反応方法によりシラン(SiH,
、)と−酸化二窒素(NtO)とを反応せしめ、200
〜400℃の基板温度にて被膜を作製していた。しかし
かかる酸化珪素膜は、その膜内に珪素の不対結合手、珪
素のクラスタが残存することにより残留電荷を生ずる。
Conventionally, in order to produce a silicon oxide film, silane (SiH,
, ) and - dinitrogen oxide (NtO) are reacted, 200
The coating was produced at a substrate temperature of ~400°C. However, such a silicon oxide film generates residual charges due to residual silicon dangling bonds and silicon clusters remaining within the film.

そしてこの電荷のため、MOS、IC等のファイナル・
コーティングとして用いることができなかった。
And because of this charge, the final voltage of MOS, IC, etc.
It could not be used as a coating.

さらに、この方法においては、生成された酸化珪素中に
水素または011を残存してしまう。このため実用上に
おいて水素をまったく用いない酸化珪素被膜を作製する
方法がめられていた。
Furthermore, in this method, hydrogen or 011 remains in the produced silicon oxide. For this reason, a method for producing a silicon oxide film that does not use hydrogen at all has been sought in practice.

本発明はかかる目的のため、即ち珪素の弗素化物例えば
SiFを用いることにより酸化珪素を作製せんとするも
のである。
The present invention aims to produce silicon oxide for this purpose, that is, by using a fluoride of silicon, such as SiF.

その主たる反応式は 2SiFL+ Q& → Sin、+ SiF。The main reaction formula is 2SiFL+ Q & → Sin, + SiF.

である。It is.

このため弗素化珪化物気体としてSiF、またはSi%
例えばSi’PLを用いたことを特長としている。
For this reason, SiF or Si% is used as a fluorinated silicide gas.
For example, it is characterized by the use of Si'PL.

以下に図面に従って本発明を記す。The present invention will be described below according to the drawings.

第1図は本発明に用いられたCVD装置の概要を示す。FIG. 1 shows an outline of the CVD apparatus used in the present invention.

図面において、反応容器(真空容器)(1)は石英から
なっている。基板(2)はヒータ(3)で囲まれた石英
管(1)内に配設され、室温〜1200℃好ましくは2
00〜400℃例えば300°Cに加熱がされている。
In the drawing, the reaction vessel (vacuum vessel) (1) is made of quartz. The substrate (2) is placed in a quartz tube (1) surrounded by a heater (3) and heated to a temperature of room temperature to 1200°C, preferably 2
Heating is carried out at 00 to 400°C, for example 300°C.

ドーピング系は流量計(6)、バルブ(7)よりなり不
活性気体、即ちヘリューム、アルゴン等の不活性気体は
(9)より供給される。
The doping system consists of a flow meter (6) and a valve (7), and an inert gas such as helium or argon is supplied from (9).

酸素または窒素の酸素化物気体は(10)より、また珪
素の弗素化物は(11)より供給される。珪素の弗素化
物は(8)よりSi−が供給され、石英管内の金属珪素
(純度9N以上X17)をヒータ(15)により100
〜1250℃に加熱して5iFLを以下の式のごと(に
して作製した。
Oxygen or nitrogen oxygenate gas is supplied from (10), and silicon fluoride is supplied from (11). The silicon fluoride is supplied with Si- from (8), and the metal silicon (purity of 9N or more x 17) in the quartz tube is heated to 100% by heater (15).
It was heated to ~1250° C. and 5iFL was prepared according to the following formula.

S i F4+S i → 2SiF2これらの反応性
気体を(11)より反応容器内に導入し、さらに排気口
(7)より圧力調整バルブ(12入ストツプバルブ(1
3)をへて、真空ポンプ(14)より排気させた。プラ
ズマ化学反応させる電気エネルギ供給装置(5)が設け
られている。
S i F4 + S i → 2SiF2 These reactive gases are introduced into the reaction vessel through (11), and then the pressure regulating valve (12-input stop valve (1)) is introduced through the exhaust port (7).
3) and was evacuated using a vacuum pump (14). An electrical energy supply device (5) for plasma chemical reaction is provided.

この高周波エネルギ供給用コイル(4)を囲んで抵抗加
熱ヒータ(3)が設けられている。
A resistance heater (3) is provided surrounding this high frequency energy supply coil (4).

以下にその実施例を示す。Examples are shown below.

実施例1 この実施例はSiF、と酸素との反応により酸化珪素を
石英管内に作製せんとしたものである。
Example 1 In this example, silicon oxide was produced in a quartz tube by a reaction between SiF and oxygen.

第1図において、ヒータ(13)内に配設された石英管
内壁上に珪素基板を配設している。さらにバルブ(7)
を開にしてS i F、とOLとをS LFL/ Oa
社o、3として導入した。反応容器内圧力は、0.1〜
10torrの範囲例えば2 torrとした。温度は
1050℃とした。すると反応管内に酸化珪素を熱エネ
ルギのみの供給による減圧CVD法を用い4.3人/秒
の成長速度で得ることができた。この被膜成長速度は1
 torr+o、1torrとすると3.2人/秒、0
.7 人/秒と減少した。
In FIG. 1, a silicon substrate is disposed on the inner wall of a quartz tube disposed within a heater (13). More valves (7)
Open S i F, and OL S LFL/Oa
It was introduced as Company O.3. The pressure inside the reaction vessel is 0.1~
The range is 10 torr, for example, 2 torr. The temperature was 1050°C. Then, silicon oxide could be obtained in the reaction tube at a growth rate of 4.3 persons/second using a low pressure CVD method by supplying only thermal energy. This film growth rate is 1
If torr+o, 1 torr, 3.2 people/second, 0
.. The number of people per second decreased to 7 people/second.

この生成物を5mmの厚さとしてIR(赤外線吸収スペ
クトル)で調べたところ、2000〜3500cm−1
にはまったく吸収が見られなかった。このことにより、
この酸化珪素内には5i−Fの結合があってもこの吸収
は980 cm’であり、光フアイバ用の近赤外領域(
1300cm’よりも長波長の領域)にてなんらの光吸
収をする余分な不純物がないことが判明した。
When this product was examined by IR (infrared absorption spectrum) with a thickness of 5 mm, it was found that it had a thickness of 2000 to 3500 cm.
No absorption was observed at all. Due to this,
Even though there is a 5i-F bond in this silicon oxide, this absorption is 980 cm', which is in the near-infrared region (for optical fibers).
It was found that there were no extra impurities that absorbed any light in the wavelength region longer than 1300 cm'.

実施例2 この実施例はSilと一酸化二窒素との反応により酸化
珪素被膜を単結晶珪素基板上に作製した。
Example 2 In this example, a silicon oxide film was formed on a single crystal silicon substrate by a reaction between Sil and dinitrogen monoxide.

実施例1と同様の装置を用いた。基板温度は300℃、
圧力2 torr、電気エネルギ(13,56Ml1z
3の供給により反応性気体をプラズマ化(プラズマ密度
13mW/cal) した。
The same apparatus as in Example 1 was used. The substrate temperature is 300℃,
Pressure 2 torr, electrical energy (13,56Ml1z
By supplying No. 3, the reactive gas was turned into plasma (plasma density: 13 mW/cal).

この酸化珪素上に対抗電極を作り、ダイオード構造とし
て、C−■特性を測定した。その結果、界面準位密度は
3 ×10” cm″2以下であって、酸化珪素被膜は
直流電界を加えた場合、I X106 V /cmにお
いて初めてヒステリシス特性が観察され、珪素基板上に
形成された酸化珪素中に珪素クラスタの存在により電荷
捕獲中心が少ないことが判明気体との反応方法は半導体
のパッシベイション膜としてきわめて有効であることが
判明した。この実施例2においてはMIS、FETのゲ
イト絶縁物としてを効であり、それぞれを用途により使
い分けるとよいことが判明した。
A counter electrode was formed on this silicon oxide to form a diode structure, and the C-■ characteristics were measured. As a result, the interface state density was less than 3 × 10"cm"2, and when a DC electric field was applied to the silicon oxide film, hysteresis characteristics were observed for the first time at I It was found that there were few charge trapping centers in silicon oxide due to the presence of silicon clusters.The reaction method with gas was found to be extremely effective as a passivation film for semiconductors. It has been found that this Example 2 is effective as a gate insulator for MIS and FET, and that it is better to use each separately depending on the purpose.

本発明において、熱CVD法、プラズマCVD法または
300nm以下の光エネルギの照射による光CVD法を
用いてもよいことはいうまでもない。
In the present invention, it goes without saying that a thermal CVD method, a plasma CVD method, or a photo-CVD method using irradiation with light energy of 300 nm or less may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するためのCVD装置の概要
を示す。 特許出願人
FIG. 1 shows an outline of a CVD apparatus for carrying out the method of the present invention. patent applicant

Claims (1)

【特許請求の範囲】 1、珪素の弗素化物気体と酸素化物気体との混合反応性
気体に熱エネルギまたは熱エネルギと300nm以下の
波長の光または電気エネルギを加えることにより、被形
成面上に弗素が添加された酸化珪素を作製することを特
徴とする酸化珪素作製方法。 2、特許請求の範囲第1項において、SiFよと0JI
NO□またはN、0との混合気体に熱エネルギまたは熱
エネルギと300nm以下の波長の光または電気エネル
ギを加えることにより、被形成面上に酸化珪素を作製す
ることを特徴とする酸化珪素作製方法。
[Claims] 1. By applying thermal energy or thermal energy and light or electrical energy with a wavelength of 300 nm or less to a mixed reactive gas of a silicon fluoride gas and an oxygenate gas, fluorine is formed on the surface to be formed. 1. A method for producing silicon oxide, comprising producing silicon oxide to which is added. 2. In claim 1, SiF Yoto0JI
A method for producing silicon oxide, characterized in that silicon oxide is produced on a surface to be formed by adding thermal energy or thermal energy and light or electrical energy with a wavelength of 300 nm or less to a gas mixture of NO□ or N, 0. .
JP59001086A 1984-01-07 1984-01-07 Method of producing silicon oxide Pending JPS60144940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59001086A JPS60144940A (en) 1984-01-07 1984-01-07 Method of producing silicon oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59001086A JPS60144940A (en) 1984-01-07 1984-01-07 Method of producing silicon oxide

Publications (1)

Publication Number Publication Date
JPS60144940A true JPS60144940A (en) 1985-07-31

Family

ID=11491686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59001086A Pending JPS60144940A (en) 1984-01-07 1984-01-07 Method of producing silicon oxide

Country Status (1)

Country Link
JP (1) JPS60144940A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237456A (en) * 1987-03-26 1988-10-03 Toshiba Corp Semiconductor device
EP0599730A2 (en) * 1992-11-24 1994-06-01 Sumitomo Chemical Company, Limited Semiconductor device and method of producing the same
US5563105A (en) * 1994-09-30 1996-10-08 International Business Machines Corporation PECVD method of depositing fluorine doped oxide using a fluorine precursor containing a glass-forming element
US5753564A (en) * 1992-11-24 1998-05-19 Sumitomo Metal Industries, Ltd. Method for forming a thin film of a silicon oxide on a silicon substrate, by BCR plasma

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237456A (en) * 1987-03-26 1988-10-03 Toshiba Corp Semiconductor device
EP0599730A2 (en) * 1992-11-24 1994-06-01 Sumitomo Chemical Company, Limited Semiconductor device and method of producing the same
EP0599730A3 (en) * 1992-11-24 1995-02-15 Sumitomo Metal Ind Semiconductor device and method of producing the same.
US5753564A (en) * 1992-11-24 1998-05-19 Sumitomo Metal Industries, Ltd. Method for forming a thin film of a silicon oxide on a silicon substrate, by BCR plasma
US5563105A (en) * 1994-09-30 1996-10-08 International Business Machines Corporation PECVD method of depositing fluorine doped oxide using a fluorine precursor containing a glass-forming element

Similar Documents

Publication Publication Date Title
JP2962417B2 (en) Chemical vapor deposition of silicon nitride from bis (t-butylamino) silane
JP2000049157A (en) Manufacture of oxy silicon carbide hydride film having low dielectric constant
Bergonzo et al. Low pressure photodeposition of silicon nitride films using a xenon excimer lamp
US4717602A (en) Method for producing silicon nitride layers
US5045346A (en) Method of depositing fluorinated silicon nitride
JPS60144940A (en) Method of producing silicon oxide
US4704300A (en) Method for producing silicon nitride layer
JP3836553B2 (en) Method for manufacturing silicon insulating film
JPS60190564A (en) Preparation of silicon nitride
Huo et al. SiO2 films by low pressure chemical vapor deposition using diethylsilane: Processing and characterization
Park et al. Effects of chlorine addition on the silicon dioxide properties deposited with remote plasma enhanced chemical vapor deposition at low temperatures
Karstens et al. VUV laser (157 nm) chemical vapor deposition of high quality amorphous hydrogenated silicon: gas phase chemistry and modelling
JPS6027122A (en) Method of photo plasma gas phase reaction
JPS60190566A (en) Preparation of silicon nitride
JP2620063B2 (en) Semiconductor device
JPS6145707B2 (en)
JPS61284578A (en) Formation of silicon oxide
JPS60190565A (en) Preparation of silicon nitride
JP3003425B2 (en) Method for manufacturing silicon oxide film
Han et al. Growth and characterization of silicon-nitride films by plasma-enhanced chemical vapor deposition
JPS59215731A (en) Manufacture of silicon oxide film
Yi et al. The effects of deposition variables on deposition rate in the chemical vapour deposition of silicon nitride
JPS6199676A (en) Manufacture of silicon nitride
JPH01152631A (en) Formation of sixoynz insulating film
JPS59162116A (en) Preparation of silicon film