JPS61113771A - Manufacture of aluminum nitride - Google Patents

Manufacture of aluminum nitride

Info

Publication number
JPS61113771A
JPS61113771A JP59234387A JP23438784A JPS61113771A JP S61113771 A JPS61113771 A JP S61113771A JP 59234387 A JP59234387 A JP 59234387A JP 23438784 A JP23438784 A JP 23438784A JP S61113771 A JPS61113771 A JP S61113771A
Authority
JP
Japan
Prior art keywords
substrate
aluminum
nitride
aluminum nitride
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59234387A
Other languages
Japanese (ja)
Other versions
JPH0416547B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP59234387A priority Critical patent/JPS61113771A/en
Priority to US06/795,917 priority patent/US4656101A/en
Publication of JPS61113771A publication Critical patent/JPS61113771A/en
Publication of JPH0416547B2 publication Critical patent/JPH0416547B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To manufacture aluminum nitride enlarged with an optical energy band width by executing the photochemical reaction of an organic aluminum and a gaseous nitride. CONSTITUTION:A substrate 2 is placed on a holder 22 in a vacuum vessel 1, so that it is heated by a halogen heater 3 from the lower side. On the upper side of the substrate 2, 10 pieces of generating lamps 4 of <=300nm wavelength, which are connected to an electric power source 5 are provided so as to be opposed to the substrate 2. The vacuum vessel 1 is brought to exhaust through an exhaust port 8 by operating a pump 14. Subsequently, methyl aluminum or ethyl aluminum, and a mixed gas with ammonia, hydrazine, or nitrogen fluoride are led into the vacuum vessel 1 through a flow meter 26 from a bubbler 20, and through a valve 7 and a quantity regulating meter 6, respectively. Thereafter, when an optical energy is applied from a light emitting lamp 4, aluminum nitride is manufactured on the substrate 2.

Description

【発明の詳細な説明】 この発明は、熱、光化学反応を用いた気相反応方法(以
下CVD法という)により窒化アルミニューム、例えば
半導体エレクトロニクス用のパッシベイション被膜また
はゲイト絶縁膜を作製・する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for producing aluminum nitride, for example, a passivation film or a gate insulating film for semiconductor electronics, by a vapor phase reaction method using thermal and photochemical reactions (hereinafter referred to as CVD method). Regarding the method.

この発明は有機アルミニュームと窒化物気体との光化学
反応を行わしめることにより、従来公知のSiH4とN
usにより作製された窒化珪素に比べて光学的エネルギ
バンド巾を大きく (窒化珪素は約5.0eV)約7e
Vを有せしめた窒化アルミニュームを作製する方法に関
する。
This invention uses conventionally known SiH4 and N by carrying out a photochemical reaction between organic aluminum and nitride gas.
The optical energy band width is larger than that of silicon nitride made by US (silicon nitride is about 5.0 eV), about 7 eV.
The present invention relates to a method for producing aluminum nitride containing V.

この発明はアルミニュームの有機化合物例えばトリメチ
ルアルミニューム((CH:l) 3A1) 、または
トリエチルアルミニューム((C2)1s)3Al) 
ヲ用い、加えてアンモニア(NH:l) 、ヒドラジン
(NJ4)、窒化弗素(NF x 、N zF a)を
加えることにより窒化アルミニューム(以下AINとも
略記する)を800°C以下の温度好ましくは100〜
500℃例えば300℃で形成する方法に関する。
This invention relates to organic compounds of aluminum such as trimethylaluminum ((CH:l) 3A1) or triethylaluminum ((C2)1s)3Al).
By adding ammonia (NH:l), hydrazine (NJ4), and fluorine nitride (NF 100~
It relates to a method of forming at 500°C, for example 300°C.

従来、窒化アルミニューム膜を作製せんとするには、グ
ロー放電法を用いたプラズマ気相反応方法により塩化ア
ルミニューム(AICh)とアンモニア(NH3)きを
反応せしめ、200〜400℃の基板温度にて被膜を作
製していた。
Conventionally, in order to produce an aluminum nitride film, aluminum chloride (AICh) and ammonia (NH3) were reacted by a plasma vapor phase reaction method using a glow discharge method, and the substrate temperature was raised to 200 to 400°C. The coating was prepared using

しかしかかる窒化アルミニューム膜は、その膜内に金属
アルミニュームの不対結合手、珪素のクラスタが残存す
ることにより、電気的絶縁性に対しバラツキををし、耐
圧低下を生ずる。さらに残留塩素がMOS、IC等のフ
ァイナル・コーティングとして用いるときに腐食の原因
となってしまった。
However, in such an aluminum nitride film, dangling bonds of metal aluminum and clusters of silicon remain in the film, resulting in variations in electrical insulation and a decrease in breakdown voltage. Furthermore, residual chlorine causes corrosion when used as a final coating for MOS, IC, etc.

加えて金属アルミニュームのクラスタのため、紫外光の
透光性が十分でなかった。このため、Egが約7eVを
有し、かつ紫外光の透光性に優れたAINが求められて
いた。このためには、従来より公知の窒化珪素に関して
も、Egが約5eV Lかなく、また珪素クラスタの残
存により十分でなかった。これらの原因のため半導体の
作製過程におけるファイナルコーティングが材料として
不十分であった。
In addition, because of the clusters of metallic aluminum, the transparency of ultraviolet light was insufficient. Therefore, there has been a demand for an AIN that has an Eg of about 7 eV and has excellent ultraviolet light transmittance. For this purpose, conventionally known silicon nitride has an Eg of only about 5 eV L, which is not sufficient due to residual silicon clusters. Due to these reasons, the final coating in the semiconductor manufacturing process was insufficient as a material.

1      このため実用上においてアルミニューム
のクラスタが作られにくいアルミニューム化物気体を用
いて窒化アルミニューム被膜を作製する方法が求められ
ていた。
1. For this reason, there has been a need for a method for producing an aluminum nitride film using an aluminide gas in which aluminum clusters are difficult to form in practice.

本発明はかかる目的のため、即ち有機アルミニューム特
に好ましくは^l (CH3) 3 (TMAという)
とアンモニア(NH3)を用いることにより、特に30
0nm以下の波長の紫外光を照射した光気相反応法を用
いることにより窒化アルミニュームを作製せんとするも
のである。
For this purpose, the present invention specifically uses organic aluminum (CH3) 3 (referred to as TMA).
and ammonia (NH3), especially 30
The purpose is to produce aluminum nitride by using a photovapor phase reaction method in which ultraviolet light with a wavelength of 0 nm or less is irradiated.

その主たる反応式は ^1 (CI!+) 3 + NHI→ AIN + 
4CH4である。゛ このTMAは東洋ストファ社製を用いた。その基礎物性
は以下の如くである。
The main reaction formula is ^1 (CI!+) 3 + NHI→ AIN +
It is 4CH4.゛This TMA was manufactured by Toyo Stoffer Co., Ltd. Its basic physical properties are as follows.

分子量  72.09 純度   99.9998χ(Atとして)密度   
 0.752g/m l (20℃)融点   15.
3℃ 蒸気圧   温度(”C)  蒸気圧(mmHg)20
      9、2 127   760         ’以下に図面に
従って本発明を記す。
Molecular weight 72.09 Purity 99.9998χ (as At) Density
0.752g/ml (20℃) Melting point 15.
3℃ Vapor pressure Temperature ("C) Vapor pressure (mmHg) 20
9, 2 127 760' The present invention will be described below according to the drawings.

第1図は、本発明に用いられた光CVOまたは熱CVO
装置の概要を示す。
Figure 1 shows the optical CVO or thermal CVO used in the present invention.
An overview of the device is shown.

図面において、反応容器または真空容器(1)は石英か
らなっている。基板(2)はハロゲンヒータ(3)で下
側から加熱されたホルダ(22)上に配設され、室温〜
900℃好ましくは200〜500℃例えば350℃に
加熱されている。ドーピング系は流量計(6) 、 (
26) 、バルブ(7)よりなり、アンモニアおよび窒
素はそれぞれ(9) 、 (10)より供給される。さ
らにこの窒化物気体は分解反応をしても気体であるため
、反応室の窓の内側にノズルより吹きつけ、紫外光照射
による光励起がなされた気体を下側の基板表面に(16
)に示されるようにふき下ろすようにした。加えて分解
反応をした時固体となるTMAまたはその反応物が石英
窓の表面に至らないようにするた袷の効果をも有せしめ
た。
In the drawing, the reaction vessel or vacuum vessel (1) is made of quartz. The substrate (2) is placed on a holder (22) that is heated from below with a halogen heater (3), and is kept at a temperature between room temperature and
It is heated to 900°C, preferably 200 to 500°C, for example 350°C. The doping system is a flowmeter (6), (
26) and a valve (7), and ammonia and nitrogen are supplied from (9) and (10), respectively. Furthermore, since this nitride gas remains a gas even after a decomposition reaction, it is blown into the inside of the reaction chamber window from a nozzle, and the gas, which has been photoexcited by ultraviolet light irradiation, is applied to the lower substrate surface (16
). In addition, it also had the effect of preventing TMA or its reactants, which become solid when a decomposition reaction occurs, from reaching the surface of the quartz window.

またTMA(Al(CH:+)+(MP 15.3℃)
)は室温で液体であるため、バブラ(20)に充填され
ている。このTMAに対し窒素を(11)よりバブルさ
せた。このバブラ(20)により反応室(1)に至るま
では100°Cに流量計(26)を含め加熱させ、配管
内壁へのTMAの吸着を防いだ。さらにこの律^はノズ
ルより(17)に示されるように基板側に吹きつけるよ
うにした。かくしてTMAとアンモニアは反応室にて初
めて混合し、光励起をして反応をさせた。加えて反応性
気体が石英窓に付着しないようにした。
Also, TMA(Al(CH:+)+(MP 15.3℃)
) is a liquid at room temperature, so it is filled in the bubbler (20). Nitrogen was bubbled into this TMA from (11). The bubbler (20) heated the reaction chamber (1), including the flow meter (26), to 100°C to prevent adsorption of TMA to the inner wall of the pipe. Furthermore, this rule^ was sprayed from the nozzle onto the substrate side as shown in (17). In this manner, TMA and ammonia were mixed for the first time in the reaction chamber and were photoexcited to cause a reaction. In addition, reactive gases were prevented from adhering to the quartz window.

さらに排気口(8)より圧力調整バルブ(12) 、ス
トップバルブ(13)をへて、真空ポンプ(14)より
排気させた。光化学反応させるため、300nm以下の
波長の発生ランプ(低圧水銀ランプ、ウシオ電機製、 
ULI −45EL2− N −1) (4)を10本
及びそれに伴う電源系(5)を用いた。さらにこのラン
プ室(28)を排気系に連結し、真空引きした。このラ
ンプ室に反応性気体の逆流を防ぐため、(24)より窒
素ガスを若干導入し、ヒータ(25)にて600℃に加
熱し分解した。さらにランプ室(28)は反応室(1)
と同じ圧力として窓の石英ガラス(26)が破損しない
ようにバルブ(27)にて調整した。さらに加えて、か
くすると発生源より反応室に至る前に大気中の水蒸気に
より184 nmの短波長光の吸収損を防ぐことができ
た。さらに基板(2)、ホルダ(22)の加熱用のハロ
ゲン加熱ヒータ(3)が反応空間(1)の下側に設けら
れている。
Furthermore, the pressure adjustment valve (12) and the stop valve (13) were passed through the exhaust port (8), and the mixture was evacuated using the vacuum pump (14). In order to cause a photochemical reaction, a generating lamp with a wavelength of 300 nm or less (low-pressure mercury lamp, manufactured by Ushio Inc.,
Ten ULI-45EL2-N-1) (4) and the associated power supply system (5) were used. Furthermore, this lamp chamber (28) was connected to an exhaust system and evacuated. In order to prevent the reactive gas from flowing back into the lamp chamber, a small amount of nitrogen gas was introduced from (24), and the lamp was heated to 600° C. with a heater (25) to decompose it. Furthermore, the lamp chamber (28) is the reaction chamber (1).
The pressure was adjusted using the valve (27) so as not to damage the quartz glass (26) of the window. In addition, in this way it was possible to prevent absorption loss of short wavelength light of 184 nm due to water vapor in the atmosphere before it reached the reaction chamber from the source. Furthermore, a halogen heater (3) for heating the substrate (2) and holder (22) is provided below the reaction space (1).

以下にその実施例を示す。Examples are shown below.

実施例1 この実施例はTMAとアンモニアとの光化学反応により
AINを石英管内に作製せんとしたものである。
Example 1 In this example, AIN was prepared in a quartz tube by a photochemical reaction between TMA and ammonia.

第1図において、ヒータ(3)にて基板を500℃以下
に加熱してAIN膜を形成するための半導体ICが形成
されたファイナルコーティング用の珪素基板(2)をヒ
ータ上方のホルダ(22)上に配設している。さらにバ
ルブ(7)を開にして、アンモニアを導入した。さらに
TMAをTMA/NH3=115として導入した。反応
容r内圧力は、0.1〜100 torrの範囲例えば
10torrとした。すると反応管内にAINが1  
   184nmおよび254nmの紫外光の照射によ
る光cv。
In FIG. 1, a silicon substrate (2) for final coating on which a semiconductor IC for forming an AIN film is formed by heating the substrate to 500°C or less with a heater (3) is placed in a holder (22) above the heater. It is placed above. Furthermore, the valve (7) was opened to introduce ammonia. Furthermore, TMA was introduced as TMA/NH3=115. The internal pressure of the reaction volume r was set in a range of 0.1 to 100 torr, for example, 10 torr. Then, there is 1 AIN in the reaction tube.
Photo CV by irradiation with 184 nm and 254 nm ultraviolet light.

法において水銀増感を用いることなり2.1 人/秒の
成長速度で得ることができた。この被膜成長速度は3t
orr とすると1.4 人/秒と減少した。
By using mercury sensitization in the method, it was possible to obtain a growth rate of 2.1 people/second. This film growth rate is 3t
orr, it decreased to 1.4 people/second.

この反応生成物を0.2μmの厚さとしてIt? (赤
外線吸収スペクトル)で調べたところ、900cm −
’に巾広の大きな吸収が見られ、AIN膜であることが
判明した。さらに本発明方法において重要なことは、か
かるAINの作製に対してはTMA もアンモニアも3
00nm以下の光で励起されるため、水銀を用いる必要
がない。さらにこのAINは熱伝導率が窒化珪素より約
5倍も優れているため、ICにおいてICチップ内の局
部加熱を防ぐことができる。さらにその光学的エネルギ
ハンド巾がi7eV(177nm)もあるため、紫外光
(184nmおよび254nm)を透過させることがで
きる。このため、窓にたとえAINが付着しても、紫外
光を反応性気体に到達させないいわゆるバリアにならな
いという特長を有する。
This reaction product is assumed to have a thickness of 0.2 μm. (infrared absorption spectrum), it was found to be 900 cm −
A broad and large absorption was observed in ', which revealed that it was an AIN film. Furthermore, what is important in the method of the present invention is that both TMA and ammonia are
Since it is excited by light of 00 nm or less, there is no need to use mercury. Furthermore, since the thermal conductivity of AIN is about five times better than that of silicon nitride, it is possible to prevent local heating within the IC chip. Furthermore, since its optical energy hand width is i7eV (177 nm), it can transmit ultraviolet light (184 nm and 254 nm). Therefore, even if AIN adheres to the window, it does not become a so-called barrier that prevents ultraviolet light from reaching the reactive gas.

またAINは窒化物であるため、ナトリューム等のアル
カリイオンに対するバリア効果を同時に期待でき、IC
等の半導体素子のファイナルコーティング材料として理
想的であった。
In addition, since AIN is a nitride, it can also be expected to have a barrier effect against alkali ions such as sodium.
It was ideal as a final coating material for semiconductor devices such as.

実施例2 この実施例はTMAとアンモニアとの熱反応により窒化
アルミニューム被膜を単結晶珪素基板上に作製した。実
施例1と同様の装置を用いた。基板温度は600〜90
0℃例えば800℃、圧力’l torr、TM^/N
lh #1/8とした。
Example 2 In this example, an aluminum nitride film was formed on a single crystal silicon substrate by a thermal reaction between TMA and ammonia. The same apparatus as in Example 1 was used. Substrate temperature is 600-90
0℃ e.g. 800℃, pressure 'l torr, TM^/N
lh #1/8.

このAIN(厚さ1000人)上に対抗電極を作り、ダ
イオード構造として、C−■特性を測定した。その結果
、界面準位密度は4 X 10” cm−”を得た。ま
た、AIN被膜に直流電界を加えた場合の破壊電圧は、
3 X 10”V/cm以上を有していた。
A counter electrode was formed on this AIN (thickness: 1000 mm), and the C-■ characteristics were measured as a diode structure. As a result, an interface state density of 4×10"cm-" was obtained. In addition, the breakdown voltage when a DC electric field is applied to the AIN film is
It had more than 3 x 10"V/cm.

即ち、500℃以下の温度で形成させるAIN膜は半導
体のパッジヘイジョン膜として有効である。
That is, an AIN film formed at a temperature of 500° C. or lower is effective as a pad haze film for semiconductors.

このためには、本発明方法の有機アルミニュームが紫外
光に対し感光性を有する物性を利用することが有効であ
る。また500〜900℃で高温で形成し、緻密な被膜
となるため、ゲ、ト電極絶縁物としてAINまたはAI
N とSiO□の2層膜として用いることは有効である
。さらに、RAMのキャパシタ用の絶縁膜(誘電Hり)
としても有効である。
For this purpose, it is effective to utilize the physical property of the organic aluminum used in the method of the present invention, which is sensitive to ultraviolet light. In addition, since it is formed at a high temperature of 500 to 900°C and forms a dense film, AIN or AI can be used as a gate and gate electrode insulator.
It is effective to use it as a two-layer film of N 2 and SiO□. Furthermore, insulating film (dielectric film) for RAM capacitors
It is also effective as

本発明において、有機アルミニュームを用いる場合は、
メチル基の存在による炭素の被膜内への混入が心配され
る。しかしSIMS(二次イオン質量分析)では1χし
かな(、それによる物性劣化はないと考えられる。また
酸素の混入によりアルミナが同時に形成され得る。しか
しその量が10重量%以下のAINにおいては熱伝導率
は99%以上の純度のAINとほぼ同様の高い値を得た
In the present invention, when using organic aluminum,
There is a concern that carbon may be mixed into the film due to the presence of methyl groups. However, in SIMS (secondary ion mass spectrometry), it is only 1χ (and it is thought that there is no deterioration of physical properties due to this.Also, alumina may be formed at the same time due to the mixing of oxygen.However, in AIN whose amount is less than 10% by weight, the heat The conductivity obtained was as high as that of AIN with a purity of 99% or more.

本発明において熱CVD法にてTE^とNH,、TMA
とNzHaの反応を用いることは有効である。また、3
00nm以下の光エネルギの照射による光CVD法とし
てエキシマ(波長500〜100 nm)レーザを用い
てもよいことはいうまでもない。
In the present invention, TE^ and NH,, TMA are prepared by thermal CVD method.
It is effective to use the reaction between and NzHa. Also, 3
It goes without saying that an excimer laser (wavelength: 500 to 100 nm) may be used as the optical CVD method using irradiation with light energy of 00 nm or less.

本発明において、光化学反応の励起用に水銀を同時に混
入し、水銀励起法を用いることも可能である。
In the present invention, it is also possible to simultaneously mix mercury for excitation of a photochemical reaction and use a mercury excitation method.

しかし水銀バブラを用いた方法は排気物中に水銀が残り
やすく、公害問題が発生しやすい。
However, methods using mercury bubblers tend to leave mercury in the exhaust gas, which tends to cause pollution problems.

本発明における窒化物気体として非酸素化物の弗化窒素
(NF3.NzFa)またはその他の非酸化物のヒドラ
ジン塩を用いてもよい。
As the nitride gas in the present invention, non-oxygenated nitrogen fluoride (NF3.NzFa) or other non-oxidized hydrazine salts may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するためのCVO装置の概要
を示す。
FIG. 1 shows an outline of a CVO apparatus for carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】 1、有機アルミニュームを含む反応性気体と窒素化物気
体との混合反応性気体に熱エネルギまたは熱エネルギと
300nm以下の波長の光エネルギを加えることにより
、被形成面上に窒化アルミニュームを作製することを特
徴とする窒化アルミニューム作製方法。 2、特許請求の範囲第1項において、メチルアルミニュ
ームまたはエチルアルミニュームとアンモニア、ヒドラ
ジンまたは弗化窒素との混合気体に熱エネルギまたは熱
エネルギと300nm以下の波長の光エネルギを加える
ことにより、被形成面上に窒化アルミニュームを作製す
ることを特徴とする窒化珪素作製方法。
[Claims] 1. By applying thermal energy or thermal energy and light energy with a wavelength of 300 nm or less to a reactive gas mixture of a reactive gas containing organic aluminum and a nitride gas, the surface to be formed is formed. A method for producing aluminum nitride, characterized by producing aluminum nitride. 2. In claim 1, the gas mixture of methylaluminum or ethylaluminum and ammonia, hydrazine or nitrogen fluoride is heated by adding thermal energy or thermal energy and light energy with a wavelength of 300 nm or less. A method for producing silicon nitride, characterized by producing aluminum nitride on a forming surface.
JP59234387A 1984-11-07 1984-11-07 Manufacture of aluminum nitride Granted JPS61113771A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59234387A JPS61113771A (en) 1984-11-07 1984-11-07 Manufacture of aluminum nitride
US06/795,917 US4656101A (en) 1984-11-07 1985-11-07 Electronic device with a protective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59234387A JPS61113771A (en) 1984-11-07 1984-11-07 Manufacture of aluminum nitride

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2086150A Division JPH069198B2 (en) 1990-03-29 1990-03-29 Semiconductor device
JP8614990A Division JPH0674502B2 (en) 1990-03-29 1990-03-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61113771A true JPS61113771A (en) 1986-05-31
JPH0416547B2 JPH0416547B2 (en) 1992-03-24

Family

ID=16970199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59234387A Granted JPS61113771A (en) 1984-11-07 1984-11-07 Manufacture of aluminum nitride

Country Status (1)

Country Link
JP (1) JPS61113771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681759A (en) * 1994-02-15 1997-10-28 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US6174757B1 (en) 1994-02-28 2001-01-16 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126774A (en) * 1983-01-10 1984-07-21 Nec Corp Vapor phase metal depositing device
JPS59129774A (en) * 1983-01-12 1984-07-26 Fuji Xerox Co Ltd Selective formation of nitrided film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126774A (en) * 1983-01-10 1984-07-21 Nec Corp Vapor phase metal depositing device
JPS59129774A (en) * 1983-01-12 1984-07-26 Fuji Xerox Co Ltd Selective formation of nitrided film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681759A (en) * 1994-02-15 1997-10-28 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US6174757B1 (en) 1994-02-28 2001-01-16 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6709906B2 (en) 1994-02-28 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device

Also Published As

Publication number Publication date
JPH0416547B2 (en) 1992-03-24

Similar Documents

Publication Publication Date Title
US7488693B2 (en) Method for producing silicon oxide film
JPS61127121A (en) Formation of thin film
JPH0831454B2 (en) Method for manufacturing semiconductor device
Bergonzo et al. Low pressure photodeposition of silicon nitride films using a xenon excimer lamp
JPH11279773A (en) Formation of film
US4717602A (en) Method for producing silicon nitride layers
JPH06168937A (en) Manufacture of silicon oxide film
JPS61113771A (en) Manufacture of aluminum nitride
US4910044A (en) Ultraviolet light emitting device and application thereof
JPH03115575A (en) Semiconductor device
JPH03108753A (en) Semiconductor device
CN100555582C (en) Be used to form the method and apparatus of oxidation film
US10559459B2 (en) Method for producing silicon nitride film and silicon nitride film
JPH02259074A (en) Method and apparatus for cvd
JP2814061B2 (en) Semiconductor device manufacturing method
JPS6379974A (en) Production of film
JPS60190566A (en) Preparation of silicon nitride
JPS59147435A (en) Formation of silicon oxide film
JPS60190564A (en) Preparation of silicon nitride
JPS6366919A (en) Manufacture of film
JPS61140139A (en) Semiconductor device
JPS6199676A (en) Manufacture of silicon nitride
JPS62158865A (en) Preparation of silicon oxide
JPS60144940A (en) Method of producing silicon oxide
JPS60190565A (en) Preparation of silicon nitride

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term