JPS6195553A - Multilayer wiring structure of semiconductor integrated circuit and manufacture thereof - Google Patents

Multilayer wiring structure of semiconductor integrated circuit and manufacture thereof

Info

Publication number
JPS6195553A
JPS6195553A JP21673684A JP21673684A JPS6195553A JP S6195553 A JPS6195553 A JP S6195553A JP 21673684 A JP21673684 A JP 21673684A JP 21673684 A JP21673684 A JP 21673684A JP S6195553 A JPS6195553 A JP S6195553A
Authority
JP
Japan
Prior art keywords
silicon oxide
wiring conductor
oxide film
conductor layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21673684A
Other languages
Japanese (ja)
Inventor
Noriko Iwamoto
岩本 則子
Kenichi Takeyama
竹山 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21673684A priority Critical patent/JPS6195553A/en
Publication of JPS6195553A publication Critical patent/JPS6195553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a multilayer wiring structure which assures microminiaturization, excellent moisture resistance and flatness characteristic by forming an interlayer insulating film of a double-layer structure of soluble polyimide resin film and silicon oxide film obtained by baking silicon oxide organic compound and forming a through hole in the two steps of the dry etching of silicon oxide film and dry etching of double polyimide resin. CONSTITUTION:A semiconductor substrate 1 providing a first wiring conductor layer 2 is coated with soluble polyimide resin soluction by the spin coating method and solvent is removed by heat processing under the nitrogen ambient. The soluble polyimide resin film 7 is the coated with silicon oxide organic compound and solvent is removed by heat processing. Thereafter, silicon oxide film 8 is formed through baking under the mixed gas of N2 and O2. This film is then coated with a resist film 4 and a pattern is formed. Thereafter the silicon oxide film 8 is dry-etched with the silicon oxide film 8 used as the mask. With the silicon oxide film 8 used as the mask, the soluble polyimide resin film 7 is etched by O2 plasma and simultaneously the resist 4 is removed. Next, Al is vacuum deposited and a resist mask is then formed thereon and a second wiring conductor layer 6 is formed by the etching.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路の配線構造体、特に配線層を複
数有する多層配線構造体及びその製造方、去に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a wiring structure for a semiconductor integrated circuit, and particularly to a multilayer wiring structure having a plurality of wiring layers, and a method for manufacturing the same.

従来例の構造とその問題点 従来、半導体集積回路の多層配線構造体を製造する際;
で問題となる基板の平坦化を解決するため:て製造方法
が無機材料に比べて乎易である熱硬化型テ熱畠分子樹脂
(例えニブPIQなどの熱俊化ポリイεド對脂)を層間
絶縁膜として用いた多層配線構造体が提案されている。
Conventional structures and their problems Conventionally, when manufacturing multilayer wiring structures for semiconductor integrated circuits;
In order to solve the problem of flattening of the substrate, we are using thermosetting molecular resins (for example, thermosetting polyester resins such as Nib PIQ), which are easier to manufacture than inorganic materials. A multilayer wiring structure used as an interlayer insulating film has been proposed.

この構成及び製造方法について、熱硬化型ポリイミド樹
脂を例として第1スから第4図を用いて説明するっ まず所定のパターンを有する第1配線導体層2を形成し
た半導体基板1上にスピンコード法によって熱硬化前の
ポリイミド中間体3を塗布し溶媒を除去する(第1図)
。次いで、ポリイミド中間体層の上部にレジストを塗布
し、所定のパターンを有するマスクを介して露光し、現
像によってパター7を形成する(第2スノ 前記レジス
トをマスクとして、ポジレジスト除去液あるβ瓜ヒ:ラ
ジノとエチレンシア5)の、足台溶液なとのアルカリ溶
液を用いてエツチングL、スルーホールを形成する(第
3図)。ポリイミド中間体を’JD熱し完全硬化させた
後スルーホール面を02プラズマエツチングなどで清浄
化し、八2を蒸着して第2配線導体層を形成する(第4
図)。
This structure and manufacturing method will be explained using thermosetting polyimide resin as an example and using FIGS. 1 to 4. First, spin cord Apply the polyimide intermediate 3 before thermosetting by the method and remove the solvent (Figure 1)
. Next, a resist is applied to the upper part of the polyimide intermediate layer, exposed through a mask having a predetermined pattern, and developed to form a pattern 7. H: Etch L and form a through hole using an alkaline solution such as radino and ethylene cyanide (5) and a footstool solution (Figure 3). After the polyimide intermediate is completely cured by JD heating, the through hole surface is cleaned by 02 plasma etching, etc., and 82 is vapor deposited to form a second wiring conductor layer (4th
figure).

上記の従来法では、エツチングの荏しノス11も同時に
エツチングされるためポリイミド中間、摸′J5・サイ
ドエッチが加速され、スルーホールの微細化は困難とな
る。また、ポリイミド中間体のエツチングとして、ポリ
イミド中間体を半硬化させた後、レジストをマスクとし
てCF4/Q2のプラス′マ中でエツチングする方法も
提案されているが、ポリイミド中間体の半硬化状態の制
仰がむずかしく、またレジストとのエツチングレイト比
が人きく七nないためレジスト膜厚を灘くする必要かあ
り、この方法においても微細化は困難となる、発明の目
的 本発明は、半導体集積回路において、高集積化に伴う微
細化を容易にした耐湿性、平担化性に優れた多層配線構
造体およびその製造方法を提供することを目的とする。
In the above-mentioned conventional method, since the etching hole 11 is also etched at the same time, the etching of the polyimide intermediate layer and the side surface is accelerated, making it difficult to miniaturize the through hole. Furthermore, a method has been proposed for etching the polyimide intermediate in which the polyimide intermediate is semi-cured and then etched in a CF4/Q2 plasma using a resist as a mask. Since control is difficult and the etching rate ratio with the resist is not very high, it is necessary to increase the thickness of the resist film, and even with this method, miniaturization is difficult. It is an object of the present invention to provide a multilayer wiring structure with excellent moisture resistance and flatness that facilitates miniaturization accompanying high integration in circuits, and a method for manufacturing the same.

発明の構成 不発明は、多層配線構造体における層間絶縁膜を可溶性
ポリイミド樹脂層と酸化7リコン有機化合物を焼成して
なる酸化珪素膜の二層構造とし、スルーホール形成工程
を酸化珪素膜のドライエ・ノチング工程とエツチングさ
れた酸化珪素膜をマスクとした可溶性ポリイミド樹脂の
ドライエツチング工程の2段階とすることを特徴とする
Structure of the invention The non-inventive feature is that the interlayer insulating film in the multilayer wiring structure has a two-layer structure of a soluble polyimide resin layer and a silicon oxide film formed by firing an organic compound of 7-licon oxide, and the through hole forming process is performed by drying the silicon oxide film. - It is characterized by having two steps: a notching step and a dry etching step of the soluble polyimide resin using the etched silicon oxide film as a mask.

層間絶縁膜を二層構造とし、かつ二層ともスピアコート
により塗布できることから、各層の膜厚が薄くとも多層
化てよ−て十分平担化が容易となる。
Since the interlayer insulating film has a two-layer structure and both layers can be coated by spear coating, even if the thickness of each layer is thin, it is easy to make the film multilayered and sufficiently flattened.

また、酸fヒ珪素模厚が薄いことから、エツチングマス
クとなるレジストもQ、871m以下の膜厚で十分であ
り、ファインパターンを形成することができる。さらに
エツチングが異方性エツチングであることから、サイド
エッチがなく、gM’:D−丁つ・可能となる。
Further, since the silicon oxide film has a small thickness, a film thickness of the resist serving as an etching mask of Q, 871 m or less is sufficient, and a fine pattern can be formed. Furthermore, since the etching is anisotropic etching, there is no side etching and gM': D-cutting is possible.

樹脂層として可溶性ポリイミド膜を用・ハるζζによっ
て従来必要であった熱硬化工程を猶ぐことができ、可溶
性ポリイミド樹脂、摸のエツチングと同時てレジストを
除去することが出来る−、ぼた、スルーホール清浄化の
ためにオーバーエツチングを行なっても、樹脂膜と酸化
珪素膜のエツチングレイト比が十分大きくとれるため膜
べりなどDY)シ題も生じず、安定なオーミノクコ/タ
クトを形成することができる。
By using a soluble polyimide film as the resin layer, the heat curing process that was previously required can be omitted, and the resist can be removed at the same time as etching the soluble polyimide resin. Even if over-etching is performed to clean the through-holes, the etching rate ratio between the resin film and the silicon oxide film is sufficiently large, so problems such as film peeling do not occur, and a stable Ominokko/Tact can be formed. can.

また、信頼性の面で1け、ボリイiド支り旨のみでは吸
湿性が高く1耐湿性ンC間魚が生じるが、樹脂、−タ上
に酸化珪素膜が形成されること:でよって、水分の樹脂
層への浸入を防止することが出来、i1″:を性を向上
させることができる。
In addition, in terms of reliability, if only the VOLII material is supported, it has high hygroscopicity and causes moisture resistance, but a silicon oxide film is formed on the resin. , it is possible to prevent moisture from entering the resin layer, and it is possible to improve the properties of i1'':.

実施しく]の説明 不発明を実施例を用いて詳細に収明する。。Explanation of “Implementation” The invention will be explained in detail using examples. .

所定のパターンを有する第1配腺導イヤ(層2を・設け
た半導体基板1上に可溶性ポリイミド樹脂1谷、fつ、
VJIC−2,5・k合成ゴム(久))をスピンコード
去を用いて0.8μm〜1.07zm塗布し、窒素中で
200’Cx20mm lA%理して溶、謀を除去する
(第5、g)4、可溶性ポ1ノイεド衝脂股7上:で、
酸化/リコノイy@化合物を焼成後に3000人前後に
なるようlこ塗布する。150°CX20mI/I熱処
理して溶媒を除去したのち、N2102=6o/40の
混合ガス中で350℃X2o韻+4oo0CX30価焼
成して酸化珪素膜8を形成する。この膜上に0.771
mのレジスト膜4を塗布し通常のホトl)ノ工程を経て
パター7を形成する(第6図)。レジスト膜4をマスク
として7レオンガスを用いて酸化珪素膜8をドライエツ
チングする(第7図)。次いで酸化珪素膜8をマスクと
して可溶性ポリイミド樹脂膜7を02プラズマエツチノ
グし、同時にレジスト4を除去する。樹脂膜をオーバー
エツチングすること、こよりスルーホール面を清浄化す
る(第8図)。
A first conductive layer (layer 2) having a predetermined pattern is formed on the semiconductor substrate 1 with one trough, f,
VJIC-2,5・k synthetic rubber (Kyu)) was coated to a thickness of 0.8 μm to 1.07 zm using a spin cord remover, dissolved and removed by processing at 200'C x 20 mm lA% in nitrogen (No. 5). , g) 4. Soluble polyester 7 upper part:
After baking, apply the oxidized/likonoy@compound to approximately 3,000 people. After removing the solvent by heat treatment at 150° C. and 20 mI/I, a silicon oxide film 8 is formed by firing at 350° C. 0.771 on this film
A resist film 4 of m is applied, and a pattern 7 is formed through the usual photolithographic process l) (FIG. 6). Using the resist film 4 as a mask, the silicon oxide film 8 is dry etched using 7 Leon gas (FIG. 7). Next, using the silicon oxide film 8 as a mask, the soluble polyimide resin film 7 is subjected to 02 plasma etching, and the resist 4 is removed at the same time. By over-etching the resin film, the through-hole surface is cleaned (FIG. 8).

Aiを蒸着しその上部に通常のホトリノ工程を経てレジ
ストマスクを形成し、エツチングによって第2配線導体
層6を形成する(第9図)。
Ai is deposited, a resist mask is formed on top of it through a normal photolithography process, and a second wiring conductor layer 6 is formed by etching (FIG. 9).

以上の方法により、・放細、ワG工の可能なオーミッタ
な:+7タクトを有する耐湿性(て優ねた半導株集績亘
路の多層配線構造体を効率よく製造するこiができる。
By the above method, it is possible to efficiently manufacture a multilayer interconnection structure with excellent moisture resistance (+7 takt), which is capable of radiation and wiring work. .

発明の効果 以上のように本発明は、回転塗布により平担化が容易で
、熱硬化の不要な可溶性ポリイミド樹脂を用いかつ可溶
性ポリイミド樹脂エツチングと同時にレジスト除去が可
能なため工程が簡略で、可溶性ポリイミド膜上に酸化/
リコン有機化合物を有することにより・耐湿性に優れた
微細加工の容易な多層配線m透体を歩留り良く製造でき
る効果を有する。
Effects of the Invention As described above, the present invention uses a soluble polyimide resin that can be easily flattened by spin coating, does not require heat curing, and can remove the resist at the same time as etching the soluble polyimide resin. Oxidation on polyimide film/
By including the recon organic compound, it is possible to produce a multilayer wiring transparent material with good yield, which has excellent moisture resistance and is easy to microfabricate.

【図面の簡単な説明】[Brief explanation of drawings]

る。 1  基板、2・・第1配線導体層、4  レジスト、
6・・・・第2配線導体層、7・・・・可溶性ポリイミ
ド樹脂、8−酸化珪素膜。 第 11A 嫡 5 A ? 第6図       4
Ru. 1 substrate, 2...first wiring conductor layer, 4 resist,
6--Second wiring conductor layer, 7--Soluble polyimide resin, 8--Silicon oxide film. 11th A 5th A? Figure 6 4

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板上に設けられた所定のパターンを有す
る第1配線導体層と、該第1配線導体層を覆い基板上に
延在する可溶性ポリイミド樹脂と、酸化シリコン有機化
合物を焼成してなる該樹脂層上に延在する酸化珪素膜と
、該樹脂層と該酸化珪素膜を貫く孔を通して第1配線導
体層と接続する第2配線導体層と、該第1配線導体層上
部に設けられた該第2配線導体層と同様に構成されて該
第2配線導体層上に設けられた複数層の配線導体層とか
らなることを特徴とする半導体集積回路の多層配線構造
体。
(1) A first wiring conductor layer having a predetermined pattern provided on a semiconductor substrate, a soluble polyimide resin covering the first wiring conductor layer and extending over the substrate, and a silicon oxide organic compound are fired. a silicon oxide film extending on the resin layer; a second wiring conductor layer connected to the first wiring conductor layer through a hole penetrating the resin layer and the silicon oxide film; and a second wiring conductor layer provided on the first wiring conductor layer. A multilayer wiring structure for a semiconductor integrated circuit, comprising a plurality of wiring conductor layers having the same structure as the second wiring conductor layer and provided on the second wiring conductor layer.
(2)酸化シリコン有機化合物としてポリオルガノシロ
キサン樹脂もしくはラダーシリコンを用いることを特徴
とする特許請求の範囲第1項記載の半導体集積回路の多
層配線構造体。
(2) A multilayer wiring structure for a semiconductor integrated circuit according to claim 1, characterized in that a polyorganosiloxane resin or ladder silicon is used as the silicon oxide organic compound.
(3)半導体基板上に所定のパターンを有する第1配線
導体層を形成する第1工程、該第1配線導体層を含む基
板面上に可溶性ポリイミド樹脂を塗布する第2工程、該
樹脂層上に酸化シリコン有機化合物を塗布し加熱して酸
化珪素膜を形成する第3工程、該酸化珪素膜上にレジス
トを塗布し所定のパターンを形成する第4工程、該レジ
ストをマスクとして該酸化珪素膜をドライエッチングす
る第5工程、該酸化珪素膜をマスクとして該可溶性ポリ
イミド樹脂膜をドライエッチングし同時にレジストを除
去する第6工程、該酸化珪素膜と該可溶性ポリイミド膜
を貫く孔を通して第1配線導体層と接続する所定のパタ
ーンを有する第2配線導体層を形成する第7工程と、必
要に応じて第2工程から第7工程に至る工程を繰り返し
て該第2配線導体層上に複数層の配線導体層を形成する
工程とからなることを特徴とする半導体集積回路の多層
配線構造体の製造方法。
(3) A first step of forming a first wiring conductor layer having a predetermined pattern on a semiconductor substrate, a second step of applying a soluble polyimide resin on the substrate surface including the first wiring conductor layer, and a second step of applying a soluble polyimide resin on the resin layer. a third step of applying a silicon oxide organic compound to the silicon oxide film and heating it to form a silicon oxide film, a fourth step of applying a resist on the silicon oxide film to form a predetermined pattern, and using the resist as a mask to form a silicon oxide film. A fifth step of dry etching the soluble polyimide resin film using the silicon oxide film as a mask and simultaneously removing the resist, a first wiring conductor through the hole penetrating the silicon oxide film and the soluble polyimide film. A seventh step of forming a second wiring conductor layer having a predetermined pattern to be connected to the second wiring conductor layer, and repeating the steps from the second step to the seventh step as necessary to form a plurality of layers on the second wiring conductor layer. 1. A method for manufacturing a multilayer wiring structure for a semiconductor integrated circuit, comprising the step of forming a wiring conductor layer.
(4)酸化シリコン有機化合物を酸化性雰囲気下で加熱
し酸化珪素膜を形成することを特徴とする特許請求の範
囲第3項記載の半導体集積回路の多層配線構造体の製造
方法。
(4) A method for manufacturing a multilayer wiring structure for a semiconductor integrated circuit according to claim 3, characterized in that a silicon oxide organic compound is heated in an oxidizing atmosphere to form a silicon oxide film.
JP21673684A 1984-10-16 1984-10-16 Multilayer wiring structure of semiconductor integrated circuit and manufacture thereof Pending JPS6195553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21673684A JPS6195553A (en) 1984-10-16 1984-10-16 Multilayer wiring structure of semiconductor integrated circuit and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21673684A JPS6195553A (en) 1984-10-16 1984-10-16 Multilayer wiring structure of semiconductor integrated circuit and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6195553A true JPS6195553A (en) 1986-05-14

Family

ID=16693121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21673684A Pending JPS6195553A (en) 1984-10-16 1984-10-16 Multilayer wiring structure of semiconductor integrated circuit and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6195553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373648A (en) * 1986-09-17 1988-04-04 Sanyo Electric Co Ltd Manufacture of multilayer interconnection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373648A (en) * 1986-09-17 1988-04-04 Sanyo Electric Co Ltd Manufacture of multilayer interconnection

Similar Documents

Publication Publication Date Title
US6586323B1 (en) Method for dual-layer polyimide processing on bumping technology
JPS63501186A (en) Method for forming vertical connections in polyimide insulation layers
JPS6195553A (en) Multilayer wiring structure of semiconductor integrated circuit and manufacture thereof
JPH0313744B2 (en)
JPH01150342A (en) Multilayer interconnection structure and manufacture thereof
JPH1167909A (en) Manufacture of semiconductor device
JPH07307550A (en) Manufacture of electronic component
JPS5833853A (en) Manufacture of semiconductor device
JPS6195552A (en) Manufacture of multilayer wiring structure
KR100216730B1 (en) Semiconductor metal film etching step
JPH11168141A (en) Semiconductor device and its manufacture
JPH0945771A (en) Manufacture of semiconductor integrated circuit
JP2783898B2 (en) Method for manufacturing semiconductor device
JP2950059B2 (en) Method for manufacturing semiconductor device
JPH11176935A (en) Manufacture of semiconductor device
JPH11274296A (en) Multilayer wiring structure and method of forming the same
JPH02152258A (en) Manufacture of intermediate oxide film for lsi
JPS58216442A (en) Forming method for aluminum wiring
KR19980038883A (en) Metal wiring formation method of semiconductor device
JPS63293859A (en) Multilayer interconnection structure and manufacture thereof
JPH06349828A (en) Manufacture of integrated circuit device
JPS63119549A (en) Manufacture of semiconductor element
JPH02184049A (en) Manufacture of semiconductor device
JPS6197946A (en) Manufacture of semiconductor device
JPH02137355A (en) Manufacture of semiconductor device