JPS6190466A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6190466A
JPS6190466A JP21236884A JP21236884A JPS6190466A JP S6190466 A JPS6190466 A JP S6190466A JP 21236884 A JP21236884 A JP 21236884A JP 21236884 A JP21236884 A JP 21236884A JP S6190466 A JPS6190466 A JP S6190466A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
oxidation
polycrystalline
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21236884A
Other languages
Japanese (ja)
Inventor
Hisao Hayashi
久雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21236884A priority Critical patent/JPS6190466A/en
Publication of JPS6190466A publication Critical patent/JPS6190466A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable oxygen to be effectively prevented from penetrating from below the end of the element-forming region, by a method wherein an element- forming region of desired shape is formed by selective removal of the semiconductor film, and next oxidation is carried out by oxidation-resistant treatment around this element-forming region. CONSTITUTION:First, a quartz substrate 1 is successively coated with an SiO2 film 2 and a polycrystalline Si film 3; thereafter, a photo resist 6 of desired shape is formed on this polycrystalline Si film 3, and formed into a polycrystalline Si film 3a of desired shape by required etching. Then, N2<+> ions are implanted to the SiO2 film 2; accordingly, the N-implanted part of the SiO2 turns into an SiN film 7. After removal of the photo resist 6, an SiO2 film 4 is formed on the surface of the polycrystalline Si film 3a by thermal oxidation. Since the SiN film 7 is thus formed in the SiO2 film 2 around the polycrystalline Si film 3a, the thickness of the SiO2 film 4 formed on the side surface of this Si film 3a at the time of gate oxidation can be made very small.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、少なくともその表面が絶縁物から成る基板上
に形成された半導体膜を酸化することによりこの半導体
膜を薄膜化するようにした半導体装置の製造方法に関し
、多結晶シリコン薄膜トランジスタの製造に用いて最適
なものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor device in which a semiconductor film formed on a substrate, at least the surface of which is made of an insulator, is thinned by oxidizing the semiconductor film. Regarding the manufacturing method, this method is most suitable for use in manufacturing polycrystalline silicon thin film transistors.

従来の技術 従来、多結晶シリコン超薄膜トランジスタ(TPT)の
製造にあたっては、まず第5図に示すように例えば石英
基板1上にSiO□膜2及び所定形状の多結晶シリコン
膜3(素子形成領域)を順次形成し、次いで酸素雰囲気
中において熱酸化(ゲート酸化)を行うことにより、こ
の多結晶シリコン膜3の表面に第5B図に示すようにS
iO2膜4(ゲート酸化膜)を形成すると共に、この多
結晶シリコン膜3を所定膜厚に薄膜化するようにしてい
る。
2. Description of the Related Art Conventionally, in manufacturing a polycrystalline silicon ultra-thin film transistor (TPT), first, as shown in FIG. By sequentially forming S and then performing thermal oxidation (gate oxidation) in an oxygen atmosphere, S is formed on the surface of this polycrystalline silicon film 3 as shown in FIG. 5B.
While forming the iO2 film 4 (gate oxide film), the polycrystalline silicon film 3 is thinned to a predetermined thickness.

ところがこの酸化の際には、酸素は、多結晶シリコン膜
3の上部から侵入してこの多結晶シリコン膜3の端部の
下方から例えば矢印A(第5A図参照)で示す経路で侵
入してこの多結晶シリコン膜3を下部からも酸化する。
However, during this oxidation, oxygen enters from the upper part of the polycrystalline silicon film 3 and enters from below the edge of the polycrystalline silicon film 3 along the path shown by arrow A (see FIG. 5A), for example. This polycrystalline silicon film 3 is also oxidized from the bottom.

その結果、多結晶シリコン膜3の端部におけるSiO□
膜4の膜厚Xは、第5B図に示すように、多結晶シリコ
ン膜3の上面におけるSing膜4の膜厚に比べて極め
て大きくなるので、この分だけ多結晶シリコン膜3の幅
が小さくなってしまう。例えば、第5A図の状態におけ
る多結晶シリコン膜3の膜厚を800人とすると、ゲー
ト酸化により膜厚1000人のSing膜4を形成した
場合、このXの値は約1.0μmにもなる。このため、
石英基viI上にTPTを集積化する場合には、各TP
Tを構成する多結晶シリコン膜30面積を大きくする必
要があり、従ってTPTの集積密度を高くするのが難し
い。
As a result, SiO□ at the edge of the polycrystalline silicon film 3
As shown in FIG. 5B, the film thickness X of the film 4 is extremely large compared to the film thickness of the Sing film 4 on the upper surface of the polycrystalline silicon film 3, so the width of the polycrystalline silicon film 3 is reduced by this amount. turn into. For example, if the thickness of the polycrystalline silicon film 3 in the state shown in FIG. 5A is 800, and the Sing film 4 with a thickness of 1,000 is formed by gate oxidation, the value of X will be about 1.0 μm. . For this reason,
When integrating TPT on quartz base viI, each TP
It is necessary to increase the area of the polycrystalline silicon film 30 constituting the T, and therefore it is difficult to increase the integration density of the TPT.

発明が解決しようとする問題点 本発明は、上述の問題にかんがみ、従来のTPT等の半
導体装置の製造方法が有する上述のような欠点を是正し
た半導体装置の製造方法を提供することを目的とする。
Problems to be Solved by the Invention In view of the above-mentioned problems, an object of the present invention is to provide a method for manufacturing a semiconductor device that corrects the above-mentioned drawbacks of the conventional method for manufacturing semiconductor devices such as TPT. do.

問題点を解決するための手段 本発明に係る半導体装置の製造方法は、少なくともその
表面が絶縁物から成る基板(例えば石英基板1)上に形
成された半導体膜(例えば多結晶シリコン膜3a)を酸
化することによりこの半導体膜を薄膜化するようにした
半導体装置の製造方法において、上記半導体膜を選択的
に除去して所定形状の素子形成領域を形成し、次いでこ
の所定形状の素子形成領域の周囲に耐酸化処理を施し、
この後上記酸化を行うようにしている。
Means for Solving the Problems A method for manufacturing a semiconductor device according to the present invention includes a semiconductor film (for example, polycrystalline silicon film 3a) formed on a substrate (for example, quartz substrate 1) at least the surface of which is made of an insulator. In a method of manufacturing a semiconductor device in which the semiconductor film is thinned by oxidation, the semiconductor film is selectively removed to form an element formation region of a predetermined shape, and then the element formation region of the predetermined shape is removed. Oxidation-resistant treatment is applied to the surrounding area,
After this, the above oxidation is performed.

作用 このようにするこ゛とによって、酸化時に素子形成領域
の端部の下方から酸素がこの素子形成領域に侵入するの
を効果的に防止することができる。
By doing this, it is possible to effectively prevent oxygen from entering the element forming region from below the end portion of the element forming region during oxidation.

実施例 以下本発明に係る半導体装置の製造方法を多結晶シリコ
ンTPTの製造に適用した実施例につき図面を参照しな
がら説明する。
EXAMPLE Hereinafter, an example in which the method for manufacturing a semiconductor device according to the present invention is applied to manufacturing a polycrystalline silicon TPT will be described with reference to the drawings.

まず本発明の第1実施例を第1A図〜第1D図に基づい
て説明する。
First, a first embodiment of the present invention will be described based on FIGS. 1A to 1D.

第1A図に示すように、まず石英基板1に例えばCVD
法によりSiO□膜2及び多結晶シリコン膜3を順次被
着形成した後、この多結晶シリコン膜3上に所定形状の
フォトレジスト6を形成する。
As shown in FIG. 1A, first, a quartz substrate 1 is coated with, for example, CVD.
After a SiO□ film 2 and a polycrystalline silicon film 3 are sequentially deposited by a method, a photoresist 6 having a predetermined shape is formed on the polycrystalline silicon film 3.

次にこのフォトレジスト6をマスクとして所定のエツチ
ングを行うことにより、第1B図に示すように所定形状
の多結晶シリコン膜3a(素子形成領域)を形成し、次
いで再びフォトレジスト6をマスクとしてSing膜2
にN2゛ (窒素)をイオン注入する(SiO2膜2中
のNを0で表す)。この結果、5i02膜2のうちの上
記Nが注入された部分はSiN膜7となる。
Next, using the photoresist 6 as a mask, a predetermined etching process is performed to form a polycrystalline silicon film 3a (element formation region) having a predetermined shape as shown in FIG. 1B. membrane 2
N2 (nitrogen) is ion-implanted into the SiO2 film 2 (N in the SiO2 film 2 is represented by 0). As a result, the portion of the 5i02 film 2 into which the N is implanted becomes the SiN film 7.

次にフォトレジスト6を除去した後、熱酸化を行うこと
により多結晶シリコン膜3aの表面にSiO□膜4を形
成する。この熱酸化の際には、多結晶シリコン膜3aの
端部下方からのこの多結晶シリコン膜3aへの酸素の侵
入が上記SiN膜7により効果的に防止される結果、こ
の多結晶シリコン膜3aの側面におけるSiO□膜4の
膜厚はこの多結晶シリコン膜3aの上面におけるSiO
□膜4の膜厚とほぼ同一となっている。この後、TPT
の公知の製造方法に従って、第1D図に示すようにゲー
ト酸化膜8、ゲート電極9、例えばn゛層から成るソー
ス領域10及びドレイン領域11等を形成して、目的と
するTPTを完成させる。
Next, after removing the photoresist 6, thermal oxidation is performed to form a SiO□ film 4 on the surface of the polycrystalline silicon film 3a. During this thermal oxidation, the SiN film 7 effectively prevents oxygen from entering the polycrystalline silicon film 3a from below the edge of the polycrystalline silicon film 3a. The thickness of the SiO□ film 4 on the side surface of the SiO
□The film thickness is almost the same as that of film 4. After this, TPT
As shown in FIG. 1D, a gate oxide film 8, a gate electrode 9, a source region 10 and a drain region 11 made of, for example, an n layer are formed according to a known manufacturing method to complete the desired TPT.

このように、上述の第1実施例によれば、多結晶シリコ
ン膜3aの周囲のSing膜2にNZ ”をイオン注入
することによりSiN膜7を形成しているので、ゲート
酸化の際にこの多結晶シリコン膜3aの側面に形成され
るSiO□膜4の膜厚を従来に比べて極めて小さくする
ことができる。このため、酸化によりチャネル幅(紙面
と垂直な方向の多結晶シリコン膜3aの幅)等が狭くな
るのを防止することができるのみならず、この多結晶シ
リコン膜3aの面積を小さくすることが可能であるので
、TPTを高密度に集積化することが可能である。
As described above, according to the first embodiment, the SiN film 7 is formed by ion-implanting NZ'' into the Sing film 2 around the polycrystalline silicon film 3a. The thickness of the SiO□ film 4 formed on the side surface of the polycrystalline silicon film 3a can be made extremely small compared to the conventional method.For this reason, the channel width (the thickness of the polycrystalline silicon film 3a in the direction perpendicular to the plane of the paper) can be reduced by oxidation. Not only can the width (width) etc. be prevented from becoming narrow, but also the area of this polycrystalline silicon film 3a can be reduced, so it is possible to integrate TPTs at a high density.

次に本発明の第2実施例を第2A図及び第2B図に基づ
いて説明する。
Next, a second embodiment of the present invention will be described based on FIGS. 2A and 2B.

まず第1A図に示すと同様な工程を経た後、第1実施例
と同様にフォトレジスト6をマスクとして多結晶シリコ
ン膜3をエツチングし、この多結晶シリコン膜3のうち
の上記フォトレジスト6で覆われていない部分が第2A
図に示すように薄くなった段階でエツチングを停止する
。なお以下においては、この多結晶シリコン膜3のうち
の膜厚の大きい部分(素子形成領域)を3aで将来し、
膜厚の小さい部分を3bで将来する。次にフォトレジス
ト6をマスクとして、比較的高いエネルギーでN2°を
イオン注入することにより、多結晶シリコン膜3bの下
方のSiO□膜2にNをドープしてこのSiO□膜2の
一部をSiN膜7に変える。
First, after going through the same steps as shown in FIG. 1A, the polycrystalline silicon film 3 is etched using the photoresist 6 as a mask in the same way as in the first embodiment, and the photoresist 6 of the polycrystalline silicon film 3 is etched. The uncovered part is 2nd A
Etching is stopped when the thickness becomes thin as shown in the figure. In the following, a thicker part of the polycrystalline silicon film 3 (element formation region) will be referred to as 3a.
The parts with small film thickness will be treated with 3b. Next, using the photoresist 6 as a mask, N2° is ion-implanted at relatively high energy to dope N into the SiO□ film 2 below the polycrystalline silicon film 3b, and partially remove the SiO□ film 2. Change to SiN film 7.

次にフォトレジスト6を除去した後、熱酸化を行う。こ
の熱酸化により、第2B図に示すように、素子形成領域
となる多結晶シリコン膜3aの表面に所定膜厚のSiO
□膜4が形成されると共に、薄い多結晶シリコン膜3b
はSing膜4に連なるSiO□膜12に変わる。この
後、第1実施例で述べたと同様に工程を進めて、目的と
するTPTを完成させる。
Next, after removing the photoresist 6, thermal oxidation is performed. As a result of this thermal oxidation, as shown in FIG. 2B, a predetermined thickness of SiO
□While the film 4 is formed, the thin polycrystalline silicon film 3b
changes into a SiO□ film 12 connected to the Sing film 4. Thereafter, the steps are carried out in the same manner as described in the first embodiment to complete the desired TPT.

この第2実施例によれば、薄い多結晶シリコン膜3bの
下方のSiO□膜2の上部をN2゛のイオン注入により
SiN膜7に変えているので、第1実施例と同様にゲー
ト酸化により多結晶シリコン膜3aの表面に形成される
SiO□膜4のその側面における。厚さをその上面にお
ける厚さと同程度とすることができる。従って、第1実
施例と同様に、酸化による多結晶シリコン膜3aの幅の
減少量を従来。
According to the second embodiment, since the upper part of the SiO□ film 2 below the thin polycrystalline silicon film 3b is changed to the SiN film 7 by N2'' ion implantation, gate oxidation is performed as in the first embodiment. On the side surface of the SiO□ film 4 formed on the surface of the polycrystalline silicon film 3a. The thickness can be comparable to the thickness at its top surface. Therefore, similarly to the first embodiment, the amount of decrease in the width of the polycrystalline silicon film 3a due to oxidation is reduced from the conventional amount.

に比べて極めて小さくすることができる。またこのため
、第1実施例と同様に多結晶シリコン膜3aの面積を小
さくすることが可能であるで、TFTを高密度に集積化
することが可能である。
It can be made extremely small compared to . Further, as in the first embodiment, it is possible to reduce the area of the polycrystalline silicon film 3a, and it is possible to integrate TFTs at a high density.

以上本発明を実施例につき説明したが、本発明は上述の
第1及び第2実施例に限定されるものではなく、本発明
の技術的思想に基づく種々の変形が可能である。例えば
、上述の第2実施例においでは、第2Al1gに示す工
程において比較的高いエネルギーでN2+をイオン注入
することにより多結晶シリコン膜3bの下方のSjO□
膜2の上部をSiN膜7に変えたが、低エネルギーでN
21をイオン注入することにより、第3図に示すように
多結晶シリコン膜3bをSiN膜7に変えることも可能
である。また上述の2つの実施例においては、半導体膜
として多結晶シリコン膜3を用いたが、非晶質シリコン
膜等の他の種類の半導体膜を用いでもよい。
Although the present invention has been described above with reference to embodiments, the present invention is not limited to the above-described first and second embodiments, and various modifications can be made based on the technical idea of the present invention. For example, in the second embodiment described above, by ion-implanting N2+ with relatively high energy in the step shown in the second Al1g, the SjO□ below the polycrystalline silicon film 3b is
The upper part of film 2 was changed to SiN film 7, but N
By ion-implanting 21, it is also possible to change the polycrystalline silicon film 3b to a SiN film 7 as shown in FIG. Further, in the above two embodiments, the polycrystalline silicon film 3 was used as the semiconductor film, but other types of semiconductor films such as an amorphous silicon film may be used.

なお上述の2つの実施例に代えて、第4図に示すように
、SiO□膜2上にあらかじめ所定形状の      
 ゛SiN膜7を形成し、次いで多結晶シリコン膜14
を形成し、この後酸化を行うようにしても上述の2つの
実施例と同様な効果が得られる。
Note that instead of the above two embodiments, as shown in FIG.
゛SiN film 7 is formed, then polycrystalline silicon film 14 is formed.
The same effects as in the two embodiments described above can be obtained by forming and then performing oxidation.

発明の効果 本発明に係る半導体装置の製造方法によれば、半導体膜
を選択的に除去して所定形状の素子形成領域を゛形成し
1次いでこの所定形状の素子形成領域の周囲に耐酸化処
理を施し、この後酸化を行うようにしているので、酸素
が素子形成領域の端部の下方からこの素子形成領域に侵
入するのを効果的に防止することができ、このため素子
形成領域の側面に形成される酸化膜の厚さを従来に比べ
て極めて小さくすることができる。従って、この分だけ
素子形成領域の面積を従来に比べて小さくすることが可
能であるので、基板上に素子を高密度に集積化すること
が可能である。
Effects of the Invention According to the method for manufacturing a semiconductor device according to the present invention, a semiconductor film is selectively removed to form an element formation region of a predetermined shape, and then an oxidation-resistant treatment is performed around the element formation region of a predetermined shape. Since oxidation is performed after this, it is possible to effectively prevent oxygen from entering the element forming area from below the edge of the element forming area. The thickness of the oxide film formed can be made extremely smaller than in the past. Therefore, it is possible to reduce the area of the element formation region by this amount compared to the conventional method, and therefore it is possible to integrate elements on the substrate at a high density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図〜第1D図は本発明の第1実施例を工程順に示
す断面図、第2A図及び第2B図は本発明の第2実施例
を工程順に示す断面図、第3図は本発明の変形例を示す
第2A図と同様な断面図、第4図は本発明と同様な目的
を達成するための実施例とは異なる方法を説明するため
の断面図、第5A図及び第5B図は従来の多結晶シリコ
ン薄膜トランジスタの製造方法の一例を工程順に示す断
面図である。 なお図面に用いた符号において、 1−・−・・−・・・−・・−石英基板3−−−−−・
−一一−−−−−−−−−・多結晶シリコン膜(半導体
膜)4・・−・・・−・・−・−・−・SiO□膜7・
−・・・・−−一−−−−−・・−5iN膜8・−・・
・・−・−・・・−・−・ゲート酸化膜9−・・・・・
−・−・−・−・−ゲート電極10・−・・−・・−・
−・−・−・−ソース領域11・−・・−・・・・−・
・・−・・・ドレイン領域である。
1A to 1D are sectional views showing the first embodiment of the present invention in the order of steps, FIGS. 2A and 2B are sectional views showing the second embodiment of the invention in the order of steps, and FIG. 3 is the sectional view of the first embodiment of the present invention. FIG. 4 is a sectional view illustrating a method different from the embodiment for achieving the same object as the present invention; FIGS. 5A and 5B; FIG. 1A and 1B are cross-sectional views showing an example of a conventional method for manufacturing a polycrystalline silicon thin film transistor in the order of steps. In addition, in the symbols used in the drawings, 1-・-・・・・・・・−Quartz substrate 3−−−−−・
−11−−−−−−−−・Polycrystalline silicon film (semiconductor film) 4・・−・−・・−・−・−・SiO□ film 7・
−・・−−1−−−−−・・−5iN film 8・−・・
・・−・−・・・−・−・Gate oxide film 9−・・・・
−・−・−・−・−Gate electrode 10・−・・−・・−・
−・−・−・−Source area 11・−・・−・・・・−・
. . . Drain region.

Claims (1)

【特許請求の範囲】[Claims]  少なくともその表面が絶縁物から成る基板上に形成さ
れた半導体膜を酸化することによりこの半導体膜を薄膜
化するようにした半導体装置の製造方法において、上記
半導体膜を選択的に除去して所定形状の素子形成領域を
形成し、次いでこの所定形状の素子形成領域の周囲に耐
酸化処理を施し、この後上記酸化を行うようにしたこと
を特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device, the semiconductor film formed on a substrate at least the surface of which is made of an insulator is thinned by oxidizing the semiconductor film, and the semiconductor film is selectively removed to form a predetermined shape. 1. A method of manufacturing a semiconductor device, comprising: forming an element formation region, then applying anti-oxidation treatment to the periphery of the element formation region having a predetermined shape, and then performing the oxidation.
JP21236884A 1984-10-09 1984-10-09 Manufacture of semiconductor device Pending JPS6190466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21236884A JPS6190466A (en) 1984-10-09 1984-10-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21236884A JPS6190466A (en) 1984-10-09 1984-10-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6190466A true JPS6190466A (en) 1986-05-08

Family

ID=16621399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21236884A Pending JPS6190466A (en) 1984-10-09 1984-10-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6190466A (en)

Similar Documents

Publication Publication Date Title
US4376336A (en) Method for fabricating a semiconductor device
JPH02219253A (en) Manufacture of semiconductor integrated circuit device
JPS6252950B2 (en)
JP2859332B2 (en) Method for manufacturing semiconductor device
JPS6190466A (en) Manufacture of semiconductor device
JPS5923476B2 (en) Manufacturing method of semiconductor device
JPS58105571A (en) Preparation of semiconductor device
JPS63129664A (en) Manufacture of semiconductor device
JPH0567634A (en) Manufacture of mis type semiconductor device
JP3597458B2 (en) Method for manufacturing semiconductor device
KR0124637B1 (en) Method of forming the isolation on semiconductor device
JPS6331097B2 (en)
JPS62131538A (en) Manufacture of semiconductor device
JPH06275576A (en) Manufacture of semiconductor device
JPS6126223B2 (en)
JPH0217931B2 (en)
JPH0475349A (en) Manufacture of semiconductor device
JPS62130523A (en) Manufacture of semiconductor device
JPH06163450A (en) Manufacture of semiconductor device
JPH02114537A (en) Manufacture of semiconductor integrated circuit device
JPH01146367A (en) Field effect transistor
JPS641065B2 (en)
JPH01145831A (en) Semiconductor integrated circuit and manufacture thereof
JPS6032990B2 (en) Manufacturing method of semiconductor device
JPH022634A (en) Semiconductor device