JPS619010A - Hysteresis circuit - Google Patents
Hysteresis circuitInfo
- Publication number
- JPS619010A JPS619010A JP59130441A JP13044184A JPS619010A JP S619010 A JPS619010 A JP S619010A JP 59130441 A JP59130441 A JP 59130441A JP 13044184 A JP13044184 A JP 13044184A JP S619010 A JPS619010 A JP S619010A
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- current
- turned
- iout
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/26—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback
- H03K3/28—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback
- H03K3/281—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator
- H03K3/286—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator bistable
- H03K3/2893—Bistables with hysteresis, e.g. Schmitt trigger
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は2つの安定状態をもつ双安定回路に係り、特に
、出力が定電流となりヒステリシス作動値が電源電圧に
依存せず電流によって決るヒステリシス回路に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a bistable circuit having two stable states, and in particular to a hysteresis circuit in which the output is a constant current and the hysteresis operating value is determined by the current without depending on the power supply voltage. Regarding.
少なくとも2つのトランジスタを含み、第1のトランジ
スタがオンのとき第2のトランジスタがオフしている第
1の安定状態と、逆に第1のトランジスタがオフのとき
第2のトランジスタがオンしている第2の安定状態の2
つの安定状態を含む回路は双安定マルチバイブレークと
して知られている。双安定マルチバイブレークは、電子
計算機のレジスタやメモリなどの記憶回路に使用される
が、双安定回路にはこのような論理の記憶以外に主に波
形の成形に使用されるシュミントトリガ回路もある。一
般にシュミットトリガ回路は第1の安定状態から第2の
安定状態に移すための入力閾値と逆に第2の安定状態か
ら第1の安定状態に移すための入力式闇値が異なり、入
力電圧の変化に対して出力電圧はヒステリシス現象を起
す。このヒステリシス現象を利用して、入力波形の成形
を行うことができるので、シュミットトリガ回路のよう
なヒステリシス回路は実用的にも極めて有用である。a first stable state comprising at least two transistors, wherein the first transistor is on and the second transistor is off; and conversely, when the first transistor is off, the second transistor is on. 2 of the second stable state
A circuit containing two stable states is known as a bistable multibibreak. Bistable multi-by-break circuits are used in storage circuits such as registers and memory in electronic computers, but in addition to storing logic, bistable circuits also include Schmint trigger circuits, which are mainly used for shaping waveforms. . In general, in a Schmitt trigger circuit, the input threshold value for moving from the first stable state to the second stable state is different from the input threshold value for moving from the second stable state to the first stable state, and the input voltage threshold is different. The output voltage exhibits a hysteresis phenomenon in response to changes. Since input waveforms can be shaped by utilizing this hysteresis phenomenon, hysteresis circuits such as Schmitt trigger circuits are extremely useful from a practical standpoint.
従来この種のヒステリシス回路は第1図に示すような、
シュミットトリガ回路で構成されていた。Conventionally, this type of hysteresis circuit is as shown in Figure 1.
It consisted of a Schmitt trigger circuit.
今、トランジスタQ2がオンで61がオフである第1の
安定状態では、トランジスタQ2のベース電位V、2は
。Now, in the first stable state where transistor Q2 is on and transistor 61 is off, the base potential V,2 of transistor Q2 is.
V s 2 = V CCX□
Rcl+R1+R2
となる。入力電圧v、NがV、2より大きくなると1Q
2がオフ+ Q Iがオンするので、第2の安定状態と
なりこの時のQ2のベース電位をv92′とすれば、Q
+が飽和してルするので。V s 2 = V CCX□ Rcl+R1+R2. 1Q when the input voltage v,N is larger than V,2
2 is off + Q I is on, so it becomes a second stable state and if the base potential of Q2 at this time is v92', then Q
Because + is saturated and becomes Le.
7 となる・ただし・ R′は・R’
=、(R+ +R2)// R
R,(RI+R2)
R1+R2+R。7. However, R' is R'
=, (R+ +R2) // R R, (RI+R2) R1+R2+R.
である。従って、第1の安定状態から第2の安定状態に
移すための条件は。It is. Therefore, the conditions for moving from the first stable state to the second stable state are:
V IN > V II 2
で、逆に第2の安定状態から第1の安定状態に移すため
の条件は。V IN > VII 2 , and conversely, the condition for moving from the second stable state to the first stable state is.
v、N<Vl12′
となる。すなわち、この回路は第2図に示すようなヒス
テリシス特性を持つ。v, N<Vl12'. That is, this circuit has hysteresis characteristics as shown in FIG.
しかし、このような従来のシュミットトリガ回路はヒス
テリシス効果を持つが、電圧出方しが得られす、また、
ヒステリシス作動値すなわち、1つの安定状態から他の
安定状態に移るための入力の閾値は電源電圧vCcに依
存するという欠点があった。However, although such a conventional Schmitt trigger circuit has a hysteresis effect, it can provide a voltage output, and
The disadvantage was that the hysteresis activation value, ie the input threshold for moving from one stable state to another, depended on the supply voltage vCc.
本発明は、このような従来の欠点を除去し、ヒステリシ
ス作動値が電圧ではなく電流によって決
5るため作動値の電源電圧依存性が小さく、定電流出力
を得ることができるヒステリシス回路を提供する。The present invention eliminates these conventional drawbacks and allows the hysteresis activation value to be determined by current rather than voltage.
Therefore, the present invention provides a hysteresis circuit in which the dependence of the operating value on the power supply voltage is small and can obtain a constant current output.
本発明は、エミッタが共通に接続された第1と第2のト
ランジスタと、前記第1のトランジスタのコレクタと前
記第2のトランジスタのベースに一端が接続されたダイ
オードと、ベースは前記ダイオードの他端に接続された
第3のトランジスタと、前記第3のトランジスタのエミ
ッタと前記第2のトランジスタのコレクタ間に接続され
た第1の抵抗と、一方の電源と前記第3のトランジスタ
のベース間に接続された定電流源と、他方の電源と前記
第1と第2のトランジスタの共通エミソク間に接続され
た第2の抵抗とを具備し、前記第1のトランジスタのベ
ースに加えられる入力電圧に対して、前記第3のトラン
ジスタのコレクンより定電流を出力することを特徴とす
るヒステリシス回路である。The present invention includes first and second transistors whose emitters are commonly connected, a diode whose one end is connected to the collector of the first transistor and the base of the second transistor, and whose base is other than the diode. a third transistor connected to one end of the transistor; a first resistor connected between the emitter of the third transistor and the collector of the second transistor; and a first resistor connected between one power source and the base of the third transistor. and a second resistor connected between the other power source and a common emitter of the first and second transistors, the input voltage being applied to the base of the first transistor. On the other hand, this is a hysteresis circuit characterized in that a constant current is output from the collector of the third transistor.
次に本発明の実施例を図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第3図は本発明のヒステリシス回路の実施例である。N
PN)ランジスタQ1のベースに入力電圧■1Nが印加
され、コレクタはNPN)ランジスタQ2のベースとダ
イオードD1のカソードに接続されている。前記NPN
l−ランジスタQ1とQ2のエミッタは共通に一端が
接地された抵抗R2の他端に接続されている。そして、
前記ダイオードD1のアノードはNPN)ランジスタQ
3のベースと一端が電源VCCに接続された定電流源■
。FIG. 3 shows an embodiment of the hysteresis circuit of the present invention. N
An input voltage 1N is applied to the base of the NPN transistor Q1, and the collector is connected to the base of the NPN transistor Q2 and the cathode of the diode D1. Said NPN
The emitters of the l-transistors Q1 and Q2 are commonly connected to the other end of a resistor R2 whose one end is grounded. and,
The anode of the diode D1 is an NPN) transistor Q.
Constant current source with the base of 3 and one end connected to the power supply VCC■
.
の他端に接続されている。NPN)ランジスタQ3のエ
ミッタは抵抗R1の一端に接続され前記抵抗R−の他端
はトランジスタQ2のコレクタに接続されている。そし
て、出力の電流■ユはトランジスタQ3のコレクタに流
れ込む形で得られる。connected to the other end. The emitter of the transistor Q3 (NPN) is connected to one end of the resistor R1, and the other end of the resistor R- is connected to the collector of the transistor Q2. The output current I is obtained by flowing into the collector of the transistor Q3.
トランジスタQ2とQ31抵抗R1およびダイオードD
Iはいわゆるカレントミラー回路であって。Transistor Q2 and Q31 Resistor R1 and Diode D
I is a so-called current mirror circuit.
後述するように出力電流Iつを−・定にする回路である
。As will be described later, this is a circuit that makes the output current I constant.
本実施例において、トランジスタQ1とQ2はエミツタ
が共通に接続されているので、トランジスタQ1のベー
ス電圧すなわち入力電圧■1NがトランジスタQ2のベ
ース電圧V e (Q 2 )と比較して、vIN>
vIl (Q2)のときトランジスタQ1がオフ テQ
2がオフし、 V 、、、 < V s (Q
2 )のときQlがオフでQ2がオンする。今、V、N
<V 1l(Q 2 )であってトランジスタQ1がオ
フでQ2がオンしていると仮定する。このときトランジ
スタQ2は飽和状態にあるとすれば、トランジスタQ2
のコレクタ・エミッタ間電圧はほぼ零ボルトであり、ト
ランジスタQ2のコレクタとエミッタの電位はほぼ等し
くなる。従って、トランジスタQ2とQ3のそれぞれの
ベース・エミッタ間電圧を■6゜(Q2)、Ve *
(Q3)とし、ダイオードD1の順方向電圧降、下を
Vo+とすれば。In this embodiment, since the emitters of transistors Q1 and Q2 are commonly connected, the base voltage of transistor Q1, that is, the input voltage ■1N is compared with the base voltage Ve (Q 2 ) of transistor Q2, and vIN>
When vIl (Q2), transistor Q1 is off.
2 turns off, and V , , < V s (Q
2), Ql is off and Q2 is on. Now, V, N
Assume that <V 1l(Q 2 ) and transistor Q1 is off and Q2 is on. At this time, if transistor Q2 is in a saturated state, transistor Q2
The collector-emitter voltage of Q2 is approximately zero volts, and the potentials of the collector and emitter of transistor Q2 are approximately equal. Therefore, the voltage between the base and emitter of transistors Q2 and Q3 is 6° (Q2), Ve *
(Q3), and if the forward voltage drop of diode D1 is Vo+.
トランジスタQ3のベース電位V * (Q 3 )
はV、I〜R+Ic、JTとなる抵抗R1に対してエミ
ッタの電位よりもベース・エミッタ間電圧■、。Base potential V * (Q 3 ) of transistor Q3
is V, I~R+Ic, and the base-emitter voltage (■) is lower than the emitter potential for the resistor R1 that becomes JT.
(Q3)分だけ高くなる。すなわち、トランジス1
りQ2がオンしているときトランジスタ。It will be more expensive by (Q3). That is, transistor 1
transistor when Q2 is on.
3もオン状態であって、出力電流lつはトランジスタQ
3.抵抗R+、)ランジスタQ2及びR2を流れ、定
電流ICはトランジスタQ2とQ3のベースを介して抵
抗R2に流れる。この状態において。3 is also in the on state, and the output current l is the transistor Q.
3. A constant current IC flows through the resistors R+, ) through the transistors Q2 and R2, and the constant current IC flows through the resistor R2 through the bases of the transistors Q2 and Q3. In this state.
抵抗R2に流れる電流はI C+I 0IJTであるが
らトランジスタQ2のベースの電位V@(Q2)は、第
1の閾値Vth+として。The current flowing through the resistor R2 is I C+I 0 IJT, while the base potential V@(Q2) of the transistor Q2 is the first threshold value Vth+.
Vth+ =■++ s (Q2) +R2(1(+
Iar+)・・・・・+11
となる。また、トランジスタQ2.Q3.抵抗R+、及
びダイオードD+のカレントミラー回路の閉ループにお
いてキルヒホッフの電圧側を適用すれば、トランジスタ
Q2が飽和しているので。Vth+ =■++ s (Q2) +R2(1(+
Iar+)...+11. Also, transistor Q2. Q3. If Kirchhoff's voltage side is applied in the closed loop of the current mirror circuit of resistor R+ and diode D+, transistor Q2 is saturated.
Vlll (Q 2 ) + V o +”Vs @
(Q3) +RI l0UT・ ・ ・ ・ ・(
2)
が成立する。これにより、出力電流■ッは。Vllll (Q 2 ) + Vo +”Vs @
(Q3) +RI l0UT・ ・ ・ ・ ・(
2) holds true. This causes the output current to increase.
1ouv” (Vs m (Q2) +VD +
、Vs m (Q3.) )/R+ ・・・・・・
・・・・・・・(3)となり、抵抗R1を適当に定めれ
ば、出方電源 式IO1,rは定電流
となる。(1)式はトランジスタQ+がオフでトランジ
スタQ2とQ3がオンとなる状態にする闇値となる。ず
なわぢ、トランジスタQ−のベースに与えられる入力電
圧v、NがV 、N< V th + = V @ a
(Q 2 )→−R2(1(+ l0IJI)である
場合に、トランジスタQ1がオフでトランジスタQ2と
Q3がオンとなる。 、次に入力電圧v、Nがトラン
ジスタQ2のベース電位V @(Q 2 )と比較して
、Vi+、>V、l (Q2)であって、トランジス
タQ1がオンでQ2がオフしていると仮定する。このと
き、当然トランジスタQ3はオフ状態であって出力電流
1゜LITは流れず零である。従って9定電流ICはト
ランジスタQ2.Q3のベース端子に流れこまず、ダイ
オードD1を介して、トランジスタQ1に流れ抵抗R2
に流れることになる。このとき、トランジスタQ1はす
でに飽和状態にあり、トランジスタQ+のコレクタ・エ
ミッタ間の電圧はほぼ零となる。1ouv” (Vs m (Q2) +VD +
, Vs m (Q3.) )/R+ ...
(3) If the resistance R1 is set appropriately, the output power source formula IO1,r becomes a constant current. Equation (1) is a dark value that causes transistor Q+ to be off and transistors Q2 and Q3 to be on. Zunawaji, the input voltage v, N applied to the base of transistor Q- is V, N< V th + = V @ a
(Q 2 )→−R2(1(+l0IJI)), transistor Q1 is off and transistors Q2 and Q3 are on. Then, the input voltage v, N is the base potential of transistor Q2 V @ (Q 2), it is assumed that Vi+,>V,l (Q2) and transistor Q1 is on and Q2 is off.At this time, naturally transistor Q3 is off and the output current 1゜LIT does not flow and is zero. Therefore, the 9 constant current IC does not flow into the base terminals of transistors Q2 and Q3, but flows into transistor Q1 via diode D1 and into resistor R2.
It will flow to At this time, the transistor Q1 is already in a saturated state, and the voltage between the collector and emitter of the transistor Q+ becomes almost zero.
すなわち、トランジスタQ2のベース電位V。That is, the base potential V of the transistor Q2.
(Q2)は。(Q2).
■、(Q2)−R2■o ・・・・・・(4)となる。■, (Q2)-R2■o... (4).
このとき、トランジスタQ2のベースとエミッタの電位
はほぼ等しいのでトランジスタQ2はオフとなり、トラ
ンジスタQ3もオフとなる。トランジスタQ2のベース
の電位が(4)式で与えられているときに、オンしてい
るトランジスタQ1をオフにするための入力電圧V I
Nに対する第2の閾値Vth2は、トランジスタQ1の
エミッタ端子Q1の電位R2IC9)ランジスタQ+の
ベースエミッタ間電圧降下V e s (Q + )
を加tて。At this time, the base and emitter potentials of the transistor Q2 are approximately equal, so the transistor Q2 is turned off, and the transistor Q3 is also turned off. When the potential of the base of transistor Q2 is given by equation (4), input voltage V I to turn off transistor Q1 that is on
The second threshold Vth2 for N is the potential R2IC9) of the emitter terminal Q1 of the transistor Q1, and the base-emitter voltage drop V e s (Q + ) of the transistor Q+.
Add.
Vth2=Vs s (Ql) R21c・・・・+
5)となる。定電流ICはQlに対してコレクタ電流。Vth2=Vs s (Ql) R21c...+
5). Constant current IC has collector current with respect to Ql.
Q2に対してベース電流となるのでVl!(Ql)<V
lll(Q2)となりこの第2の閾値vthは前記第2
の闇値よりも低い値となる。Since it becomes a base current for Q2, Vl! (Ql)<V
lll(Q2), and this second threshold value vth is the second threshold value vth.
The value is lower than the darkness value of .
このように1本実施例の回路は、トランジスタQ+がオ
フでQ2とQ3がオンである第1.の安定状態と、トラ
ンジスタQ1がオンでQ2とQ3がオフである第2の安
定状態がある。入力電圧■、Nに対する出力電流1゜L
ITは第6図(a)を示すようにヒスヂリシス特性を示
す。このように定電流出力が得られるが勿、i!iQ]
のコレクターVrL間に抵抗RLを接ぎ定電圧出力とす
ることも可能である。As described above, the circuit of this embodiment has a first transistor in which transistor Q+ is off and transistors Q2 and Q3 are on. and a second stable state in which transistor Q1 is on and Q2 and Q3 are off. Output current 1゜L for input voltage ■, N
IT exhibits hysteresis characteristics as shown in FIG. 6(a). In this way, a constant current output can be obtained, but of course, i! iQ]
It is also possible to connect a resistor RL between the collector VrL and output a constant voltage.
この時のヒステリシス特性は第4図[blとなる。また
出力電流(■o、1.)が高電流■。いから低電流に変
化させるための入力電圧■1.1の閾値はVthl−V
lls (Q2)+RC(ICz、、、、)であり2逆
に、出力電流が低電流から高電流I。、、、、に変化さ
せるだめの入力電圧V、1.の閾値ばvth・−■B6
(Ql) +Rp I (であるので、これらの闇値は
定電流■。とI。LITによって決る値である。従って
。The hysteresis characteristic at this time is shown in FIG. 4 [bl]. Also, the output current (■o, 1.) is high current ■. The threshold value of input voltage ■1.1 for changing from current to low current is Vthl-V
lls (Q2) + RC (ICz, , , ) 2 Conversely, the output current changes from low current to high current I. The input voltage V to be changed to , , , 1. The threshold value of vth・−■B6
(Ql) +Rp I (So, these dark values are values determined by the constant current ■. and I.LIT. Therefore.
本実施例のヒステリシス回路は従来のシュミット回路と
異なり、ヒステリシス作動値が電流によって決り、電源
電圧VCCの依存性が少なくなる。The hysteresis circuit of this embodiment is different from the conventional Schmitt circuit in that the hysteresis operating value is determined by the current, and the dependence on the power supply voltage VCC is reduced.
以上説明したように1本発明のヒステリシス回路は、定
電流源■。とトランジスタQ2のコレクタ、Q3のエミ
’7タ間に接続された抵抗に流れる電流は一定であるこ
とを利用して、ヒステリシス作動値が電流によって決り
電源電圧の依存性が少′ なくしかも出
力電流が一定となるという効果があAs explained above, the hysteresis circuit of the present invention is a constant current source ■. Taking advantage of the fact that the current flowing through the resistor connected between the collector of transistor Q2 and the emitter of transistor Q3 is constant, the hysteresis operation value is determined by the current, and there is little dependence on the power supply voltage, and the output current The effect is that
第1図は従来のシュミットトリガ回路の回路図。
第2図は第1図の回路のヒステリシス特性図、第3図は
本発明の一実施例の回路図、第4図(al、 (blは
それぞれ上記実施例のヒステリシス特性図である。
Ql、Q2.Q3・・・トランジスタ。
])+ ・ ・ ・ダイオード、 R1,R
2・ ・ ・抵抗。
第1図
第2図
第3図
第4図
(a) <b)FIG. 1 is a circuit diagram of a conventional Schmitt trigger circuit. FIG. 2 is a hysteresis characteristic diagram of the circuit shown in FIG. 1, FIG. 3 is a circuit diagram of an embodiment of the present invention, and FIG. 4 (al and (bl) are hysteresis characteristic diagrams of the above embodiment, respectively. Q2.Q3...Transistor. ])+ ・ ・ ・Diode, R1, R
2. ・Resistance. Figure 1 Figure 2 Figure 3 Figure 4 (a) <b)
Claims (1)
と、前記第1のトランジスタのコレクタと前記第2のト
ランジスタのベースに一端が接続されたダイオードと、
ベースは前記ダイオードの他端に接続された第3のトラ
ンジスタと、前記第3のトランジスタのエミッタと前記
第2のトランジスタのコレクタ間に接続された第1の抵
抗と、一方の電源と前記第3のトランジスタのベース間
に接続された定電流源と、他方の電源と前記第1と第2
のトランジスタの共通エミッタ間に接続された第2の抵
抗とを具備し、前記第1のトランジスタのベースに加え
られる入力電圧に対して、前記第3のトランジスタのコ
レクタより定電流を出力することを特徴とするヒステリ
シス回路。first and second transistors whose emitters are commonly connected; a diode whose one end is connected to the collector of the first transistor and the base of the second transistor;
The base includes a third transistor connected to the other end of the diode, a first resistor connected between the emitter of the third transistor and the collector of the second transistor, one power supply and the third transistor. a constant current source connected between the bases of the transistors, the other power source and the first and second transistors;
a second resistor connected between the common emitters of the third transistor, and outputs a constant current from the collector of the third transistor in response to an input voltage applied to the base of the first transistor. Features a hysteresis circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59130441A JPS619010A (en) | 1984-06-25 | 1984-06-25 | Hysteresis circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59130441A JPS619010A (en) | 1984-06-25 | 1984-06-25 | Hysteresis circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS619010A true JPS619010A (en) | 1986-01-16 |
JPH0316042B2 JPH0316042B2 (en) | 1991-03-04 |
Family
ID=15034315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59130441A Granted JPS619010A (en) | 1984-06-25 | 1984-06-25 | Hysteresis circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS619010A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01243978A (en) * | 1988-03-24 | 1989-09-28 | Kowa Kogyo:Kk | Nozzle for expansion forming of food material and process for expansion-forming of food material using said nozzle |
-
1984
- 1984-06-25 JP JP59130441A patent/JPS619010A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01243978A (en) * | 1988-03-24 | 1989-09-28 | Kowa Kogyo:Kk | Nozzle for expansion forming of food material and process for expansion-forming of food material using said nozzle |
Also Published As
Publication number | Publication date |
---|---|
JPH0316042B2 (en) | 1991-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2597941B2 (en) | Reference circuit and control method of output current | |
JPH08288804A (en) | Comparator circuit | |
JP2581492B2 (en) | Input buffer circuit | |
JPS619010A (en) | Hysteresis circuit | |
US5841306A (en) | Pulse generator for generating output pulse of a predetermined width | |
JPS619011A (en) | Hysteresis circuit | |
US10644699B2 (en) | Lower voltage switching of current mode logic circuits | |
JPS586011Y2 (en) | DC stabilized power supply circuit | |
JPH05259841A (en) | Voltage comparator circuit | |
JPS6066519A (en) | Semiconductor logic circuit | |
KR900005303B1 (en) | Bias circuit following source voltage | |
JPH0543131B2 (en) | ||
KR930004584Y1 (en) | Schmit trigger circuit | |
JPS6255327B2 (en) | ||
JPH05181555A (en) | Band gap type constant current source circuit | |
JPS6182521A (en) | Differential type comparator circuit | |
JPS62281616A (en) | Ecl output circuit | |
JPH07109979B2 (en) | Schmidt circuit | |
JPS63313916A (en) | Level conversion circuit | |
JPH08204521A (en) | Comparator circuit | |
JPH09243671A (en) | Hysteresis comparator | |
JPH0362615A (en) | Semiconductor circuit and semiconductor memory | |
JPH0365684B2 (en) | ||
JPH0132932B2 (en) | ||
JPS5853525B2 (en) | Shikiichi Noal Denriyuseigen Cairo |