JPS6066519A - Semiconductor logic circuit - Google Patents

Semiconductor logic circuit

Info

Publication number
JPS6066519A
JPS6066519A JP17543783A JP17543783A JPS6066519A JP S6066519 A JPS6066519 A JP S6066519A JP 17543783 A JP17543783 A JP 17543783A JP 17543783 A JP17543783 A JP 17543783A JP S6066519 A JPS6066519 A JP S6066519A
Authority
JP
Japan
Prior art keywords
transistor
conventional circuit
circuit
field effect
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17543783A
Other languages
Japanese (ja)
Inventor
Joji Nokubo
野久保 丞二
Hiroaki Sato
博昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP17543783A priority Critical patent/JPS6066519A/en
Publication of JPS6066519A publication Critical patent/JPS6066519A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/09448Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET in combination with bipolar transistors [BIMOS]

Abstract

PURPOSE:To make a high-speed operation and a low power consumption possible by introducing an impedance element, which changes the impedance in accordance with a potential difference between both ends, to a transistor transistor logic (TTL) input circuit. CONSTITUTION:Field effect transistors T1 and T2 are used as impedance elements Z1 and Z2. In a conventional circuit, resistances R1 and R2 are used. The resistance between a gate G and a source S to the potential of a drain D is shown in a figure when the gate G and the source S are set to +5V; and for the purpose of equalizing the switching speed to that of the conventional circuit, the field effect transistor T1 is set to the same 20kOMEGA as the resistance R1 of the conventional circuit at the bias point, where the drain D is 3Vf=2.4V, so that a large quantity of base current of a transistor Q2 is supplied when transistors Q2 and Q3 start turning on. The field effect transistor T2 is set to the same 5kOMEGA as the resistance R2 of the conventional circuit with the base of a transistor Q4 where the potential of a terminal OUT is a threshold voltage 1.5V of the TTL. That is, the transistor T1 is set to 5kOMEGA with D=3.1V. At this time, current consumption Icc is 0.11mA for IN=0.4V and is 0.39mA for IN=2.4V, and thus, the power consumption is reduced to a half of that of the conventional circuit.

Description

【発明の詳細な説明】 本発明はトランジスタ・トランジスタ・ロジ。[Detailed description of the invention] The present invention is transistor transistor logic.

り(以下TTL)の入力回路に関する。(hereinafter referred to as TTL) input circuit.

従来TTLは各種電子機器に多数使用されている。第1
図は従来よシ用いられているTTL回路の例である。こ
の回路は使用素子数が少なく、高速動作が可能であシ、
動作時の)!11音に対する余裕度が大きいと言う特徴
がある。回路の動作を簡単に説明する。
Conventionally, TTL is widely used in various electronic devices. 1st
The figure shows an example of a conventionally used TTL circuit. This circuit uses a small number of elements and can operate at high speed.
) during operation! It is characterized by a large degree of leeway for 11 tones. The operation of the circuit will be briefly explained.

GNDは0■、Vcaは5vの電圧が加えられる。A voltage of 0V is applied to GND, and a voltage of 5V is applied to Vca.

入力端子INにはTTLの閾値電圧約1.5 Vよシ高
い電圧が加えられればQ、 、 Q、が0NLOUTに
はり。Wレベルが発生する。
If a voltage higher than the TTL threshold voltage of approximately 1.5 V is applied to the input terminal IN, Q, Q, and Q will rise to 0NLOUT. W level occurs.

この時Q、、Q、はQ4のベースを位が概略Q3のベー
ス電位と等しいのでOI” Ii’する。次にINにT
TL信号のり。Wレベルすなわち約0.4Vが加えられ
るとQ、のベース電位は概略INの電位と等しくなる9
でQ、、Q、はOFFする。この結果Q、のコレクタの
電位、すなわちQ4 のベース電位はVcaと等しくな
るので0LITにはHigh レペルが発生する。通常
Q1はINの逆相信号がコレクタに発生するので位相反
転トランジスタと呼ばれる。
At this time, the base potential of Q, , Q, is approximately equal to the base potential of Q3, so OI''Ii' is applied.Next, T is applied to IN.
TL signal glue. When the W level, that is, approximately 0.4V, is applied, the base potential of Q becomes approximately equal to the potential of IN9.
Then, Q,,Q, is turned off. As a result, the potential of the collector of Q, that is, the base potential of Q4 becomes equal to Vca, so a high level occurs at 0LIT. Normally, Q1 is called a phase inversion transistor because an opposite phase signal of IN is generated at the collector.

ところで第1図の従来回路でR8,几、は、とのTTL
回路の速度と消費電力を決定する重要な抵抗である。最
近の高速、低電力を目的とした’1”TL回路では’+
−20にΩ、1%、=5にΩ。
By the way, in the conventional circuit shown in Fig. 1, the TTL with R8, 几, is
It is an important resistance that determines the speed and power consumption of the circuit. In recent '1' TL circuits aimed at high speed and low power, '+
Ω at -20, 1%, Ω at =5.

R8=5にΩ程度に選らばれる。今トランジスタのベー
ス・エミッタ間電圧(Vf)を0.8■として消費電流
を計算する。INがL (Iyレベル0,4vを印加さ
れた時、Q、、Q、がOF Fするので、消費電流は几
1を流れる電流のみになる。
R8=5 is selected to be about Ω. Now, the current consumption is calculated assuming that the voltage (Vf) between the base and emitter of the transistor is 0.8 . When IN is applied with L (Iy level 0.4v), Q, , Q are turned OFF, so the current consumption is only the current flowing through the circuit 1.

I、c= (Vcc−V f −0,4V ) /20
 KΩ=(5V−0,8V−0,4V)/20にΩ=0
.19mA (1) INがHighレベル2.4Vを印加された時はQt 
lQ3がONするので I ce−(Vcc−3V f ) /R,+(VC,
C−V f )/Rz=(5V−3X0.8V)/20
1(Q+(5V−0,8V)15にΩ ” =0.13mA+0.84mA=0.97mA(2
)となる。ここで(1)式で示される1、は等測的にこ
のTTL回路の入力端子となシ、人力電汁によシTTL
回路のfan −inが決められるので可能な限り小さ
い事が望まれる。また(2)式はこのTTL回路の消費
電力を決定するので可能な限シ小さい事が望ましい。し
かしR,、R,を大きくする事はQ、 、 Q、の寄生
容量の為に速度遅れが生じる事になる。
I,c=(Vcc-Vf-0,4V)/20
KΩ=(5V-0,8V-0,4V)/20 Ω=0
.. 19mA (1) When high level 2.4V is applied to IN, Qt
Since lQ3 turns on, I ce-(Vcc-3V f )/R, +(VC,
C-V f )/Rz=(5V-3X0.8V)/20
1 (Q + (5V - 0,8V) 15Ω ” = 0.13mA + 0.84mA = 0.97mA (2
). Here, 1 shown in equation (1) is isometrically the input terminal of this TTL circuit.
Since the fan-in of the circuit is determined, it is desired that it be as small as possible. Furthermore, since equation (2) determines the power consumption of this TTL circuit, it is desirable that it be as small as possible. However, increasing R, , R, causes a speed delay due to the parasitic capacitance of Q, , Q.

本発明の目的は、この様な従来回路の欠点を解消し高速
性を保ちかつ消費電力を小さくできる回路を提供するこ
とにある。
An object of the present invention is to provide a circuit that can eliminate the drawbacks of the conventional circuit, maintain high speed performance, and reduce power consumption.

すなわち本発明では、PN接合のN側に人力信号が加え
られ、P側がインピーダンス素子を介して第1の電源に
接続されて成る入力回路において該インピーダンス素子
のインピーダンスが該インピーダンス素子の両端の電位
差で変化することを特徴とする。
That is, in the present invention, in an input circuit in which a human input signal is applied to the N side of a PN junction, and the P side is connected to the first power source via an impedance element, the impedance of the impedance element is determined by the potential difference between both ends of the impedance element. Characterized by change.

かかる半導体論理回路ではこの様な従来回路の欠点を解
消する事ができる。
Such a semiconductor logic circuit can eliminate such drawbacks of conventional circuits.

第2図は本発明の概念図である。第1図のRI。FIG. 2 is a conceptual diagram of the present invention. RI in Figure 1.

R3がインピーダンス素子2..2.におきかえられて
いる。
R3 is impedance element 2. .. 2. It has been changed to

第3図は本発明の具体的な実施例である。ZI+2、に
は電界効果トランジスタT、、T、が用いられる。この
回路動作について以下に説明する。
FIG. 3 shows a specific embodiment of the present invention. Field effect transistors T, , T, are used for ZI+2. The operation of this circuit will be explained below.

まずT、 、T、はN型半導体内に形成されたP領域を
電流通路とする電界効果トランジスタとする。
First, T, , and T are field effect transistors whose current path is a P region formed in an N-type semiconductor.

ゲートGとリースSを+5■としたときのドレインDの
電位に対するS−D間抵抗は第5図の様になる。ここで
第3図においてスイッチング速度を従来回路と同じにす
るにはl’、、T、は次の様に選ばれなければならない
When the gate G and the lease S are set to +5■, the resistance between S and D with respect to the potential of the drain D is as shown in FIG. Here, in FIG. 3, in order to make the switching speed the same as that of the conventional circuit, l',,T, must be selected as follows.

まずT、はQ、、Q、がONを開始する時点でT1を介
してQ、のベース電流を大量に供給する様にしなければ
ならない。
First, T, must supply a large amount of base current of Q, through T1 at the time when Q, , Q, starts to turn on.

よってT、はDが3■f−2,4■のバイアス点で第1
図のR,と同じ20にΩに設定すれば良い。
Therefore, T is the first at the bias point where D is 3 f-2, 4
It is sufficient to set Ω to 20, which is the same as R in the figure.

T!UOIJTcD電位がTTLCDM値t!圧1.5
VKなる様なQ4のベースで第2図のR,と同じ5にΩ
に設定すれば良い。すなわちD = 3.I Vで5に
Ωとすれば良い。すると(1)、 (2)式と同じ消費
電流の計算を第5図のT3.T2の導通抵抗ノバイアス
依存を考慮して計算すると次の様になる。
T! UOIJTcD potential is TTLCDM value t! Pressure 1.5
At the base of Q4 such as VK, connect Ω to 5, which is the same as R in Figure 2.
You can set it to . That is, D = 3. You can set it to 5Ω with IV. Then, the same current consumption calculation as in equations (1) and (2) is performed using T3. Calculation taking into consideration the bias dependence of the conduction resistance of T2 results in the following.

I N = 0.4 Vの時: Ice=(5V−o、sV、−o、4V)/20にΩX
α −(5V−o、5v−0,4V)/ 20[ぐΩX (5/ 3 ) =0.1 1mA(3
まただしαは第5図よυDが2,4■から1,2■にな
った場合の抵抗の増加数である。
When I N = 0.4 V: Ice = (5V-o, sV, -o, 4V)/20 to ΩX
α - (5V-o, 5v-0, 4V) / 20 [ΩX (5/3) = 0.1 1mA (3
Also, α is the increase in resistance when υD increases from 2.4■ to 1.2■ as shown in Fig. 5.

IN=2.4Vの時: ICC−(VCC−3Vf)、/20にΩ×β+ (V
cc−V f ) /s KΩ×α=(5V−0,8V
X3)/20にΩ×1+(5V−o、sV)/sKΩ× X(6,5/2) =0.13mA+0.26mA=0.39mA(・1) とれよシ本発明によるm費電流は Inがり。Wの場合(1)式と(3)式からo、】、t
mAlo、 19 mA= 0.58となシ、I Nカ
Highノ場合は(2)式と(3)式から0.39mA
70.97mA=0.4となる。すなわち消費電力をほ
ぼ半減させ、同一の速度を保つ事ができる。
When IN=2.4V: ICC-(VCC-3Vf), /20 is Ω×β+ (V
cc-V f )/s KΩ×α=(5V-0,8V
X3)/20 to Ω×1+(5V-o, sV)/sKΩ×X(6,5/2) =0.13mA+0.26mA=0.39mA(・1) Gari. In the case of W, from equations (1) and (3), o, ], t
mAlo, 19 mA = 0.58, if IN power is High, 0.39mA from equations (2) and (3)
70.97mA=0.4. In other words, it is possible to reduce power consumption by almost half and maintain the same speed.

第4図は本発明の別の実施例である。とれではT、、T
、はゲート電圧をコントロールして速度を向上させ消費
電力の消滅を計ったものである。
FIG. 4 shows another embodiment of the invention. Torede T,,T
, controls the gate voltage to improve speed and reduce power consumption.

INがり。Wのり合T1.T、のゲート電位は先述の計
算からそれぞれG(T、)=5V、G(T! )= 1
.2 Vになり、INがHighの場合は同様にしてG
(T1)=o、sV、G(T、)=2.4V、!ニア’
、Cる。この結果INがL 6yの場合はT1の導通抵
抗はますます大きく、T2の導通抵抗はますます小さく
できる。INがHighの場合も同様T1の導通抵抗を
小さく、T2の導通抵抗を大きくする事ができるので非
常に高速動作が可能となる。
It's IN. W paste T1. From the above calculation, the gate potential of T is G(T,)=5V and G(T!)=1, respectively.
.. If it becomes 2 V and IN is High, G
(T1)=o,sV,G(T,)=2.4V,! near'
, Cru. As a result, when IN is L6y, the conduction resistance of T1 can be made larger and the conduction resistance of T2 can be made smaller. Similarly, when IN is High, the conduction resistance of T1 can be made small and the conduction resistance of T2 can be made large, so that extremely high-speed operation is possible.

以上本発明によれば両端の電位差に応じてインピーダン
スが変化するインピーダンス素子をTTL回路に導入す
る事で、高速化低消費電力化が計れる事が判った。
As described above, according to the present invention, it has been found that high speed and low power consumption can be achieved by introducing an impedance element whose impedance changes depending on the potential difference between both ends into a TTL circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTTI、回路の従来例を示す図である。 第2図は本発明の概念を示す図である。 第3図は本発明の具体的な実施例を示す図である。 第4図は本発明の他の実施例を示す財である。 第5図は電界効果トランジスタの特性を示す図であるO R1−R4・・・・・・抵抗、Ql〜Q4・・・・・・
トランジスタ。 # l 図 17戸l 牟2 凹 第 3 間 第4 凹
FIG. 1 is a diagram showing a conventional example of a TTI circuit. FIG. 2 is a diagram showing the concept of the present invention. FIG. 3 is a diagram showing a specific embodiment of the present invention. FIG. 4 shows another embodiment of the invention. FIG. 5 is a diagram showing the characteristics of a field effect transistor.
transistor. # l Figure 17 House l Mu 2 concave 3rd room 4 concave

Claims (3)

【特許請求の範囲】[Claims] (1)PN接合の一端に人力信号が加えられ、該PN接
合の他端がインピーダンス素子を介して第1の電源に接
続されて成る入力回路において、該インピーダンス素子
のインピーダンスが該インピーダンス素子の両端の電位
差で変化するものであることを特徴とする半導体論理回
路。
(1) In an input circuit in which a human input signal is applied to one end of a PN junction, and the other end of the PN junction is connected to a first power source via an impedance element, the impedance of the impedance element is A semiconductor logic circuit characterized in that it changes with a potential difference.
(2)該インピーダンス素子が電界効果トランジスタで
ある事を特徴とする特許請求の範囲第(1)項に記載の
半導体論理回路。
(2) The semiconductor logic circuit according to claim (1), wherein the impedance element is a field effect transistor.
(3)該電界効果トランジスタのゲート電位が人力信号
に応じて変化することを特徴とする特許請求の範囲第(
2)項に記載の半導体論理回路。
(3) The gate potential of the field effect transistor changes in accordance with a human input signal.
The semiconductor logic circuit according to item 2).
JP17543783A 1983-09-22 1983-09-22 Semiconductor logic circuit Pending JPS6066519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17543783A JPS6066519A (en) 1983-09-22 1983-09-22 Semiconductor logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17543783A JPS6066519A (en) 1983-09-22 1983-09-22 Semiconductor logic circuit

Publications (1)

Publication Number Publication Date
JPS6066519A true JPS6066519A (en) 1985-04-16

Family

ID=15996074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17543783A Pending JPS6066519A (en) 1983-09-22 1983-09-22 Semiconductor logic circuit

Country Status (1)

Country Link
JP (1) JPS6066519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439821A (en) * 1987-08-05 1989-02-10 Toshiba Corp Logic circuit
EP0469834A2 (en) * 1990-08-01 1992-02-05 Motorola, Inc. A BICMOS logic circuit with self-boosting immunity and a method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439821A (en) * 1987-08-05 1989-02-10 Toshiba Corp Logic circuit
EP0469834A2 (en) * 1990-08-01 1992-02-05 Motorola, Inc. A BICMOS logic circuit with self-boosting immunity and a method therefor

Similar Documents

Publication Publication Date Title
JP2597941B2 (en) Reference circuit and control method of output current
JP2837215B2 (en) Temperature compensation voltage multiplier
JP3080830B2 (en) Semiconductor integrated circuit
JPH02186706A (en) Bias voltage generating circuit and method thereof
JPH0666678B2 (en) ECL circuit
JPS60153205A (en) Totem pole transistor output stage circuit
JPS60118A (en) Ttl output stage
JPS6066519A (en) Semiconductor logic circuit
JP2573394B2 (en) Hysteresis circuit
EP0528659A1 (en) Impedance multiplier
US5045718A (en) Circuit for detecting power supply voltage variation
JPH03147422A (en) Ecl circuit
JPS6331214A (en) Variable delay circuit
US5510744A (en) Control circuit for reducing ground and power bounce from an output driver circuit
JPH0720059B2 (en) Transistor circuit
JPS59219014A (en) Logical circuit
SU1580441A1 (en) Reading amplifier
JPH0323712A (en) Semiconductor integrated circuit
JPS5845213B2 (en) Current control hysteresis circuit
JPH07254826A (en) Voltage conversion circuit
JPS60109922A (en) Semiconductor integrated circuit
JPS62250713A (en) Variable delay cirucit
JPS63246916A (en) Inverter circuit
JPS60230712A (en) Semiconductor integrated circuit device
JPS619010A (en) Hysteresis circuit