JPS6189669A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6189669A
JPS6189669A JP21204184A JP21204184A JPS6189669A JP S6189669 A JPS6189669 A JP S6189669A JP 21204184 A JP21204184 A JP 21204184A JP 21204184 A JP21204184 A JP 21204184A JP S6189669 A JPS6189669 A JP S6189669A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline
single crystal
semiconductor
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21204184A
Other languages
Japanese (ja)
Inventor
Koichi Kugimiya
公一 釘宮
Yuichi Hirofuji
裕一 広藤
Naohito Matsuo
松尾 直仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21204184A priority Critical patent/JPS6189669A/en
Publication of JPS6189669A publication Critical patent/JPS6189669A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7325Vertical transistors having an emitter-base junction leaving at a main surface and a base-collector junction leaving at a peripheral surface of the body, e.g. mesa planar transistor

Abstract

PURPOSE:To realize a fine structure and, simultaneously, a steep junction with self- matching by simultaneously forming a single crystal semiconductor and a polycrystalline semiconductor on a semiconductor layer and an insulating layer respectively, and forming one part of the polycrystalline semiconductor as an electrode of the single crystal semiconductor. CONSTITUTION:After a thermal oxidation film pattern and a LPCVD nitride film pattern are formed on a P (111) substrate 11, an N<+> type buried layer 12 is formed and the patterns are removed, a N type epitaxial layer 13 is formed by a reduced pressure epitaxial method, and next an emitter-collector pattern using a thin oxide film and nitride film is again formed to carry out high pressure oxidation. In this time, an oxide film 15 is formed with its surface made substantially flat. The oxide and nitride film pattern 14 forming collector contact is left to remain and selective epitaxial growth is carried out on the said pattern under a low temperature. A single crystal layer of good quality is formed on an opening in the N type epitaxial layer 13, that is, a single crystal and a polycrystalline layer 18 is formed on the insulating film 15 except the said opening. Next, when the polycrystalline layer 18 is etched by fluoronitrate acetic acid solution, the polycrystalline layer 18 connected to a P type epitaxial layer 16 can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超高速、高集積の半導体装置に一般的に応用
される半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device manufacturing method generally applied to ultra-high-speed, highly integrated semiconductor devices.

従来例の構成とその問題点 半導体装置の高速化、高集積化に伴なって、微細加工技
術、自己整合技術が不可決になってきている。さらに、
バイポーラ型では層厚さ方向の薄膜化と制御が重要にな
っている。これらを実現するため種々の構造が提案され
ている、その−例を第1図に挙げる。同図からも明らか
なように自己整合型プロセスにするために複雑な多層の
薄膜を繰り返し使用している。先ず、第1図aのように
P型基板1にN 埋込2を行ない、続いて、Nエピ層3
.3′を形成する。この時、エピ成長中にN+埋込2が
公知のようにもち上がる。この後、薄い酸化膜4.窒化
膜5.ドープ多結晶シリコン6、さらに、窒化)漠7.
酸化膜8と6層積み重さね、通常の露光波iホiにより
パターン形成を行なうつ例えばドライエッチ技術によっ
て、上記5層を:須次選択的に除去し、最後に、N16
層3′をエッチし、メサ形状を形成する。
Conventional configurations and their problems As semiconductor devices become faster and more highly integrated, microfabrication technology and self-alignment technology are becoming increasingly unreliable. moreover,
In bipolar type devices, thinning and controlling the thickness of the layer is important. Various structures have been proposed to realize these, examples of which are shown in FIG. As is clear from the figure, complex multilayer thin films are repeatedly used to create a self-aligned process. First, as shown in FIG.
.. 3' is formed. At this time, the N+ implant 2 is lifted up in a known manner during the epitaxial growth. After this, a thin oxide film 4. Nitride film 5. Doped polycrystalline silicon 6, further nitrided) 7.
Six layers of oxide film 8 are stacked, and a pattern is formed using a normal exposure wave iho. The above five layers are selectively removed using, for example, dry etching technology, and finally, N16
Layer 3' is etched to form a mesa shape.

次に、この上に、又、酸化膜、厚い窒化膜の二層パター
ンを形成し、選択酸化を行ない、酸化膜9により分離を
行なう。そして、窒化膜、酸化膜を除去する(第1図b
)。さらに、窒化膜7を除去した後、多結晶シリコン膜
10を形成して熱処理を行うと、ドープ多結晶シリコン
6の不純物が多結晶シリコン10に拡散するため、エツ
チング:ζよって、選択的に高濃度部分が除去されNエ
ピ層3に接続される多結晶ンリコン膜1oが残存形成さ
れる。しかし、段差部などはエツチングされ易すいため
に多結晶シリコン10はNエピ層3から分ン1辻されて
しまうことが多い。この後酸化処理により、多結晶シリ
コン膜1oを酸化し、酸化膜11を形成する。この後、
コンタクト窓を開口部、アルミ配線12を行い、第1図
dの最終構造を得る。
Next, a two-layer pattern of an oxide film and a thick nitride film is formed on this, selective oxidation is performed, and isolation is performed using the oxide film 9. Then, the nitride film and oxide film are removed (see Fig. 1b).
). Further, after removing the nitride film 7, when a polycrystalline silicon film 10 is formed and heat treated, the impurities of the doped polycrystalline silicon 6 diffuse into the polycrystalline silicon 10, so that etching:ζ is selectively etched. The concentrated portion is removed, and a polycrystalline silicon film 1o connected to the N epi layer 3 remains. However, since the stepped portion is easily etched, the polycrystalline silicon 10 is often removed from the N-epi layer 3 by a portion. Thereafter, by oxidation treatment, the polycrystalline silicon film 1o is oxidized to form an oxide film 11. After this,
A contact window is opened and aluminum wiring 12 is formed to obtain the final structure shown in FIG. 1d.

以上のプロセス説明で明らかなように、従来はプoセス
そのものが複雑に多層の薄膜を使用しているため、エツ
チングにおける選択性や制御性ないしは薄膜厚さ制御に
非常な精度が要求される点、エツチングによる断線や、
凹部における汚染の残存し易しい事、エツチングによる
溝深さの制御が高!肴度に必要な事、さらにエピ成長に
おいて埋込みの持ち上がりのある事やイオン注入による
結晶欠陥の他1.@、峻な接合を得難い点などの種々の
問題点を有している。
As is clear from the above process description, the conventional process itself uses a complex multi-layered thin film, which requires extremely high precision in etching selectivity and controllability, as well as thin film thickness control. , disconnection due to etching,
It is easy for contamination to remain in the recesses, and the groove depth can be easily controlled by etching! In addition to the things necessary for taste, the lifting of the embedding during epitaxial growth and the crystal defects caused by ion implantation, 1. It has various problems such as difficulty in forming a sharp bond.

他にも種々の方法が提案されてはいるが、いずれも全く
同様の問題点を抱えており、これらの解決がこれら半導
体装置の実用化において必要な事項となっている。
Although various other methods have been proposed, they all have exactly the same problems, and solutions to these problems are necessary for the practical application of these semiconductor devices.

発明の目的 本発明は、以上のような問題点を解決し、自己整合的に
微細な構造(平面及び深さ方向)及び同時に急峻な接合
をも実現せしめる新しい半導体装置の製造方法を提供す
る。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned problems and provides a new method for manufacturing a semiconductor device that can realize a fine structure (in plane and depth direction) and a steep junction in a self-aligned manner.

発明の構成 本発明は半導体層及び絶縁層上にそれぞれ単結晶半導体
及び多結晶半導体を同時形成し、この多結晶半導体の一
部を単結晶半導体の電極として形成する半導体装置の製
造方法である。
Structure of the Invention The present invention is a method for manufacturing a semiconductor device, in which a single crystal semiconductor and a polycrystalline semiconductor are simultaneously formed on a semiconductor layer and an insulating layer, respectively, and a part of the polycrystalline semiconductor is formed as an electrode of the single crystal semiconductor.

実施汐り。説明  : 以下、本発明の実施例を図面を用いて説明する。Implementation tide. explanation : Embodiments of the present invention will be described below with reference to the drawings.

まず、P(111)3Ωαの基板11に、薄い熱酸化膜
及びLPGVD窒化膜パターンを形成し、+ N 埋込み層12を形成し、パターンを除去した後、N
エピ層(〜10 /1)1sを減圧エピ法により、10
50°Cで0.3μm厚に形成する。従来は約1.5〜
3 lt m厚のエピ層を形成するのに減圧エピ法に比
べて6〜10倍の時間がかかり、そのためN゛埋込層1
2の持ち上がりが顕著であったのに対し、本方法では、
その持ち上がりは逆に見〜殉と非常に少なくなった。即
ち、Nエピ層13厚の制御が非常に薄い、0.3μm程
度で精度よく行いうろことが実証された。
First, a thin thermal oxide film and an LPGVD nitride film pattern are formed on a P(111)3Ωα substrate 11, a +N buried layer 12 is formed, and the pattern is removed.
Epi layer (~10/1) 1s was deposited with 10
Form to a thickness of 0.3 μm at 50°C. Conventionally, it is about 1.5~
It takes 6 to 10 times as long to form an epitaxial layer with a thickness of 3 lt m compared to the low pressure epitaxial method, and therefore the N buried layer 1
2 was noticeable, whereas with this method,
On the contrary, the uplift has decreased to a very low level. That is, it has been demonstrated that the thickness of the N epi layer 13 can be precisely controlled to a very thin thickness of about 0.3 μm.

ついで、再度、薄い酸化膜・窒化膜による1/j il
l巾×6μm長のエミッター、コレクターパターンを形
成し、850°Cで高圧酸化を行う。この時、あらかじ
め、開口部を、酸化膜厚のA程度エッチして除去してお
けばほぼ表面が平旦に酸化膜15が形成され、第2図a
の構成を得る。第2図乙において、コレクタコンタクト
となる部分の酸化膜・窒化膜パターン14は残存させて
おく。又、(スからも明らかなように、酸化膜15厚は
約0.3μm強ですみ、従来の縦横型絶縁分離の1.5
〜2μmグさに比べ、非常に浅く、工程が短かくすむの
みならず、熱酸化時間の短縮による大巾な拡散低減、酸
化膜のストレスの低減による結晶欠陥の低下や微細化の
容易さなどの長所がある。
Then, 1/j il is formed again using a thin oxide film/nitride film.
An emitter and collector pattern with a width of 1×6 μm in length is formed, and high-pressure oxidation is performed at 850°C. At this time, if the opening is etched and removed by the oxide film thickness A in advance, the oxide film 15 will be formed on almost the surface evenly, as shown in Fig. 2a.
Get the configuration. In FIG. 2B, the oxide film/nitride film pattern 14 in the portion that will become the collector contact is left. In addition, as is clear from (2), the thickness of the oxide film 15 is only about 0.3 μm, which is 1.5 μm thicker than the conventional vertical and horizontal insulation isolation.
It is extremely shallow compared to ~2μm, which not only shortens the process, but also greatly reduces diffusion by shortening thermal oxidation time, reduces crystal defects by reducing stress on the oxide film, and facilitates miniaturization. It has the advantages of

次にこの上に、低温選択エピ成長を行う。これには、例
えば分子線エピ成長法を適用できる。先ず、860°C
2分の界面清浄化の後、650°C1約6人/Sでエピ
成長を行うっPエピ層16は、イオン化セル(エミッシ
ョン電流約20mA、加速電圧1,5KV)でGa分子
及びイオンを取シ出し、約2X10  /’CI、0.
2μrn厚に形成した。
Next, low temperature selective epitaxial growth is performed on this. For example, a molecular beam epitaxial growth method can be applied to this. First, 860°C
After 2 minutes of interface cleaning, epitaxial growth is performed at 650°C and about 6 people/s. Ga molecules and ions are removed using an ionization cell (emission current of about 20 mA, acceleration voltage of 1.5 KV). Extrusion, approximately 2X10/'CI, 0.
It was formed to have a thickness of 2 μrn.

引き続きNエピ層17も、連続して形成する。Nエピ層
17も、イオン化セル(エミッション電流約15mA 
、加速電圧IKV)でsb分子及びイオンを、約10 
 / c4 、0.3μm厚に形成した。
Subsequently, the N epi layer 17 is also formed continuously. The N epi layer 17 also has an ionization cell (emission current of about 15 mA).
, accelerating voltage IKV), the sb molecules and ions are
/c4, 0.3 μm thick.

以上の操作によって、単結晶であるNエピ層13の開口
部上には欠陥音度か1010A以下の良質の単結晶層が
形成され、それ以外の絶縁膜15上には、多結晶層18
が形成される。なお、エピ成長温度をさらに低下し、6
0Q′Cを低凹ると、多結晶ではなく非晶質tUが形成
され始める。
Through the above operations, a high-quality single crystal layer with a defect sonic intensity of 1010 A or less is formed on the opening of the single crystal N epi layer 13, and a polycrystalline layer 18 is formed on the other insulating film 15.
is formed. In addition, the epitaxial growth temperature was further lowered to 6
When 0Q'C is depressed low, amorphous tU starts to form instead of polycrystalline.

このような低温−単結晶非単結晶選択エピ成長後、多結
晶層18を弗硝酸酢酸液(弗酸1.硝酸60゜酢酸50
)でエッチすると、多結晶層は単結晶の約35倍の速度
でエツチングされるため、はぼ多結晶層のみを選択エッ
チでき、Pエピ層16に接続される多結晶層18を形成
出来る。このようにして、第2図すの形状を得だ後、レ
ジストパターンを形成し、ベース部分に相当する多結晶
層18を少なくとも残し、他を除去する。さらに前述の
ように高圧酸化を行い、酸化膜19を形成し、さらに必
要に応じて、CVD酸化膜20を形成する(第2図C)
。この後、コレクタ一部の酸化膜19.20を選択的に
除去し、イオン注入法により、人Sを注入し、N゛コン
タクト領域形成し、950°C2o秒の活性化熱処理を
行う。ざらにエミッター、コレクタ一部の開口を異方性
のドライエッチ法(ガス: C3H8,圧カニ 1 o
om’rorr。
After such low-temperature single-crystal non-single-crystal selective epitaxial growth, the polycrystalline layer 18 is grown in a fluoronitric acid acetic acid solution (1% hydrofluoric acid, 60% nitric acid, 50% acetic acid).
), the polycrystalline layer is etched at a rate approximately 35 times that of single crystal, so that only the polycrystalline layer can be selectively etched, and the polycrystalline layer 18 connected to the P epilayer 16 can be formed. After obtaining the shape shown in FIG. 2 in this manner, a resist pattern is formed, and at least the polycrystalline layer 18 corresponding to the base portion is left and the rest is removed. Further, high-pressure oxidation is performed as described above to form the oxide film 19, and further, if necessary, the CVD oxide film 20 is formed (FIG. 2C).
. Thereafter, the oxide films 19 and 20 on a part of the collector are selectively removed, S is implanted by ion implantation to form a N contact region, and an activation heat treatment is performed at 950 DEG C. for 20 seconds. Roughly open the emitter and part of the collector using an anisotropic dry etching method (gas: C3H8, pressure crab 1 o
om'rorr.

出カニ 160W )で行い、電極材料であるAgを被
着し、以後通常の工程を経ぞベース電極20b 。
The base electrode 20b is formed by applying Ag as the electrode material and then going through the usual steps.

エミッタ電極20e、コレクタ電極20Cを得る(第2
図d)。
Obtain emitter electrode 20e and collector electrode 20C (second
Figure d).

この開口工程で特に重要であるのは、エミッターの開口
において、パターンずれが幾分生じたとしても、第2図
dに示すように、エピ層16゜17からなる柱状単結晶
部の側壁に開口部がずれるのみであり、側壁の酸化膜は
残る。このため自己整合性が高く、倣細なエミッター形
成が可能となり、従って、特性のよい素子が高い歩留9
で叫られることを示している。
What is particularly important in this opening process is that even if some pattern deviation occurs in the opening of the emitter, as shown in FIG. The oxide film on the side wall remains. This makes it possible to form emitters with high self-alignment and a fine pattern, resulting in a high yield of devices with good characteristics9.
It shows that it will be shouted at.

以上で得られた試料の不純物濃度分布を調べた。The impurity concentration distribution of the sample obtained above was investigated.

モニタ一部(約100μm口)を用い、SIMS+  
  − 法による解析の結果、エミッター直下のN  PN+ NP層における不純物分布は、SIMSの分解能で体刑
できる程の大きな拡散のない事が明らかとなった。
SIMS+ using a part of the monitor (approximately 100 μm opening)
- As a result of the analysis using the method, it was revealed that the impurity distribution in the N PN+ NP layer directly under the emitter does not have a large diffusion that can be detected with the resolution of SIMS.

又、表面からの顕微鏡観察、断面の走査電子顕微鏡観察
の結果、柱状単結晶部は、はぼ基板表面に垂直に、巾1
μmで延びている事が確認され、自己整合性の非常に良
いことが確認された。
In addition, as a result of microscopic observation from the surface and scanning electron microscopic observation of the cross section, the columnar single crystal part is vertical to the substrate surface and has a width of 1.
It was confirmed that it extended in μm, and it was confirmed that it had very good self-alignment.

また、第2図dにおいて、多結晶シリコン層18を残し
た後、20Q人程度の極く薄い湿式酸化j漠を形成し、
次に異方性ドライエッチによって、この薄い酸化膜を除
去し、側壁に酸化膜2を残す。
In addition, in FIG. 2d, after leaving the polycrystalline silicon layer 18, a very thin wet oxidation layer of about 20Q thickness is formed,
Next, this thin oxide film is removed by anisotropic dry etching, leaving the oxide film 2 on the sidewalls.

ついで、高融点金属MOを300Vのバイアスをかけて
、1500人スパッター形成した、80゜’030分の
熱処理を施し、高融点金属を硅化した後、選択エッチに
よって、残された側部の酸化膜上の高融点金属を除去し
、酸化膜19 、2Qを形成しても良い。
Next, a high melting point metal MO was sputtered for 1500 minutes with a bias of 300 V applied, heat treatment was performed for 80°'030 minutes to silicide the high melting point metal, and the remaining oxide film on the sides was removed by selective etching. The upper refractory metal may be removed and the oxide films 19 and 2Q may be formed.

この構造では、前述の濠れた特徴の他に、ベース取り出
し電極部3に高融点金属やその11F化物が積層され、
特にその部分の低抵抗化がなされている点が優れている
In this structure, in addition to the above-mentioned moat feature, a high melting point metal or its 11F compound is laminated on the base extraction electrode part 3,
In particular, it is excellent in that the resistance of that part is reduced.

さらに、本発明の別の実施例を第3図に示す。Furthermore, another embodiment of the present invention is shown in FIG.

まず第2図aにおいて、絶縁分離の酸化膜15を完全に
形成することなく、先ず薄い酸化膜21を1500人を
湿式酸化で形成し、次いでLPGVD多結晶シリコン層
22を形成した。さらにレジストて平旦化し、>”i常
のように、ドライエッチ法でエッチバックすることによ
り、表面が平旦で且つ絶縁分離がなされた構造(第3図
)を得る。
First, in FIG. 2A, a thin oxide film 21 was first formed by wet oxidation without completely forming an oxide film 15 for insulation isolation, and then an LPGVD polycrystalline silicon layer 22 was formed. Furthermore, the resist is made flat and etched back by dry etching as usual to obtain a structure (FIG. 3) in which the surface is flat and insulation is separated.

以上のような構、1aを有したトランジスターの特性は
、寄性容量、接合容量、ペース抵抗などの低下によりし
ゃ断固波数が従来の6〜6 GHzに対して、15GH
zと高速化していた。今後、不純物濃度や層厚さを適正
化することによって、さらに高速化できる見通しである
The characteristics of the transistor with the structure 1a described above are such that due to reductions in parasitic capacitance, junction capacitance, pace resistance, etc., the uninterrupted wave number is 15 GHz, compared to the conventional 6 to 6 GHz.
It was speeding up to z. In the future, it is expected that the speed will be further increased by optimizing the impurity concentration and layer thickness.

又、P基板についての説明を行ったが、これはN基板に
ついても同様であることはいうまでもない。
Further, although the explanation has been made regarding the P substrate, it goes without saying that the same applies to the N substrate.

発明の効果 以上の説明の明らかなようpこ、本発明によれば比較的
簡単な工程により、自己整合的に微細加工が実現できる
Effects of the Invention As is clear from the above explanation, according to the present invention, microfabrication can be realized in a self-aligned manner through relatively simple steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a −dは、従来製造法を示す工程断面図、第2
図&−dは本発明に係る工程断面図、第3図は本発明の
別の実施例により製造された素子断面図である。 11・・・・・・基板、13・・・・・・Nエピ層、1
6・・・・・Pエヒ層、17・・・・・Nエピ層。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
Figures 1 a - d are process cross-sectional views showing the conventional manufacturing method;
FIGS. &-d are sectional views of the process according to the present invention, and FIG. 3 is a sectional view of a device manufactured according to another embodiment of the present invention. 11...Substrate, 13...N epi layer, 1
6...P epi layer, 17...N epi layer. Name of agent: Patent attorney Toshio Nakao (1st person)
figure

Claims (1)

【特許請求の範囲】[Claims]  第一の導電体域が絶縁層の間に少なくとも開口部露出
され、その上に低温選択エピ成長により、第二の導電体
を含む層、さらに引き続き前記第一もしくは第二の導電
体を含む層を少なくとも形成することにより、前記開口
部上には異種導電体含有単結晶複合層を形成し、前記絶
縁層上には多結晶層を形成する工程と、前記第二の導電
体を含む層に接続されるように前記多結晶層を選択的に
除去する工程とを含む半導体装置の製造方法。
A first electrically conductive region is at least aperture exposed between the insulating layers, and a layer containing a second electrically conductive material is formed thereon by low temperature selective epitaxial growth, followed by a layer containing said first or second electrically conductive material. forming a single crystal composite layer containing a different type of conductor on the opening, forming a polycrystalline layer on the insulating layer, and forming a layer containing the second conductor. selectively removing the polycrystalline layer so that the polycrystalline layer is connected.
JP21204184A 1984-10-09 1984-10-09 Manufacture of semiconductor device Pending JPS6189669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21204184A JPS6189669A (en) 1984-10-09 1984-10-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21204184A JPS6189669A (en) 1984-10-09 1984-10-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6189669A true JPS6189669A (en) 1986-05-07

Family

ID=16615886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21204184A Pending JPS6189669A (en) 1984-10-09 1984-10-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6189669A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208272A (en) * 1987-02-24 1988-08-29 Nec Corp Manufacture of semiconductor element
JPH021933A (en) * 1988-06-13 1990-01-08 Hitachi Ltd Manufacture of semiconductor device
US6455366B1 (en) 1998-12-30 2002-09-24 Hyundai Electronics Industries Co., Ltd. Method of forming a junction region in a semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208272A (en) * 1987-02-24 1988-08-29 Nec Corp Manufacture of semiconductor element
JPH021933A (en) * 1988-06-13 1990-01-08 Hitachi Ltd Manufacture of semiconductor device
US6455366B1 (en) 1998-12-30 2002-09-24 Hyundai Electronics Industries Co., Ltd. Method of forming a junction region in a semiconductor device

Similar Documents

Publication Publication Date Title
JPH073821B2 (en) Bipolar transistor manufacturing method
JPS636877A (en) Manufacture of heterojunction type bipolar transistor
JPH05206451A (en) Mosfet and its manufacture
JPH08293465A (en) Manufacture of semiconductor device
JP2976929B2 (en) Method for manufacturing semiconductor device
JPS6189669A (en) Manufacture of semiconductor device
JPS63207177A (en) Manufacture of semiconductor device
JPS6189668A (en) Manufacture of semiconductor device
KR100262144B1 (en) Fea adjusted by incorporated mosfet and manufacturing method of the same
JPS6347335B2 (en)
JPS6189667A (en) Manufacture of semiconductor device
JPS594073A (en) Manufacture of semiconductor device
JP2707646B2 (en) Method for manufacturing semiconductor device
JPH01214064A (en) Insulated gate field effect transistor and its manufacture
JPS5893344A (en) Semiconductor device and its manufacture
JPH0744183B2 (en) Method for manufacturing semiconductor device
JP2828126B2 (en) Semiconductor device and manufacturing method thereof
JPH06310523A (en) Heterojunction bipolar transistor and its manufacture
JPH11289082A (en) Semiconductor device and its manufacture
JPS616867A (en) Manufacture of semiconductor device
JPH034539A (en) Semiconductor device and its manufacture
JPS62183508A (en) Semiconductor substrate and manufacture of the same
JPH04340721A (en) Manufacture of semiconductor device
JPS6395664A (en) Semiconductor device and manufacture thereof
JPS6038871A (en) Manufacture of bipolar type semiconductor device