JPS6188511A - Manufacture of magnetic thin film - Google Patents

Manufacture of magnetic thin film

Info

Publication number
JPS6188511A
JPS6188511A JP21016184A JP21016184A JPS6188511A JP S6188511 A JPS6188511 A JP S6188511A JP 21016184 A JP21016184 A JP 21016184A JP 21016184 A JP21016184 A JP 21016184A JP S6188511 A JPS6188511 A JP S6188511A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
target
plasma arc
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21016184A
Other languages
Japanese (ja)
Inventor
Ichiro Kudo
一郎 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP21016184A priority Critical patent/JPS6188511A/en
Publication of JPS6188511A publication Critical patent/JPS6188511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form a magnetic thin film on a substrate under the optimum condition by arranging a target within plasma arc magnetic field, ionizing neutral particles sputtered from the target and applying the leadout electric field thereto. CONSTITUTION:A magnetic material alloy (Ni-Fe) 10 is housed in a chamber 11 to cause the glow discharge to generate between an anode 13 and a filament 14 and a target 10 is arranged within plasma arc 12. A magnet 15 is placed in the external circumference, the plasma arc 12 is closed, the acceleration electrodes 18a...18d providing small holes 17a...17d which have the intervals gradually becoming large and are communicating with a hole 16 are arranged near said very small hole 16 of chamber in order to form a leadout electric field. A magnet 19 forms the deflection field and a magnetic resistance thin film 21 is formed to a substrate 20 fixed to a holder 22. According to this structure, even in case magnetic anisotropy is different due to material, shape and thickness of thin film, a magnetic thin film can be obtained under the optimum condition by adjusting the leadout electric field and deflection magnetic field.

Description

【発明の詳細な説明】 産業上の利用 こ)発明は、エレクトロニクス素子等の製造に必要な磁
性体;淳摸を形成する方法で、特にスパッタリング法に
よって罪作する方法である。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application The present invention is a method of forming a magnetic material necessary for manufacturing electronic devices, etc., and is particularly a method of forming a magnetic material using a sputtering method.

従来の技術 例えば、磁剣抵抗効果を応用して、磁気再生を行わせる
M R薄膜を製作するには、従来よりヌパリタリング法
を用いて強制磁場中スパックさせている。すなわち、第
3図に示すように、A、 r等のスパッタリングガスを
導入した真空雰」1気中で、カソードであるターゲット
1に、マリチング回路2を介して高周波を印加し、ター
ゲット1に対向するアノード3に基板4を固定しておき
、基板4の6傍に配置4シだマグネ7)5.5により磁
界67ヒ印加させて、スパックリングさせている。こC
ように、磁界6を印加しながら、基板4二:こご・XR
薄1漢7を19成すると、−耐磁気異方性を利用して磁
(ヒ容易軸が設定できるからである。そしてこワ)よう
に・作制磁場中スバ、夕を行うと、】、IR・!7.i
良7の飽t1+ r:ビ束密度Bmが大きく、抗磁力H
?つ二小さく、かつ良好な磁矢抵抗効果が得られるから
でちる。
BACKGROUND OF THE INVENTION For example, in order to fabricate an MR thin film that performs magnetic reproduction by applying the magnetoresistance effect, the nuparitaring method has conventionally been used to cause spattering in a forced magnetic field. That is, as shown in FIG. 3, in a vacuum atmosphere into which sputtering gases such as A and R are introduced, a high frequency is applied to the target 1, which is a cathode, through a mariching circuit 2, and the target 1 is placed facing the target 1. A substrate 4 is fixed to the anode 3, and a magnetic field 67 is applied by a diagonal magnet 7) 5.5 placed near the substrate 4 to cause spackling. This C
While applying the magnetic field 6, the substrate 42: Kogo・XR
By forming 19 of the thin 1 kan 7, it is possible to set the magnetic axis using the anti-magnetic anisotropy. ,IR・! 7. i
Good 7 saturation t1+ r: The biflux density Bm is large and the coercive force H
? This is because it is small in size and provides a good magnetic arrow resistance effect.

また上記以外のり作手法として、薄’ig’4−):乞
・i:、1造のjl、11、これに起因する形状b′う
方汁を別+11シて、第4図のように、静止したWく着
源8に7.1シて、基板9を口伝させながら斜方張着さ
せる方法もあった。この方法は、特開昭59−6072
5号公報に紹介されているように、異方性磁界として数
十a eLjDj(αが幀られる実績がある。そしてそ
の形成要因は十分解明されたわけではないが、蒸着入射
)J」、変が小ぜいときは、自己陰影効果によって結晶
粒が入射面にて垂直方向に長く伸び、入射角が大きくな
るに従ってむしろ入射方向に沿って成長するからである
と考えられている。
In addition, as a method of gluing other than the above, the shape b' due to this is separated by +11, and as shown in Figure 4. There was also a method of diagonally attaching the substrate 9 to a stationary W-shaped source 8 while passing the substrate 9 thereon. This method is disclosed in Japanese Patent Application Laid-open No. 59-6072.
As introduced in Publication No. 5, there is a track record that tens of a eLjDj (α) can be observed as an anisotropic magnetic field.Although its formation factor has not been fully elucidated, the deposition incident)J', It is thought that this is because when the crystal grains are small, the self-shading effect causes the crystal grains to elongate in the vertical direction on the incident plane, and as the incident angle increases, they grow along the incident direction.

発明が解決しようとする間噌O点 ところで上記した従来の技術には、次に述べる1tj題
点がある。まず強制御゛磁場中スバ、夕に関して(d、
磁界6を基板7へ平等に印加するので、磁化容易軸設定
は良好となるが、その反面異方性磁界が小さくなる。つ
ぎに、斜方蒸着させる方法は、特開昭59−60725
号公報に述べられている先述の特徴があるものの、異方
性磁界及び磁化容易軸方向の制御が困難であった。
Problems to be Solved by the Invention The above-mentioned conventional technology has the following problems. First, regarding the strong control ``suba and evening in the magnetic field (d,
Since the magnetic field 6 is equally applied to the substrate 7, the easy axis of magnetization can be set well, but on the other hand, the anisotropic magnetic field becomes small. Next, the method of oblique evaporation is disclosed in Japanese Patent Application Laid-Open No. 59-60725.
Although it has the above-mentioned features described in the publication, it was difficult to control the anisotropic magnetic field and the easy axis direction of magnetization.

この発明は、これらの問題を解決する目的で提唱された
ものである。
This invention was proposed for the purpose of solving these problems.

この発明は、上述した従来技術の問題点を検討・考察の
結果、スパッタリング法によるG 形成を[1わせる技
術に、次に述べる工夫を施しだものである。すなわち、
この発明は、プラズマアーク磁l呆を印加しておき、そ
のプラズマアーク中にターゲ・ノドを配置し、ターゲッ
トよりスパッタリンクされた中1生粒子をイオン化し、
さらに引き出し電界をかけて基板へ薄膜を付着させる方
法とするものである。
As a result of studying and considering the above-mentioned problems of the prior art, the present invention provides the following innovations to the technology for increasing the G2 formation by sputtering to [1]. That is,
This invention applies plasma arc magnetism, places a target nod in the plasma arc, and ionizes the primary particles sputter-linked from the target.
Furthermore, the method involves applying an extraction electric field to adhere the thin film to the substrate.

作用 したがって、この発明は、磁界をかけてプラズマアーク
を1jカ閉じ込めることができ、そのプラズマアーク中
にターゲットを設けるので効率よくスパッタリンクによ
るイオン放出が行える。そしてさらに引き高電界でイオ
ン加速をかけながら引き出し、さらにIa向磁界により
付着角度制御を行うことができる。よって、この発明は
、薄膜の材2、形状、嘆厚等Vこよって、磁電異方性が
相違する場合でも、引き出し電界並びに’rliif向
磁界を調整することにより、最適な状態の磁性体薄膜を
製作することが可能である。
Therefore, according to the present invention, it is possible to confine a plasma arc by applying a magnetic field, and since a target is provided in the plasma arc, ions can be ejected efficiently by sputter link. Then, the ions can be pulled out while accelerating the ions using a high electric field, and the adhesion angle can be controlled by a magnetic field directed toward Ia. Therefore, the present invention provides a magnetic thin film in an optimal state by adjusting the extraction electric field and the 'rliif direction magnetic field even if the magnetoelectric anisotropy is different depending on the thin film material 2, shape, thickness, etc. It is possible to produce.

実施例 第1図は、この発明の一実施例を説明するための成膜装
置の概念図である。まず10は磁気抵抗幼果型薄膜磁気
へ、ノドのM R薄膜材料となるターゲットで、例えば
N180−N18O−Fe20(の−外体合金であって
、チャンバー11内に収納されている。このチャンバー
11には、プラズマアーク12を発生させるだめに、ア
ノ−F 18 トフイブメント14とが対向(〜で設け
られ、両者間には、クロー放電が可能な電圧つまり数K
V程度の低圧が印加される。そこで前述のターゲットl
Oは、プラズマアーク12中に位置するように固定でれ
る。また雰囲気は10−2〜1O−4TOrr程度の夏
空度に設定する。それから15は、チャンバー11の外
周に配設され、プラズマアーク12を閉S、″1してお
く靜?ム界を印加するだめのマク;4 、トである。つ
ぎに、チャンバー10の微小な透孔16の近傍に、次第
に間隔が異り、透孔16と淫らなる小孔17a、17b
、17Cを夫々設けた18tl、18b、18Cば、引
き出し電界を形成する加速電髄である。さらに19は偏
向磁界形成用のマグネットである。そして20は、MR
薄摸21を1ilj作するJI(板で、ホルダ22に固
定取付けされている。
Embodiment FIG. 1 is a conceptual diagram of a film forming apparatus for explaining an embodiment of the present invention. First, reference numeral 10 denotes a target that becomes the MR thin film material for magnetoresistive seedling type thin film magnetism, and is, for example, an outer alloy of N180-N18O-Fe20, and is housed in a chamber 11.This chamber In order to generate the plasma arc 12, the anno-F 18 fibment 11 is provided with an opposing fiber 14 (~), and between the two there is a voltage of several kilograms capable of generating a claw discharge.
A low pressure of about V is applied. Therefore, the target l
O is fixed so as to be located within the plasma arc 12. The atmosphere is set to a summer sky level of about 10-2 to 10-4 TOrr. 15 is a mask located around the outer periphery of the chamber 11 and used to apply a silent field that keeps the plasma arc 12 closed. Near the through hole 16, small holes 17a and 17b are formed at gradually different intervals and become more obscene than the through hole 16.
, 17C are provided, respectively, and 18tl, 18b, and 18C are accelerating electric pulps that form an extraction electric field. Furthermore, 19 is a magnet for forming a deflection magnetic field. And 20 is MR
JI (a plate that is fixedly attached to the holder 22) to make a thin copy 21.

以上の成[莫装置を用いることによって、この実施例で
は、ターゲット10をスパッタリンクさせる:祭に、放
出されるNi−Feの中性粒子が、プラズマアーク12
中でイオン化されるとともに加速電甑18・Z、18b
、18?により加速されなから、引き出さ)tでマグネ
リド19が配置される磁界空間で、蒸着方向を制御され
つつ、基板20上へ付着する。したがって、この成膜装
置を用いるM R薄11う1の製作方法では、加速電極
18a、18b、18c及びマグネ、ト19に・よる引
き出し′、コ1厚及び(tilt向ω界により、従来の
強制磁場中蒸着と:1.4方、ム着の両方の作用を併発
させることができる、すなわち、プラズマアーク12中
でイオン化されながら姉達して取り出されるので、法仮
20上へ(=I着する際に磁化容易軸設定が行え、しか
も偏向磁界により斜方蒸着と同様に異方1i磁界、磁化
容易・1q11方向股が楔めて明解に設定でき、しかも
その上に十分加法されたイオンが付着するので異方性磁
界も大さくできる。
By using the above-mentioned apparatus, the target 10 is sputter-linked in this embodiment: during the process, the emitted Ni-Fe neutral particles are transferred to the plasma arc 12.
While being ionized inside, the accelerating electric kettles 18・Z, 18b
, 18? The magnetide 19 is deposited onto the substrate 20 while its deposition direction is controlled in the magnetic field space in which the magnetide 19 is placed. Therefore, in the method of manufacturing the MR thin layer 11 using this film forming apparatus, the accelerating electrodes 18a, 18b, 18c and magnets, the extraction by the It is possible to have both the effects of evaporation in a forced magnetic field and: In addition, the easy axis of magnetization can be set using the deflection magnetic field, similar to oblique evaporation, and the anisotropic 1i magnetic field, easy magnetization, and 1q11 direction crotch can be wedged and clearly set. Since it adheres, the anisotropic magnetic field can also be increased.

尚、この発明は、上記実施例に限らず、例えば第2図の
ように真空雰囲気中で、ターゲーソ) 10と基板20
を固定したアノード22′との間に、引き出し″硫界形
成用電嘆18′、偏向磁界形成用マグネ7 ) 19’
を設け、高周波放電を行わせてプラズマ12′を形成し
ながら、スパッタリング蒸着させるようにする場合も包
含する。
Incidentally, the present invention is not limited to the above-mentioned embodiments. For example, as shown in FIG.
Anode 22' to which is fixed, an electric wire 18' for forming a sulfur field and a magnet 7) 19' for forming a deflection magnetic field are connected between the anode 22' and the anode 22'.
This also includes the case where sputtering deposition is performed while providing a high-frequency discharge and forming plasma 12'.

発明の効果 この発明によれば、従来の強制磁場蒸着と斜方蒸着双方
の長所、すなわち、磁化容易軸、異方性JSの方向設定
と異方性磁界の大きさを十分とすることが、供に実現で
きることは勿論、引き出し電界と偏向磁界とを制御する
ことにより、薄、摸の材質、形状、嘆厚等に応じて最適
な磁性体薄朦が得られ、多層磁性体膜形成や、異る薄膜
の形成が1−〒える勧れだ長所がある。
Effects of the Invention According to the present invention, the advantages of both the conventional forced magnetic field deposition and oblique deposition, that is, the easy axis of magnetization, the direction setting of the anisotropy JS, and the magnitude of the anisotropic magnetic field can be made sufficient. Of course, by controlling the extraction electric field and the deflection magnetic field, it is possible to obtain the optimal magnetic thin film depending on the material, shape, thickness, etc. of the thin film, and to form multilayer magnetic films. It has the advantage of being able to form different thin films.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を説明するための成膜装
置の概念図、第2図は、その他の実施例に関する概念図
、;宕3図は、従来の強制磁場スパッタリング蒸着を説
明するだめの概念図、第4図は、従来の斜方蒸着を説明
するだめの概念図である、。 10・・・・・・・・・・・・・・・・・・・・・・タ
ーゲット、12.12’・・・・・・・・・ プラズマ
アーク、15・・・・・・・・・・・・・・・・・・・
・マグネ、ト、18 a、 18 b、 18 C,1
8’−・−・加速(引き出し)電極、19.19’・・
・・・・・・・マグネ・・ノド、20・・・・・・・・
・・・・・・・・・・・・・ 基板、21・・・・・・
・・・・・・・・・・・・・ 磁性体島膜。 第2図 第3図 第4図
FIG. 1 is a conceptual diagram of a film forming apparatus for explaining one embodiment of the present invention, FIG. 2 is a conceptual diagram of another embodiment, and FIG. 3 is a conceptual diagram for explaining conventional forced magnetic field sputtering deposition. FIG. 4 is a conceptual diagram illustrating conventional oblique evaporation. 10・・・・・・・・・・・・・・・・・・Target, 12.12'・・・・・・Plasma arc, 15・・・・・・・・・・・・・・・・・・・・・
・Magne, G, 18 a, 18 b, 18 C, 1
8'-- Acceleration (extraction) electrode, 19.19'...
......Magne...throat, 20...
・・・・・・・・・・・・ Board, 21・・・・・・
・・・・・・・・・・・・ Magnetic island membrane. Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)プラズマアークに磁界を印加しておき、上記プラ
ズマアーク中にターゲットを配置し、ターゲットよりス
パッタリングされた中性粒子をイオン化し、引き出し電
界をかけて基板へ薄膜を付着させることを特徴とする磁
性体薄膜製作方法。
(1) A magnetic field is applied to the plasma arc, a target is placed in the plasma arc, neutral particles sputtered from the target are ionized, and an extraction electric field is applied to deposit a thin film on the substrate. A method for producing magnetic thin films.
(2)特許請求の範囲第1項の記載において、ターゲッ
ト材料を、Ni−Fe合金からなるMR素子材料とする
ことを特徴とする磁性体薄膜製作方法。
(2) A method for manufacturing a magnetic thin film according to claim 1, characterized in that the target material is an MR element material made of a Ni-Fe alloy.
JP21016184A 1984-10-05 1984-10-05 Manufacture of magnetic thin film Pending JPS6188511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21016184A JPS6188511A (en) 1984-10-05 1984-10-05 Manufacture of magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21016184A JPS6188511A (en) 1984-10-05 1984-10-05 Manufacture of magnetic thin film

Publications (1)

Publication Number Publication Date
JPS6188511A true JPS6188511A (en) 1986-05-06

Family

ID=16584772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21016184A Pending JPS6188511A (en) 1984-10-05 1984-10-05 Manufacture of magnetic thin film

Country Status (1)

Country Link
JP (1) JPS6188511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183219A (en) * 1993-10-08 1995-07-21 Varian Assoc Inc Pvd system based on ion extraction from plasma
WO2010070845A1 (en) * 2008-12-15 2010-06-24 株式会社アルバック Sputtering device and sputtering method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183219A (en) * 1993-10-08 1995-07-21 Varian Assoc Inc Pvd system based on ion extraction from plasma
WO2010070845A1 (en) * 2008-12-15 2010-06-24 株式会社アルバック Sputtering device and sputtering method
US8834685B2 (en) 2008-12-15 2014-09-16 Ulvac, Inc. Sputtering apparatus and sputtering method

Similar Documents

Publication Publication Date Title
US4354909A (en) Process for production of magnetic recording medium
JPH0133548B2 (en)
JPS6188511A (en) Manufacture of magnetic thin film
JPS5836413B2 (en) Magnetic recording medium manufacturing method and its manufacturing device
JPS58199862A (en) Magnetron type sputtering device
JPS6233764A (en) Sputtering device
JPS63307272A (en) Ion beam sputtering device
JPS6367328B2 (en)
JPS61161704A (en) Manufacture of uniaxial magnetic anisotropic film
JPH07335575A (en) Manufacture of thin film
JPH04116162A (en) Magnetic field generator for planar-magnetron sputtering system
JPS6076026A (en) Production of vertical magnetic recording medium
JPH11158616A (en) Sputtering device and sputtering method
JPS6013066A (en) Magnetron sputtering electrode
JPH02294476A (en) Cathode for magnetron sputtering
JPS63210006A (en) Formation of thin amorphous carbon film
JPH0375630B2 (en)
JPS62200530A (en) Manufacture of vertical magnetic recording medium
JP2906163B2 (en) Sputtering equipment
JPS61179864A (en) Sputtering device
JPS63244728A (en) Target for sputtering
JP3785582B2 (en) Method for producing magnetostrictive thin film
JPS621866A (en) Sputtering device
JPH06264218A (en) Sputtering target
JPH0334619B2 (en)