JPS6187836A - Production of fiber reinforced metallic composite material - Google Patents

Production of fiber reinforced metallic composite material

Info

Publication number
JPS6187836A
JPS6187836A JP21078084A JP21078084A JPS6187836A JP S6187836 A JPS6187836 A JP S6187836A JP 21078084 A JP21078084 A JP 21078084A JP 21078084 A JP21078084 A JP 21078084A JP S6187836 A JPS6187836 A JP S6187836A
Authority
JP
Japan
Prior art keywords
short fibers
silicon carbide
composite material
fibers
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21078084A
Other languages
Japanese (ja)
Inventor
Yoshitaka Takahashi
義孝 高橋
Tadashi Donomoto
堂ノ本 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21078084A priority Critical patent/JPS6187836A/en
Publication of JPS6187836A publication Critical patent/JPS6187836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To develop a fiber reinforced metallic composite material which is equiv. in conductivity and sliding characteristic to Cu and has excellent wear resistance and the frictional characteristic to the other material to be slid by mixing SiC short fibers and Cu or Cu alloy powder at a specific ratio and heating and sintering the mixture. CONSTITUTION:The particles of pure copper, Cu-Sn alloy, etc. having 0.5-50 D/d which is the ratio of an average diameter D with respect to the average diameter (d) of the SiC short fibers are added to and mixed with the SiC short fibers which are the aggregate of the SiC short fibers having 0.1-50mu average diameter (d) and contg. <=5wt% the SiC particles which are incorporated therein and are not made into fibers in the stage of producing the fibers. The SiC short fibers and Cu particles are so mixed that the volume percentage of the SiC short fibers attains 0.5-25% when the total amt. of the SiC short fibers and Cu particles is made 100. Such mixture is sintered in a metallic mold under a high pressure at a high temp. by which the fiber reinforced metallic composite material consisting of the Cu, Sn alloy, etc. as the matrix and contg. the SiC short fibers as the reinforcing material is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、繊維強化金属複合材料の製造方法に係り、更
に詳細には炭化ケイ素短繊維を強化繊維とし純銅又は銅
合金をマトリックス金属とする繊維強化金属複合材料の
製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a fiber-reinforced metal composite material, and more specifically, a fiber-reinforced composite material using silicon carbide short fibers as the reinforcing fibers and pure copper or copper alloy as the matrix metal. Pertains to a method for manufacturing metal composite materials.

従来技術 純銅及び銅合金は摺動特性や導電性に優れていることか
ら、摺動材料や電気接点材料などとして賞用されている
。しかし従来より公知の銅合金に於ては、それが過酷な
条件下にて使用される摺動部材に適用された場合には、
耐摩耗性や耐焼付き性が不十分であることが多い。また
電気接点材料などの耐摩耗性を向上さぜるべく、純銅に
種々の合金元素を添加することが行われているが、電気
接点材料などの耐摩耗性を向上させるべく種々の合金元
素を添加すれば、その導電性が低下してしまうという問
題があり、そのため電気接点材料などの耐摩耗性及び導
電性を共に向上させることは非常に困難である。また銅
合金の耐摩耗性や強度などを向上させるべく銅合金中に
硬質粒子を分散させた粒子分散強化銅合金や析出強化銅
合金などが既に知られている。しかしこれらの銅合金に
於ては、製造が困難であり、被削性か悪く、相手材の摩
耗市が増大するなどの種々の問題がある。
BACKGROUND OF THE INVENTION Pure copper and copper alloys have excellent sliding properties and electrical conductivity, and are therefore prized as sliding materials and electrical contact materials. However, when conventionally known copper alloys are applied to sliding members used under harsh conditions,
Wear resistance and seizure resistance are often insufficient. In addition, various alloying elements are added to pure copper in order to improve the wear resistance of electrical contact materials. If added, there is a problem that the conductivity will decrease, and therefore it is very difficult to improve both the wear resistance and conductivity of electrical contact materials. In addition, particle dispersion strengthened copper alloys and precipitation strengthened copper alloys, in which hard particles are dispersed in copper alloys, are already known in order to improve the wear resistance and strength of copper alloys. However, these copper alloys have various problems such as being difficult to manufacture, having poor machinability, and increasing wear of the mating material.

本願発明者等は摺動材料や電気接点材料などとして使用
されている純銅及び銅合金に於ける上述の如き問題に鑑
み、炭化ケイ素短5irenを強化繊維とし純銅及び銅
合金をマトリックス金属とする種々の複合材料を粉末冶
金法により製造し、それらの複合材料について種々の実
験的研究を行った結果、相手材の摩耗量の増大を抑制し
つつ純銅及び銅合金の耐摩耗性を向上させるためには炭
化ケイ素短繊維の体積率や炭化ケイ素短繊維の集合体中
に一般に含まれている硬質の非繊維化粒子の総量が成る
特定の範囲に維持される必要があり、マトリックス金属
中に炭化ケイ素短繊維が均一に分散された均質な複合材
料を製造するためには、炭化ケイ素短繊維の平均繊維径
dに対するマトリックス金属粒子の平均粒径りの比D/
dが成る所定の範囲に維持される必要があることを見出
した。
In view of the above-mentioned problems with pure copper and copper alloys used as sliding materials and electrical contact materials, the inventors of the present application have developed various materials using silicon carbide short 5iren as reinforcing fibers and pure copper and copper alloys as matrix metals. As a result of manufacturing composite materials using the powder metallurgy method and conducting various experimental studies on these composite materials, we found that in order to improve the wear resistance of pure copper and copper alloys while suppressing the increase in the amount of wear of the mating material. must be maintained within a certain range consisting of the volume fraction of silicon carbide short fibers and the total amount of hard, non-fibrous particles generally contained in the aggregate of silicon carbide short fibers, and the silicon carbide short fibers in the matrix metal. In order to produce a homogeneous composite material in which short fibers are uniformly dispersed, the ratio of the average particle diameter of matrix metal particles to the average fiber diameter d of silicon carbide short fibers is D/
It has been found that d needs to be maintained within a predetermined range.

発明の目的 本発明は、本願発明者等が行った種々の実験的研究の結
果得られた知見に基づき、炭化ケイ素短繊維を強化繊維
とし純銅又は銅合金をマトリックス金属とする複合材料
であって、純銅及び銅合金と実質的に同等の摺動特性や
導電性などの特性を有し、それ自身の耐摩耗性及び相手
材に対する摩擦特性にも優れた均質な複合材料を製造す
ることのできる方法を提供することを目的としている。
Purpose of the Invention The present invention is based on the knowledge obtained as a result of various experimental studies conducted by the inventors of the present application, and is a composite material comprising silicon carbide short fibers as reinforcing fibers and pure copper or a copper alloy as a matrix metal. , it is possible to produce a homogeneous composite material that has properties such as sliding properties and conductivity that are substantially equivalent to pure copper and copper alloys, and also has excellent wear resistance and friction properties against mating materials. The purpose is to provide a method.

発明の構成 上述の如き目的は、本発明によれば、平均M&雑径d=
0.1〜50μの炭化ケイ素短繊維であってその集合体
中に含まれる非41帷七粒子の総含有量が5wt%以下
である炭化ケイ素短繊維と、純銅粉末又は鋼合金粉末の
金属粉末であって前記平均繊維径dに対する前記金属粉
末の平均粒径りの比D/dが0.5〜50である金属粉
末とを炭化ケイ素短繊維の体積と金属粉末の体積との合
計を100%とした場合の炭化ケイ素短層相の体積率が
0.5〜25%なるよう混合し、該混合物を高温度に加
熱して前記金属粉末を焼結させる層相強化金属複合材料
の製造方法によって達成される。
Structure of the Invention According to the present invention, the above-mentioned object is to obtain the average M & miscellaneous diameter d=
Silicon carbide short fibers having a size of 0.1 to 50 μ and the total content of non-41-7 particles contained in the aggregate is 5 wt% or less, and metal powder such as pure copper powder or steel alloy powder. and the ratio D/d of the average particle diameter of the metal powder to the average fiber diameter d is 0.5 to 50.The total volume of the silicon carbide short fibers and the volume of the metal powder is 100. %, the volume fraction of silicon carbide short phase phase is 0.5 to 25%, and the mixture is heated to a high temperature to sinter the metal powder. achieved by.

発明の作用及び効果 本発明によれば、純銅又は銅合金などの金属粉末と炭化
ケイ素短繊維とが混合され、金属粉末が焼結されること
により、純銅又は銅合金が炭化ケイ素’FallA帷に
て複合強化されるので、純銅又は銅合金の耐摩耗性を大
幅に向上させることができ、また炭化ケイ素短繊維の体
積率や炭化ケイ素短繊維の集合体中に一般に含まれる非
繊維化粒子の総量が所定の範囲に維持されるので、相手
材を過剰に摩耗することがなく、従ってそれ自身の耐摩
耗性及び相手材に対する摩擦特性の両方に優れた複合゛
材料を得ることができる。
Effects and Effects of the Invention According to the present invention, a metal powder such as pure copper or a copper alloy is mixed with silicon carbide short fibers, and the metal powder is sintered, so that the pure copper or copper alloy is converted into a silicon carbide 'Fall A'. The wear resistance of pure copper or copper alloy can be greatly improved, and the volume fraction of silicon carbide short fibers and non-fibrous particles generally contained in aggregates of silicon carbide short fibers can be improved significantly. Since the total amount is maintained within a predetermined range, the mating material is not worn excessively, and therefore a composite material can be obtained that is excellent in both its own wear resistance and its frictional properties against the mating material.

また本発明によれば、炭化ケイ素短繊維の平均繊維径d
に対する金属粉末の平均粒径りの比D/dが所定の範囲
に維持されるので、金属粉末と炭化ケイ素短繊維とを均
一に混合することができ、従って純銅又は銅合金のマト
リックス中に炭化ケイ素短層相が均一に分散された均質
な複合材料を製造することができる。
Further, according to the present invention, the average fiber diameter d of the silicon carbide short fibers
Since the ratio D/d of the average particle diameter of the metal powder to Homogeneous composite materials in which the silicon short-layer phase is uniformly dispersed can be produced.

更に本発明によれば、マトリックス金属として純銅及び
銅合金を従来の接点材料用の銅合金に比して遥かに導電
性に優れた純銅又は銅合金に選定することができ、また
後に詳細に説明する如く、本願発明者等が行った実験的
研究の結果によれば、炭化ケイ素短繊維の体積率が比較
的小さい領域に於ても十分な耐摩耗性を確保し且相手材
に対する摩耗間を十分に低減し得るので、従来の電気接
点材料に比して遥かにそれ自身の耐摩耗性及び相手材に
対する摩擦特性に優れn4電性の高い複合材料を得るこ
とができる。
Furthermore, according to the present invention, it is possible to select pure copper or a copper alloy as the matrix metal, which has far superior conductivity compared to conventional copper alloys for contact materials, and will be described in detail later. According to the results of experimental research conducted by the inventors of the present application, it is possible to ensure sufficient wear resistance even in a region where the volume fraction of silicon carbide short fibers is relatively small, and to maintain sufficient wear resistance against the mating material. Since it can be sufficiently reduced, it is possible to obtain a composite material with far superior wear resistance and frictional properties against mating materials, and high N4 conductivity, compared to conventional electrical contact materials.

炭化ケイ素短繊維は耐摩耗性向上効果、強度向上効果、
耐熱性などに優れており、従って強化繊維として使用さ
れるに適した繊維である。しかし炭化ケイ素短繊維の集
合体中にはその製法上5〜5Qwt%程度の種々の大き
さの非繊維化粒子(ショット)が含まれており、これら
の非繊維化粒子は炭化ケイ素短繊維の繊維径に比して苔
しく大きい粒径を有し且ダイヤモンドに次ぐ硬度を有す
るものであるため、かかる非繊維化粒子を含む炭化ケイ
素短lIA維の集合体を強化繊維とする複合材ネ′1に
於ては、加工性が非常に悪く、それに当接して相対的に
摺動する相手材を過剰に摩耗したり、更には非繊維化粒
子がマトリックス金属より脱落することにより相手材に
スカッフィングなどの異常摩耗を発生させることがある
。従って本発明によれば、上述の如き問題を解決すべく
、炭化ケイ衆知4mmの集合体中に含まれる非繊維化粒
子の総量は5wt%以下、好ましくは3wt%以下、更
に好ましくは1wt%以下に維持され、特に異常摩耗等
の要因となり易いことが実験的に確認されている粒?呈
150μ以上の非繊維化粒子の含有隋は1wt%以下、
好ましくは0,6wt%以下、更に好ましくはQ、2w
t%以下に維持される。
Silicon carbide short fibers have the effect of improving wear resistance, improving strength,
It has excellent heat resistance and is therefore suitable for use as reinforcing fiber. However, due to the manufacturing method, the aggregate of silicon carbide short fibers contains non-fibrous particles (shot) of various sizes of about 5 to 5 Qwt%, and these non-fibrous particles are Since it has a particle size that is extremely large compared to the fiber diameter and has a hardness second only to diamond, it is possible to use a composite material whose reinforcing fibers are aggregates of short silicon carbide fibers containing such non-fibrous particles. 1 has very poor workability, causes excessive wear of the mating material that contacts and slides relative to it, and even causes scuffing to the mating material due to non-fibrous particles falling off from the matrix metal. This may cause abnormal wear such as Therefore, according to the present invention, in order to solve the above problems, the total amount of non-fibrous particles contained in a 4 mm silicon carbide aggregate is 5 wt% or less, preferably 3 wt% or less, more preferably 1 wt% or less. particles that have been experimentally confirmed to be particularly susceptible to abnormal wear, etc. The content of non-fibrous particles with a diameter of 150μ or more is 1wt% or less,
Preferably 0.6wt% or less, more preferably Q, 2w
Maintained below t%.

また炭化ケイ素短繊維の優れた特徴を生かし、これによ
りそれ自身の耐摩耗性及び相手材に対する摩擦特性に優
れた複合材料を製造するためには:木願発明者等が行っ
た実験的研究の結果によれば、tJj維径が0.5〜2
0μであり繊維長が20μm5w+mである一般的な炭
化ケイ素短繊維については、その体積率は0.5〜25
%、好ましくは0.5〜20%であることが必要である
。炭化ケイ素短繊維の体積率が0.5%以下である場合
には、複合材料の耐摩耗性が不十分であり、また炭化ケ
イ素短繊維の体積率が25%以上になると相手材のn純
量が増大し、また複合材料の耐摩耗性が低下する。
In addition, in order to make use of the excellent characteristics of silicon carbide short fibers and thereby produce a composite material that has excellent wear resistance and friction properties against mating materials, we have: According to the results, the tJj fiber diameter is 0.5 to 2.
For general silicon carbide short fibers with a fiber length of 20 μm5w+m and a fiber length of 0 μm, the volume fraction is 0.5 to 25
%, preferably 0.5 to 20%. If the volume percentage of silicon carbide short fibers is 0.5% or less, the wear resistance of the composite material is insufficient, and if the volume percentage of silicon carbide short fibers is 25% or more, the n-purity of the mating material is The amount increases and the wear resistance of the composite material decreases.

更に粉末冶金法により繊維強化金属複合材料を製造する
場合に於て複合材料を均質化するためには1本願発明者
等が行った実験的研究の結果によれば、本願出願人と同
一の出願人の出願に係る特願昭59−      号に
詳細に説明されている如く、マトリックス金属粉末と強
化繊維とを均一に混合することが必要であり、楳雑径が
0.5〜20μであり繊維長が20μ〜5111111
である一般的な炭化ケイ索類層相が強化U&維として使
用される場合には、平均繊維径dに対するマトリックス
金属粉末の平均粒径りの比D/dが0.5〜50、好ま
しくは0.5〜30であることが好ましい。
Furthermore, in order to homogenize the composite material when manufacturing fiber-reinforced metal composite materials by the powder metallurgy method, the results of experimental research conducted by the present inventors indicate that As explained in detail in Japanese Patent Application No. 1983 filed by the same person, it is necessary to uniformly mix the matrix metal powder and the reinforcing fibers, and the fiber diameter is 0.5 to 20μ. Length is 20μ~5111111
When a general carbide silica phase is used as the reinforcing U&fiber, the ratio D/d of the average particle size of the matrix metal powder to the average fiber diameter d is 0.5 to 50, preferably It is preferable that it is 0.5-30.

尚本発明に於ては、金属粉末と炭化ケイ索類層相との混
合物を高温度に加熱して金属粉末を焼結させる過程に先
立ち、該混合物が2000〜7000 itg、’♂の
圧力にて圧縮され又は混合物が高温度に加熱される過程
に於て、該混合物が50〜500 kQ/ am2程度
の圧力にて圧縮されることが好ましく、また混合物を高
温度に加′然して金属粉末を焼結させる過程に於ては、
雰囲気が還元雰囲気又は不活性雰囲気(不活性ガス又は
真空)に設定されることが好ましい。
In the present invention, prior to the process of heating the mixture of metal powder and silica carbide layer phase to a high temperature to sinter the metal powder, the mixture is heated to a pressure of 2000 to 7000 itg, '♂. In the process of compressing or heating the mixture to a high temperature, it is preferable that the mixture is compressed at a pressure of about 50 to 500 kQ/am2, and the mixture is heated to a high temperature to form metal powder. In the sintering process,
The atmosphere is preferably set to a reducing atmosphere or an inert atmosphere (inert gas or vacuum).

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 日本カーボン株式会社製の炭化ケイ素繊維(平均繊14
1径15μ)をその集合体中に含まれる非繊維化粒子の
総量が0.1wt%以下になるよう処理し、炭化ケイ素
U&維を1〜5mmに切断した。次いでかくして得られ
た炭化ケイ素短繊維とCu −10wt%Sn合金粉末
(平均粒径80μ)とを攪拌抑’+a l幾にて30分
間混合することにより、炭化ケイ衆知II&雑の体積と
合金粉末の体積との合計を100%とした場合の炭化ケ
イ素短繊維の体積率が0.5%、10%、20%である
混合物を形成した。次いでこれらの混合物を直径30m
mの円筒状のキャビティを有する圧縮成形体の金型内に
導入し、該混合物をパンチにて4000 kg/ aa
’の圧力にて加圧することにより、直径3Qn++n、
厚さ15mmの円柱状の圧粉成形体を形成した。次いで
この圧粉成形体を分解アンモニアガス中にて7.70℃
に30分間加熱することにより合金粉末を焼結させ、こ
れにより炭化ケイ索類層相にて複合強化された青銅より
なる3種類の複合材料へ1〜A3を製造した。
Example 1 Silicon carbide fiber manufactured by Nippon Carbon Co., Ltd. (average fiber 14
15μ in diameter) was treated so that the total amount of non-fibrous particles contained in the aggregate was 0.1 wt% or less, and the silicon carbide U & fibers were cut into 1 to 5 mm pieces. Next, the silicon carbide short fibers obtained in this way and Cu-10wt%Sn alloy powder (average particle size 80μ) were mixed for 30 minutes at a stirrer with agitation suppressed to reduce the volume of silicon carbide and the alloy powder. Mixtures were formed in which the volume percentages of silicon carbide short fibers were 0.5%, 10%, and 20%, with the total volume of silicon carbide short fibers being 100%. These mixtures were then spread into a 30m diameter
The mixture was introduced into a compression molding mold having a cylindrical cavity of 4000 kg/aa with a punch.
By pressurizing at a pressure of ', diameter 3Qn++n,
A cylindrical powder compact with a thickness of 15 mm was formed. Next, this compacted compact was heated to 7.70°C in decomposed ammonia gas.
The alloy powder was sintered by heating for 30 minutes to produce three types of composite materials 1 to A3 consisting of bronze composite reinforced with silica carbide phase.

実施例2 東海カーボン株式会社製の炭化ケイ素ボイス力(平均繊
維径0.8μ、平均繊維長80μ)をその集合体中に含
まれる非繊維化粒子の総量が4wt%となるよう処理し
、これをアセトン中に分散させ、これに電解銅粉末(平
均粒径30μ、純度99.8%)を加え、これを湿式混
線にて30分間?12練を行った後大気中にて自然乾燥
させることにより、炭化ケイ素ボイス力と電解銅粉末と
よりなる混合物を形成した。次いで混合物を真空雰囲気
のホットプレス法にて900℃に加熱しその状態にて2
00 k(1/ am’の圧力にて加圧しく加熱及び加
圧時12f120分)、シかる後混合物を室温にまで冷
却することにより、炭化ケイ素ボイス力にて複合強化さ
れたM!銅よりなる直径5Qmm、厚さ20mmの円柱
状の複合材料B(炭化ケイ素ボイス力の体積率10%)
を製造した。
Example 2 Silicon carbide voice force manufactured by Tokai Carbon Co., Ltd. (average fiber diameter 0.8μ, average fiber length 80μ) was treated so that the total amount of non-fibrous particles contained in the aggregate was 4wt%. was dispersed in acetone, electrolytic copper powder (average particle size 30μ, purity 99.8%) was added thereto, and mixed in a wet cross-wire system for 30 minutes. After kneading for 12 minutes, the mixture was air-dried in the air to form a mixture of silicon carbide voice and electrolytic copper powder. Next, the mixture was heated to 900°C using a hot press method in a vacuum atmosphere, and in that state it was heated for 2
00 k (heated and pressurized at a pressure of 1/am' for 12 f 120 minutes), and then cooled the mixture to room temperature to form an M! composite reinforced with silicon carbide voice force. Cylindrical composite material B made of copper with a diameter of 5Qmm and a thickness of 20mm (volume ratio of silicon carbide voice force 10%)
was manufactured.

比較例1 一ヒ)ボの実施例1に於て使用された合金粉末と同一の
合金粉末のみを上述の実施例1の場合と同一の条件にて
圧粉成形し焼結させることにより、青銅のみよりなる直
径301Ill11厚さ151I1mの円柱体(比較材
C+ )を製造した。
Comparative Example 1 B) Bronze was made by compacting and sintering only the same alloy powder as that used in Example 1 under the same conditions as in Example 1 above. A cylindrical body (comparative material C+) having a diameter of 301 mm and a thickness of 151 mm was manufactured.

比較例2 炭化ケイ素g:i械維の体積率が30%に設定された点
を除き、上述の実施例1の場合と同一の条件にて炭化ケ
イ素短繊維にて複合強化された青銅よりなる複合材料(
比較材C2)を製造した。
Comparative Example 2 Silicon carbide g:i Made of bronze composite reinforced with silicon carbide short fibers under the same conditions as in Example 1 above, except that the volume ratio of the mechanical fibers was set to 30%. Composite materials (
Comparative material C2) was produced.

比較例3 炭化ケイ素ボイス力の集合体中に含まれる非繊維化粒子
の総量がSwt%である炭化ケイ素ボイス力が使用され
た点を除き、上述の実施例2の場合と同一の条件にて炭
化ケイ素ボイス力にて複合強化された純銅よりなる複合
材料(比較材Cs )を製造した。
Comparative Example 3 Under the same conditions as in Example 2 above, except that silicon carbide voice force in which the total amount of non-fibrous particles contained in the aggregate of silicon carbide voice force was Swt% was used. A composite material (comparative material Cs) made of pure copper reinforced with silicon carbide voice force was manufactured.

比較例4 東海カーボン株式会社製の炭化ケイ素ボイス力〈平均繊
維径0.8μ、平均繊維長80μ)をその集合体中に含
まれる非繊維化粒子の総量が4wt%以下になるよう処
理し、これをアセトン中に分散させ、これに噴霧銅粉末
(平均粒径110μ、純度99.7%)を加え、これを
湿式混線にて30分間混練し、これを自然乾燥させるこ
とにより炭化ケイ素ボイス力と噴霧銅粉末との混合物を
形成した。次いでこの温合物を上述の実施例2の場合と
同一の条件にてホットプレスすることにより、炭化ケイ
素小イス力にて複合強化された純銅よりなり炭化ケイ素
ホイヌカの体積率が10%である複合材料(比較材C4
)を製造した。
Comparative Example 4 Silicon carbide voice force manufactured by Tokai Carbon Co., Ltd. (average fiber diameter 0.8μ, average fiber length 80μ) was treated so that the total amount of non-fibrous particles contained in the aggregate was 4 wt% or less, Disperse this in acetone, add atomized copper powder (average particle size 110μ, purity 99.7%), mix this in a wet mixer for 30 minutes, and let it air dry to create a silicon carbide voice. and atomized copper powder. Next, this heated mixture was hot-pressed under the same conditions as in Example 2 above to produce a product made of pure copper composite-reinforced with silicon carbide and a volume percentage of silicon carbide of 10%. Composite material (comparative material C4
) was manufactured.

比較例5 AVCO社製の炭化ケイ素繊維(平均繊維径140μ)
を1〜5mmに切断し、炭化ケイ素短繊維の体積率が1
0%になるよう秤吊し、Qu−10wt%Sn合金粉末
(平均粒径80μ)と攪拌晶漬機にて30分間混合した
。かくして形成された混合物を金型成形法により400
0 k(+/ cn2の圧力にて圧縮することにより直
t¥3Qmm、厚さ15mmの円柱状の圧粉成形体を形
成した。次いでこの圧粉成形体をアンモニア分解ガス中
にて770℃に30分間加熱することにより合金粉末を
焼結さけ、これにより炭化ケイ素短繊維にて複合強化さ
れた+4銅よりなる複合材料(比較材C5)を製造した
Comparative Example 5 Silicon carbide fiber manufactured by AVCO (average fiber diameter 140μ)
was cut into 1-5 mm pieces, and the volume ratio of silicon carbide short fibers was 1.
The sample was weighed and mixed with Qu-10wt%Sn alloy powder (average particle size 80μ) using a stirring crystallizer for 30 minutes. The mixture thus formed was molded into 400
By compressing at a pressure of 0 k (+/cn2), a cylindrical powder compact with a direct thickness of 3Q mm and a thickness of 15 mm was formed.The compact was then heated to 770°C in an ammonia decomposition gas. The alloy powder was sintered by heating for 30 minutes, thereby producing a composite material (comparative material C5) made of +4 copper reinforced with silicon carbide short fibers.

上述の如く製造された複合材料及び青銅の焼結材(比較
材C1)の概要を下記の表1にまとめて示す。
The composite material and the bronze sintered material (comparative material C1) produced as described above are summarized in Table 1 below.

ゴ        − 上述の如く製造された各複合材料及び青銅焼結材のff
1l!F!A摩耗特性を試験すべく、各材料より圧縮方
向と垂直な面が試験面となるよう6X 10X 12n
u+のブロック試験片を切出し、各ブロック試験片を順
次LFWI!N擦摩耗試験機にセットし、相手材である
軸受uA(J■S規格5UJ2)製の円筒試験片の外周
面と接触させ、それらの接触部に常W (20℃)の潤
滑油(キャッスルモータオイル5W−30>を供給しつ
つ、荷重60kqf、滑り速度0 、3 ff1lll
/ secにて1時間円筒試験片を回転させる滑り摩耗
試験を行った。この摩耗試験の結果を添付の図に示す。
Go - ff of each composite material and bronze sintered material manufactured as described above
1l! F! A In order to test the abrasion characteristics, 6X 10X 12n were used for each material so that the surface perpendicular to the compression direction was the test surface.
Cut out the u+ block test pieces, and LFWI! each block test piece sequentially! Set it in the N abrasion tester and bring it into contact with the outer circumferential surface of a cylindrical test piece made of bearing uA (J■S standard 5UJ2), which is the mating material. While supplying motor oil 5W-30>, load 60kqf, sliding speed 0, 3ff1lll
A sliding wear test was conducted in which the cylindrical test piece was rotated at /sec for 1 hour. The results of this wear test are shown in the attached figure.

尚添付の図に於て、上半分はブロック試験片の摩耗量(
摩耗痕深さμ)を表わしており、下半分は相手部材であ
る円筒試験片の摩耗量(摩耗域ffima>を表わして
いる。
In the attached figure, the upper half shows the wear amount of the block test piece (
The lower half represents the wear amount (wear area ffima>) of the cylindrical test piece that is the mating member.

添付の図より、焼結含油軸受用材料として一般に使用さ
れている青銅(比較材C+ )に対し炭化ケイ素短繊維
を体積率で0.5wt%、iQwt%、20wt%添加
した本発明による複合材料(A+〜△り)は比較材CI
に比して遥かに耐摩耗性が優れており、また炭化ケイ素
短繊維の体積率が増大するにつれて複合材料の耐摩耗性
が向上することが解る。また複合材料A+〜A3につい
ての円筒試験片の摩耗量は比較材CIの場合の円筒試験
片の摩耗mと実質的に同等であり、従ってこれらの複合
材料は相手材に対する摩擦特性にも優れでいることが解
る。また複合材料Bはマトリックス金属が純銅のもので
あるが、それ自身の摩耗量は複合材料A2よりも僅かに
大きい程度であり、相手材の摩耗量も比較@C+及び複
合材料A+〜△3と同等であり、従ってそれ自身の11
iII!i!耗性及び相手材に対する摩擦特性にも優れ
ていることが解る。
From the attached diagram, the composite material according to the present invention is made by adding silicon carbide short fibers at a volume percentage of 0.5 wt%, iQwt%, and 20 wt% to bronze (comparative material C+), which is generally used as a material for sintered oil-impregnated bearings. (A+~△ri) is comparative material CI
It can be seen that the abrasion resistance of the composite material is far superior to that of the composite material, and as the volume fraction of silicon carbide short fibers increases, the abrasion resistance of the composite material improves. Furthermore, the amount of wear on the cylindrical test piece for composite materials A+ to A3 is substantially the same as the wear m on the cylindrical test piece for comparison material CI, and therefore, these composite materials also have excellent frictional properties against the mating material. I understand that there is. In addition, although the matrix metal of composite material B is pure copper, the amount of wear on itself is slightly larger than that of composite material A2, and the amount of wear on the other material is also compared with that of @C+ and composite materials A+~△3. equivalent and therefore its own 11
iII! i! It can be seen that it has excellent wear resistance and friction characteristics against the mating material.

これに対し炭化ケイ衆知muの体積率が30%である比
較材C2に於ては、ブロック試験片の摩耗間は少ないも
のの円筒試験片の摩耗量は比較材C1や複合材料A+〜
A3及びBの約20倍となっており、相手材に対する摩
擦特性に劣ることが解る。これは炭化ケイ衆知IINの
体積率が高いことにより相手材に対する攻撃性が高いこ
とに起因するものと考えられる。また炭化ケイ素短繊維
の集合体中に含まれる非繊維化粒子の総量が8wt%で
ある比較材C3に於ては、ブロック試験片の摩耗量は実
施例1及び2の何れの複合材料よりも大きく、また円筒
試験片の摩耗量も比較材C2よりも更に増大しており、
従ってそれ自身の耐W:耗性及び相手材に対する摩擦特
性の両方の点に於て実施例1及び2の複合材料よりも劣
っていることが解る。これは摩擦摩耗試験により非繊維
化粒子がマトリックス金属より脱落し、その非繊維化粒
子によりブロック試験片及び円筒試験片の両方の摩耗量
が増大されたことによるものと考えられる。
On the other hand, in comparison material C2, in which the volume fraction of silicon carbide is 30%, the wear interval of the block test piece is small, but the wear amount of the cylindrical test piece is less than that of comparative material C1 and composite material A+~
It is about 20 times as large as A3 and B, which indicates that the friction characteristics against the mating material are inferior. This is considered to be due to the high aggressiveness of silicon carbide IIN to the mating material due to its high volume fraction. In addition, in comparison material C3 in which the total amount of non-fibrous particles contained in the aggregate of silicon carbide short fibers was 8 wt%, the amount of wear on the block test piece was greater than that of either of the composite materials of Examples 1 and 2. In addition, the amount of wear on the cylindrical test piece was even greater than that of comparative material C2.
Therefore, it can be seen that it is inferior to the composite materials of Examples 1 and 2 both in terms of its own W resistance: wear resistance and friction characteristics against the mating material. This is considered to be because the non-fibrous particles fell off from the matrix metal during the friction wear test, and the non-fibrous particles increased the amount of wear on both the block test piece and the cylindrical test piece.

強化繊維の平均繊維径dに対する銅粉末の平均粒径りの
比D/dが137.5である比較材C4に於ては、ブロ
ック試験片の摩耗端及び円筒試験片の摩耗量の両方とも
高い値となっており、従って比較材C4はそれ自身の耐
摩耗性及び相手材に対する摩擦特性の両方に劣ることが
解る。実施例1及び2の複合材料及び比較材C4の断面
を顕微鏡にて観察したところ、実施例1及び2の複合材
料に於ては炭化ケイ素短繊維が均一に分散されて−いる
のに対し、比較材C4に於ては炭化ケイ素ボイス力の体
積率が高い領域と低い領域とが存在し、炭化ケイ素ホイ
スカの体積率が低い領域に於ける摩耗量が大きく、また
炭化ケイ素ボイス力の体積率が高い領域によって相手材
の摩耗が増大され、これによりブロック試験片及び円筒
試験片の両方の摩耗端が比較的高い値となったものと考
えられる。
In comparative material C4, in which the ratio D/d of the average particle diameter of the copper powder to the average fiber diameter d of the reinforcing fibers was 137.5, both the worn end of the block test piece and the wear amount of the cylindrical test piece were This value is high, and it can therefore be seen that comparative material C4 is inferior in both its own wear resistance and its frictional properties against the mating material. When the cross sections of the composite materials of Examples 1 and 2 and comparative material C4 were observed under a microscope, it was found that in the composite materials of Examples 1 and 2, the silicon carbide short fibers were uniformly dispersed. In comparison material C4, there are regions where the volume fraction of silicon carbide voice force is high and regions where it is low, and the amount of wear is large in the region where the volume fraction of silicon carbide whiskers is low, and the volume fraction of silicon carbide voice force is large. It is believed that the region with high abrasion increased the wear of the mating material, which caused the wear edges of both the block specimen and the cylindrical specimen to have relatively high values.

平均U&雑径が110μである炭化ケイ索類繊維にて複
合強化された比較材C5に於ては、ブロック試験片の摩
耗量は比較的少ないものの円筒試験片の摩耗量が比較的
高く、従って相手材に対する摩擦特性に劣ることが解る
。これは械雑径の大きい炭化ケイ素短繊維によって相手
材が過剰に摩耗されることによるものと考えられる。
In comparison material C5, which was compositely reinforced with carbide silica fibers with an average U and minor diameter of 110μ, the amount of wear on the block test piece was relatively small, but the amount of wear on the cylindrical test piece was relatively high. It can be seen that the friction characteristics against the mating material are inferior. This is thought to be due to the excessive wear of the mating material by the short silicon carbide fibers having a large mechanical diameter.

尚実/II例1及び2の複合材料は電気接点材料として
賞用されている銅合金(例えばCu −4Qwt%Zn
など)に比して導電性にも浸れていることが確認された
Naomi/II The composite materials of Examples 1 and 2 are made of copper alloys (e.g. Cu-4Qwt%Zn) which are used as electrical contact materials.
It was confirmed that it is also more conductive than other materials (such as).

以上の説明より、本発明によれば、炭化ケイ素短繊維に
て複合強化された純銅又は銅合金よりなる複合材料であ
って、純銅及び銅合金と実質的に同等の摺動特性及び導
電性を有し、それ自身の耐摩耗性及び相手材に対する摩
擦特性にも優れた均質な複合材料を製造し得ることが理
解されよう。
From the above explanation, according to the present invention, there is provided a composite material made of pure copper or copper alloy composite reinforced with silicon carbide short fibers, which has sliding properties and conductivity substantially equivalent to pure copper and copper alloy. It will be appreciated that a homogeneous composite material can be produced which has excellent wear resistance on its own and also has excellent frictional properties against mating materials.

以上に於ては本願発明者等が行った実験的研究との関連
に於て本発明の詳細な説明したが、本発明はこれらの実
施例に限定されるものではなく、本発明の範囲内にて秤
々の実施例が可能であることは当業者にとって明らかで
あろう。
Although the present invention has been described in detail above in connection with the experimental research conducted by the inventors of the present invention, the present invention is not limited to these examples, and any invention within the scope of the present invention. It will be clear to those skilled in the art that embodiments of the scale are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

添付の図は本発明による繊維強化金属複合材料の製造方
法の実施例及び比較例に於て製造された種々の複合材料
についての摩擦摩耗試験の結果を示ずグラフである。
The attached figures are graphs showing the results of friction and wear tests on various composite materials manufactured in Examples and Comparative Examples of the method for manufacturing fiber-reinforced metal composite materials according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 平均繊維径d=0.1〜50μの炭化ケイ素短繊維であ
ってその集合体中に含まれる非繊維化粒子の総含有量が
5wt%以下である炭化ケイ素短繊維と、純銅粉末又は
銅合金粉末の金属粉末であって前記平均繊維径dに対す
る前記金属粉末の平均粒径Dの比D/dが0.5〜50
である金属粉末とを炭化ケイ素短繊維の体積と金属粉末
の体積との合計を100%とした場合の炭化ケイ素短繊
維の体積率が0.5〜25%なるよう混合し、該混合物
を高温度に加熱して前記金属粉末を焼結させる繊維強化
金属複合材料の製造方法。
Silicon carbide short fibers having an average fiber diameter d = 0.1 to 50 μ and the total content of non-fibrous particles contained in the aggregate is 5 wt% or less, and pure copper powder or copper alloy. The metal powder is a powder, and the ratio D/d of the average particle diameter D of the metal powder to the average fiber diameter d is 0.5 to 50.
is mixed with a metal powder such that the volume percentage of the silicon carbide short fibers is 0.5 to 25% when the sum of the volume of the silicon carbide short fibers and the volume of the metal powder is 100%, and the mixture is heated to a high temperature. A method for producing a fiber-reinforced metal composite material, which comprises heating the metal powder to a temperature to sinter the metal powder.
JP21078084A 1984-10-08 1984-10-08 Production of fiber reinforced metallic composite material Pending JPS6187836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21078084A JPS6187836A (en) 1984-10-08 1984-10-08 Production of fiber reinforced metallic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21078084A JPS6187836A (en) 1984-10-08 1984-10-08 Production of fiber reinforced metallic composite material

Publications (1)

Publication Number Publication Date
JPS6187836A true JPS6187836A (en) 1986-05-06

Family

ID=16595012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21078084A Pending JPS6187836A (en) 1984-10-08 1984-10-08 Production of fiber reinforced metallic composite material

Country Status (1)

Country Link
JP (1) JPS6187836A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462184C (en) * 2006-11-09 2009-02-18 上海交通大学 Surface modified granular reinforcement copper-based composite material used for spot-welding electrode
WO2016119095A1 (en) * 2015-01-27 2016-08-04 苏州金仓合金新材料有限公司 Novel composite copper-based alloy material for high speed railway and preparation method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462184C (en) * 2006-11-09 2009-02-18 上海交通大学 Surface modified granular reinforcement copper-based composite material used for spot-welding electrode
WO2016119095A1 (en) * 2015-01-27 2016-08-04 苏州金仓合金新材料有限公司 Novel composite copper-based alloy material for high speed railway and preparation method therefor

Similar Documents

Publication Publication Date Title
KR100206502B1 (en) High strength self-lubricating composite material
US4681629A (en) Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles
US3461069A (en) Self-lubricating bearing compositions
JPH0120215B2 (en)
US6837915B2 (en) High density, metal-based materials having low coefficients of friction and wear rates
CN1018657B (en) Heat-resistant antifriction self-lubricating material and its manufacturing method
GB2220421A (en) Sintered alloy material and process for the preparation of the same
Hammood et al. Influence of multiwall carbon nanotube on mechanical and wear properties of copper–iron composite
JPS62502813A (en) New alloys with high electrical and mechanical properties, processes for their production and their use in particular in electrical, electronic and related fields
JP3792714B2 (en) Sintered products with improved density
JP2539246B2 (en) Sintered alloy bearing material and manufacturing method thereof
JPS6187836A (en) Production of fiber reinforced metallic composite material
US2196875A (en) Bronze bearing and method of manufacture
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH029099B2 (en)
JP2009007433A (en) Copper-based oil-containing sintered sliding member and method for producing the same
Kumar et al. Effect of reinforcement with metallic, carbon, and ceramic fillers on copper matrix composite physical and mechanical properties
JPS63282221A (en) Manufacture of composite sintered material
JP3869853B2 (en) Iron-based powder containing Mo, P, C
US4603028A (en) Method of manufacturing sintered components
JPH10195556A (en) Production of electric contact material
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
CN114540697B (en) Superfine Fe-Cu-SiC-C-Al 2 O 3 Composite material and preparation method thereof
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
CN109128160B (en) High-strength self-lubricating powder metallurgy material and preparation method and application thereof