JPS6187319A - Chemical vapor phase film forming equipment using plasma - Google Patents

Chemical vapor phase film forming equipment using plasma

Info

Publication number
JPS6187319A
JPS6187319A JP20816784A JP20816784A JPS6187319A JP S6187319 A JPS6187319 A JP S6187319A JP 20816784 A JP20816784 A JP 20816784A JP 20816784 A JP20816784 A JP 20816784A JP S6187319 A JPS6187319 A JP S6187319A
Authority
JP
Japan
Prior art keywords
gas flow
electrode
perforated plate
supply pipe
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20816784A
Other languages
Japanese (ja)
Inventor
Fumikazu Ito
伊藤 文和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20816784A priority Critical patent/JPS6187319A/en
Publication of JPS6187319A publication Critical patent/JPS6187319A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45589Movable means, e.g. fans
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To enable obtaining the uniform distribution of film thickness easily adjusting gas flow distribution in a simple construction by changing the position of a perforated plate for dispersing gas flow provided between a perforated plate type electrode surface and the aperture of a gas supply pipe connected to the back of the electrode. CONSTITUTION:An electrode 2 facing to wafer 10 to be treated is made in a box type, many air holes 16 are provided on the surface facing to the wafer 10, a gas supply pipe is connected on the back of the electrode 2 and a perforated plate 13 for dispersing gas flow is provided near the aperture of the gas supply pipe connected to the box type electrode 2. In such a chemical vapor phase film forming equipment, means which can freely adjust the position of the perforated plate 13 bringing near to or separating from the aperture of the gas supply pipe are provided. For example, the gas flow dispersion plate 13 is connected to a pipe 7 with a rod 14 and can be moved vertically by tightening or loosening a nut 15 at the top of the pipe 7.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体製品などに用いるウエノ1を低温プラ
ズマ流中に伊いて化学反応によって該ウェハの表面に薄
膜を形成せしめる化学気相成膜装置(略称CVD装置)
に関するもので、特に膜厚を均一ならしめる為の制御を
容易に行ない得るように改良したプラズマCVD装置に
関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a chemical vapor deposition apparatus that forms a thin film on the surface of a wafer by a chemical reaction by placing a wafer 1 used for semiconductor products etc. in a low-temperature plasma stream. (abbreviation CVD equipment)
In particular, it relates to a plasma CVD apparatus that has been improved so as to be able to easily control the film thickness to make it uniform.

〔従来技術〕[Prior art]

対向した平行平版形の電極を有するプラズマCVD装置
においては、膜厚分布の均一化を図る為ガス流の最適化
、或いはプラズマ強度の最適化が試みられているが、被
加工物であるウェハの表面における反応ガス濃度を均一
ならしめることは困難である。更に1反応ガスの濃度差
全補償するような電界強度分布を与えて反応速度を均一
化する方法も提案されているが、この方法を用いようと
すると電極や電源の構造が複雑となり、設備コストが増
加する。
In plasma CVD equipment that has parallel planar electrodes facing each other, attempts have been made to optimize the gas flow or plasma intensity in order to make the film thickness distribution uniform, but the It is difficult to make the reaction gas concentration uniform on the surface. Furthermore, a method has been proposed in which the reaction rate is made uniform by providing an electric field intensity distribution that fully compensates for the concentration difference in one reactant gas, but if this method is used, the structure of the electrodes and power supply will be complicated, and the equipment cost will increase. increases.

膜厚を均一にするための間便な方法としては、成膜実験
により基板上の膜厚分布の不均一さを測定し、これに応
じて反応ガス吹出し口の孔の分布密度ヲ変える方法がと
られている。たとえば基板外周部での膜厚が薄い場合は
、外周部により多くのガスを吹き付けるようにガス吹出
口の外周部により多くの孔をあ・ける。
A convenient method to make the film thickness uniform is to measure the non-uniformity of the film thickness distribution on the substrate through a film deposition experiment, and change the distribution density of the holes in the reactant gas outlet accordingly. It is taken. For example, if the film thickness at the outer periphery of the substrate is thin, more holes are made at the outer periphery of the gas outlet so that more gas can be blown to the outer periphery.

この方法では、成膜条件會変えるたびにそれに合わせて
吹出し孔を加工することは極めて非能元であるし、実際
の量産装RKは適用し難い。
In this method, it is extremely inefficient to process the blow-off holes in accordance with each change in film-forming conditions, and it is difficult to apply it to an actual mass-produced RK.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為され、その目的とすると
ころは安価で簡単な構成によシガス流分布を容易に調節
して均一な膜厚分布が得られる。プラズマ化学気相成膜
装置を提供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to easily adjust the gas flow distribution and obtain a uniform film thickness distribution with an inexpensive and simple configuration. The present invention aims to provide a plasma chemical vapor deposition apparatus.

〔発明の概要〕[Summary of the invention]

先に述べたように1反応ガスを噴出させるため函状の電
極の面に穿った孔の配置を変更してガス流分布を制御す
るという従来の膜厚調整方法は、成膜条件を変える毎に
多孔板状の電極構成部材を交換しなければなら力いため
、多大の時間と労力とを要して不経済である。
As mentioned earlier, the conventional film thickness adjustment method of controlling the gas flow distribution by changing the arrangement of holes drilled on the surface of a box-shaped electrode in order to blow out the reactant gas requires Since the perforated plate-like electrode component must be replaced at any time, a great deal of time and effort is required, which is uneconomical.

本発明の基本的原理は、函状の電極の前面全構成してい
る多孔板を交換したシ移動したυすることなく、該多孔
板状の電極面と、その背後に連通されているガス供給管
の開口部との間に設けられたガス流分散用の多孔版の位
置を変えることによシガス流分布を調節するものである
The basic principle of the present invention is that the perforated plate constituting the entire front surface of the box-shaped electrode is replaced, and the perforated plate-shaped electrode surface is connected to the gas supply connected to the back thereof without being moved. The gas flow distribution is adjusted by changing the position of a perforated plate for gas flow dispersion provided between the pipe opening and the opening.

上記の原理に基づいて前述の目的(簡単な構成による、
ガス流分布の容易な調節)′に達成するため、本発明の
プラズマCVD装置は、前記のガス流分散用多孔版ヲガ
ス供給管路の開口部に対して接近、離開せしむべく自在
にその位置を調節し得る手段を設けたこと′lt特徴と
する。
Based on the above principles and for the aforementioned purposes (by simple configuration,
In order to easily adjust the gas flow distribution, the plasma CVD apparatus of the present invention allows the porous plate for gas flow dispersion to be moved freely toward and away from the opening of the gas supply pipe. It is characterized by providing a means for adjusting.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の一実施例を第1図乃至第3図について説
明する。第1図は本発明のプラズマCVD装置の一実施
例の垂直断面図である。真空チャンバ1の中央部に上下
に対応して、N気的に互いに絶縁された上部電極2及び
下部電極6が配置されている。上部電極は高周波電源4
に、下部電極3はアースにそれぞれ接続されている。
Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a vertical sectional view of an embodiment of the plasma CVD apparatus of the present invention. An upper electrode 2 and a lower electrode 6, which are insulated from each other by nitrogen gas, are arranged vertically in the center of the vacuum chamber 1. The upper electrode is a high frequency power source 4
The lower electrodes 3 are each connected to ground.

上部電極2は、軸部52円盤部6よシ成シ、軸部5の上
方からバイブ7が給気管として設けられている。−ガニ
部電極下方のチャンバ底板8には2つの開口部9が設け
られ、排気管を通じ真空ポンプ(図示せず)に連通して
いる。下部電極3の上には、例えばステンレス又はガラ
スから成る基鈑ウェハ10が載置されている。薄膜形成
にあたっては、バイブ7の上方よυ反応ガス(例えばモ
ノシランと水素)を5W量制御器11によシ一定量供給
し、同時に開口部9よシ排気する。
The upper electrode 2 is formed from a shaft portion 52 and a disk portion 6, and a vibrator 7 is provided from above the shaft portion 5 as an air supply pipe. - Two openings 9 are provided in the chamber bottom plate 8 below the crab electrode and communicate with a vacuum pump (not shown) through an exhaust pipe. A base wafer 10 made of stainless steel or glass, for example, is placed on the lower electrode 3. To form a thin film, a constant amount of υ reaction gas (for example, monosilane and hydrogen) is supplied to the 5W amount controller 11 from above the vibrator 7, and at the same time it is exhausted through the opening 9.

上記のチャンバ1内の気圧は0.5〜1torrに保た
れ、反応ガス流量は100〜3005cCnに調整され
ている。下部電極3は約100℃に保温されその他の構
成部材はほぼ室温である。上部電極2は函状に形成され
、その前面側の壁(図において下方)は多孔板12によ
って構成されている。
The atmospheric pressure inside the chamber 1 is maintained at 0.5 to 1 torr, and the reaction gas flow rate is adjusted to 100 to 3005 cCn. The lower electrode 3 is kept at about 100° C., and the other components are kept at about room temperature. The upper electrode 2 is formed in the shape of a box, and its front wall (lower side in the figure) is constituted by a porous plate 12.

この多孔版12から被加工物である基鈑ウエノ・10に
向けて反応ガスが噴出する。
A reaction gas is ejected from this perforated plate 12 toward the substrate substrate 10 that is the workpiece.

第1図について以上に述べた構成部分は従来のプラズマ
CVI)装置と類似の構成部分である。
The components described above with respect to FIG. 1 are similar to conventional plasma CVI devices.

従来の装置においては、函状の上部電極を構成している
多孔板12の背後に連通されている反応ガス供給用パイ
プ7と多孔板12との間にガス流分散用の多孔板13が
設けられ、かつ、該ガス流分散板13は多孔板12に対
して一定の位[K固定的に支承されている。本発明にお
いては説明の便宜上、電極に関して前方とは、その[極
が相手電極に対向している側を言い、その反対側を後方
と言う。
In the conventional device, a perforated plate 13 for gas flow dispersion is provided between the reactant gas supply pipe 7 and the perforated plate 12, which are communicated behind the perforated plate 12 constituting the box-shaped upper electrode. Moreover, the gas flow dispersion plate 13 is fixedly supported at a fixed position relative to the perforated plate 12. In the present invention, for convenience of explanation, the front side of an electrode refers to the side where the electrode faces the other electrode, and the opposite side is referred to as the rear side.

本実施例においては、多孔板12の上側でバイブ7から
ガスが出てくる部分には、ガス流分散板13が、パイプ
下端面よシ細いロッド14で吊9下げられている。ガス
流分散板16はロツ1゛14を介してバイブ7と的に連
設してあり一体で、パイプ上部のナツト15をしめるか
又はゆるめることKより上下に動かすことができる。ガ
ス流分散板13には多くの孔16が設けられている。
In this embodiment, a gas flow dispersion plate 13 is suspended 9 by a rod 14 that is thinner than the lower end surface of the pipe at a portion above the perforated plate 12 where gas comes out from the vibrator 7. The gas flow dispersion plate 16 is connected to the vibrator 7 through the rods 1 and 14, and can be moved up and down by tightening or loosening the nut 15 at the top of the pipe. The gas flow distribution plate 13 is provided with many holes 16 .

以上の構成であるから、第2囚に示すように、ガス流分
散板13を上に引上げるとすき間dが小さくな如、ガス
流は主として分散板13の孔16を通シ抜けるようにな
る。従って、多孔版12から吹出すガス流分布は中央で
大、周辺で小となシ、基板ウェハ10の上でのガス濃度
も中央部で高くなる。電極にかける高周波電力を一定と
すれば、基板中央部での成膜速度が周辺部に比べて高く
なる。
With the above configuration, as shown in Figure 2, when the gas flow dispersion plate 13 is pulled up, the gas flow mainly passes through the holes 16 of the dispersion plate 13 as the gap d becomes smaller. . Therefore, the gas flow distribution blown out from the perforated plate 12 is large at the center and small at the periphery, and the gas concentration on the substrate wafer 10 is also high at the center. If the high frequency power applied to the electrodes is constant, the film formation rate at the center of the substrate will be higher than at the periphery.

一方、第3図に示すようにガス流分散板13を引下げる
と、すき間dが大きくカリ、周辺部に流れるガス流量が
増大する。従ってガス流分布は第2図の場合とは逆にな
シ、基板ウェハ10の中央部での成膜速度が周辺部に比
べて相対的に低くなる。
On the other hand, when the gas flow dispersion plate 13 is pulled down as shown in FIG. 3, the gap d becomes large and the flow rate of gas flowing to the periphery increases. Therefore, the gas flow distribution is opposite to that shown in FIG. 2, and the film formation rate at the center of the substrate wafer 10 is relatively lower than at the periphery.

この作用を利用すれば、第1回目の成膜を行なった後、
膜厚分布を測定し、分布の不均一が生じていれば直ちに
これを修正する方向にカス流分散板13の位置を調整し
、第2回目以降の成膜においてよυ均一性の良い膜厚分
布が得られる。
By utilizing this effect, after the first film formation,
Measure the film thickness distribution, and if there is any non-uniformity in the distribution, immediately adjust the position of the waste flow dispersion plate 13 in a direction to correct it, so that the film thickness is more uniform in the second and subsequent film formations. distribution is obtained.

第1図に示した実施例においては、ナツト15の操作に
よってガス流分散用の多孔版13が前後(図において上
下)に、即ち反応ガス供給用パイプ7の開口部に対して
接近、離間するように構成しであるが、本発明を実施す
る際上記のガス流分散用の多孔板13の位置を操作する
手段は任意に設定することができ、例えばモーターとポ
ールネジ、ナツトとを用いてもよい。
In the embodiment shown in FIG. 1, by operating the nut 15, the perforated plate 13 for gas flow dispersion moves forward and backward (up and down in the figure), that is, approaches and moves away from the opening of the reaction gas supply pipe 7. However, when carrying out the present invention, the means for operating the position of the perforated plate 13 for gas flow dispersion can be arbitrarily set, for example, a motor, a pole screw, or a nut may be used. good.

以上詳述したように、本発明のプラズマCVD装置は、
ガス流分散用多孔板をガス供給管路の開口部に対して接
近、離間せしめるように自在にその位置を調節し得る手
段を設けるという簡単で安価な構成によりガス流分布を
容易に調節して均一な膜厚分布が得られるという優れた
実用的効果を奏する。
As detailed above, the plasma CVD apparatus of the present invention includes:
The gas flow distribution can be easily adjusted using a simple and inexpensive structure in which means is provided to freely adjust the position of the perforated plate for gas flow dispersion so as to approach or separate it from the opening of the gas supply pipe. This has an excellent practical effect in that a uniform film thickness distribution can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプラズマCVD装置の1実施例におけ
る垂直断面図、第2図及び第3図は同じく作用説明図で
ある。 1・・・真空チャンバ 2・・・函状に構成した上部電極 5・・・下部電極     4・・・高周波電源5・・
・・上部電極の軸部  6・・・円盤部7・・・反応ガ
ス供給用パイプ 8・真空チャンバの底板 9・・・排夙管の開口部  10・・・基板ウニノー1
1・・・流量制御器 12・・・電極を構成している多孔板 15・・・ガス流分散用の多孔板 14・・ロッド      15・・・す、ソト第1図
FIG. 1 is a vertical cross-sectional view of one embodiment of the plasma CVD apparatus of the present invention, and FIGS. 2 and 3 are similarly explanatory diagrams. 1... Vacuum chamber 2... Upper electrode configured in a box shape 5... Lower electrode 4... High frequency power source 5...
... Shaft part of upper electrode 6 ... Disc part 7 ... Reaction gas supply pipe 8 - Bottom plate of vacuum chamber 9 ... Opening of exhaust pipe 10 ... Substrate Unino 1
1...Flow rate controller 12...Perforated plate 15 constituting the electrode...Porous plate 14 for gas flow dispersion...Rod 15...Soto Fig. 1

Claims (1)

【特許請求の範囲】[Claims]  被加工物であるウェハに対向する電極を函状に構成し
、上記ウェハに対向する面に多数の通気孔を設けるとと
もに、上記函状電極の背面にガス供給管路を連通固着し
、かつ、上記ガス供給管路が函状電極に連通開口する個
所の近傍にガス流分散用の多孔板を設置したプラズマ化
学気相成膜装置において、前記のガス流分散用多孔板を
ガス供給管路の開口部に対して接近、離間せしめるよう
に自在にその位置を調節し得る手段を設けたことを特徴
とするプラズマを用いた化学気相成膜装置。
The electrode facing the wafer, which is the workpiece, is configured in a box shape, and a large number of ventilation holes are provided on the surface facing the wafer, and a gas supply pipe is connected and fixed to the back surface of the box-shaped electrode, and In a plasma chemical vapor deposition apparatus in which a perforated plate for gas flow dispersion is installed near the point where the gas supply pipe communicates with the box-shaped electrode, A chemical vapor deposition apparatus using plasma, characterized in that it is provided with means that can freely adjust its position so as to approach or separate from an opening.
JP20816784A 1984-10-05 1984-10-05 Chemical vapor phase film forming equipment using plasma Pending JPS6187319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20816784A JPS6187319A (en) 1984-10-05 1984-10-05 Chemical vapor phase film forming equipment using plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20816784A JPS6187319A (en) 1984-10-05 1984-10-05 Chemical vapor phase film forming equipment using plasma

Publications (1)

Publication Number Publication Date
JPS6187319A true JPS6187319A (en) 1986-05-02

Family

ID=16551761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20816784A Pending JPS6187319A (en) 1984-10-05 1984-10-05 Chemical vapor phase film forming equipment using plasma

Country Status (1)

Country Link
JP (1) JPS6187319A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468474A (en) * 1987-09-10 1989-03-14 Tokyo Electron Ltd Formation of film
JPH0189957U (en) * 1987-12-09 1989-06-13
JPH02129920A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Chemical vapor growth device
JPH03120371A (en) * 1989-10-01 1991-05-22 Hirano Tecseed Co Ltd Thin film production
JPH03122281A (en) * 1989-10-06 1991-05-24 Anelva Corp Cvd device
US5038711A (en) * 1987-03-10 1991-08-13 Sitesa S.A. Epitaxial facility
FR2675894A1 (en) * 1991-04-29 1992-10-30 Leteurtre Jean Contactless sensor, using capacitive means, capable of operating in a contaminated medium
FR2676807A1 (en) * 1991-05-22 1992-11-27 Tech Milieu Ionisant Apparatus and method for measuring the surface area of a surface
US5188671A (en) * 1990-08-08 1993-02-23 Hughes Aircraft Company Multichannel plate assembly for gas source molecular beam epitaxy
US5268034A (en) * 1991-06-25 1993-12-07 Lsi Logic Corporation Fluid dispersion head for CVD appratus
WO1997003223A1 (en) * 1995-07-10 1997-01-30 Watkins Johnson Company Gas distribution apparatus
WO1997035045A1 (en) * 1996-03-22 1997-09-25 Advanced Technology Materials, Inc. Interiorly partitioned vapor injector for delivery of source reagent vapor mixtures for chemical vapor deposition
JP2000030894A (en) * 1998-07-07 2000-01-28 Kokusai Electric Co Ltd Plasma processing method and device
JP2021106293A (en) * 2015-05-22 2021-07-26 ラム リサーチ コーポレーションLam Research Corporation Low volume shower head with face plate hole to improve flow uniformity

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038711A (en) * 1987-03-10 1991-08-13 Sitesa S.A. Epitaxial facility
JPS6468474A (en) * 1987-09-10 1989-03-14 Tokyo Electron Ltd Formation of film
JPH0189957U (en) * 1987-12-09 1989-06-13
JPH0543096Y2 (en) * 1987-12-09 1993-10-29
JPH02129920A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Chemical vapor growth device
JPH03120371A (en) * 1989-10-01 1991-05-22 Hirano Tecseed Co Ltd Thin film production
JPH03122281A (en) * 1989-10-06 1991-05-24 Anelva Corp Cvd device
US5188671A (en) * 1990-08-08 1993-02-23 Hughes Aircraft Company Multichannel plate assembly for gas source molecular beam epitaxy
FR2675894A1 (en) * 1991-04-29 1992-10-30 Leteurtre Jean Contactless sensor, using capacitive means, capable of operating in a contaminated medium
FR2676807A1 (en) * 1991-05-22 1992-11-27 Tech Milieu Ionisant Apparatus and method for measuring the surface area of a surface
US5268034A (en) * 1991-06-25 1993-12-07 Lsi Logic Corporation Fluid dispersion head for CVD appratus
WO1997003223A1 (en) * 1995-07-10 1997-01-30 Watkins Johnson Company Gas distribution apparatus
WO1997035045A1 (en) * 1996-03-22 1997-09-25 Advanced Technology Materials, Inc. Interiorly partitioned vapor injector for delivery of source reagent vapor mixtures for chemical vapor deposition
US5741363A (en) * 1996-03-22 1998-04-21 Advanced Technology Materials, Inc. Interiorly partitioned vapor injector for delivery of source reagent vapor mixtures for chemical vapor deposition
JP2000030894A (en) * 1998-07-07 2000-01-28 Kokusai Electric Co Ltd Plasma processing method and device
JP2021106293A (en) * 2015-05-22 2021-07-26 ラム リサーチ コーポレーションLam Research Corporation Low volume shower head with face plate hole to improve flow uniformity

Similar Documents

Publication Publication Date Title
JPS6187319A (en) Chemical vapor phase film forming equipment using plasma
US4262631A (en) Thin film deposition apparatus using an RF glow discharge
EP1169490B1 (en) Vacuum processing apparatus
JP5678883B2 (en) Plasma CVD apparatus and silicon thin film manufacturing method
JPS63187619A (en) Plasma cvd system
JPH0551753A (en) Method and device for plasma cvd
JP4416402B2 (en) Plasma device for forming functional layer and method for forming functional layer
KR100457455B1 (en) Chemical Vapor Deposition Apparatus which deposition-speed control is possible
JP4680619B2 (en) Plasma deposition system
JPS5943880A (en) Dry etching device
JPS62210623A (en) Electrode for vapor phase reactor
JPS62159419A (en) Apparatus for forming amorphous semiconductor thin film
JPS6091629A (en) Plasma vapor growing device
JPS60114577A (en) Chemical treating device
JP2646582B2 (en) Plasma CVD equipment
JPH05102036A (en) Sputtering system
JPH05275679A (en) Manufacture of semiconductor device
JP2004149917A (en) Thin film production apparatus, and thin film production method using the apparatus
JPH0249386B2 (en) PURAZUMACVD SOCHI
JPS60258914A (en) Plasma cvd equipment
JPH0747819B2 (en) Plasma flash deposition method and apparatus
JPH0766129A (en) Plasma cvd system
JPH0449520B2 (en)
JPS58117869A (en) Film forming device
JP2628529B2 (en) Plasma CVD equipment