JPS6186944A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS6186944A
JPS6186944A JP59207302A JP20730284A JPS6186944A JP S6186944 A JPS6186944 A JP S6186944A JP 59207302 A JP59207302 A JP 59207302A JP 20730284 A JP20730284 A JP 20730284A JP S6186944 A JPS6186944 A JP S6186944A
Authority
JP
Japan
Prior art keywords
catalyst
catalyst body
exhaust gas
metal oxide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59207302A
Other languages
Japanese (ja)
Other versions
JPH054135B2 (en
Inventor
Kuniyoshi Ono
之良 小野
Atsushi Nishino
敦 西野
Yasuhiro Takeuchi
康弘 竹内
Hironao Numamoto
浩直 沼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59207302A priority Critical patent/JPS6186944A/en
Publication of JPS6186944A publication Critical patent/JPS6186944A/en
Publication of JPH054135B2 publication Critical patent/JPH054135B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst for purifying exhaust gas enhanced in heat resistance and poisoning resistance, by constituting a molded body by mixing and baking at least calcium aluminate and delafossite composite metal oxide. CONSTITUTION:Calcium aluminate containing 50-85wt% of an alumina component and delafossite composite metal oxide represented by ABO2 (wherein an A-site is Cu, Ag, Pd or Pt and a B-site is Al, Cr, Ga, Fe, Co Rh, La, Y or Mn) are mixed and baked to obtain a catalyst for purifying exhaust gas. The delafossite composite metal oxide constituting the catalyst is pref. 5-50wt%. Furthermore, as the constitutional component of the catalyst, a heat resistant base aggregate such as a silica base aggregate or silica-alumina base aggregate can be compounded.

Description

【発明の詳細な説明】 素、炭化水素を無害なものに酸化浄化する排ガス浄化用
触媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for purifying exhaust gas that oxidizes and purifies hydrocarbons into harmless substances.

従来例の構成とその問題点 従来のアルミン酸石灰を含む触媒体は、アルミン酸石灰
に、二酸化マンガンあるいは白金族金属を用いて構成し
たものであった。ここにおいて、前者の二酸化マンガン
を用いて構成した触媒体は耐被毒性には強いものの60
0℃以上の温度にさらされると、マンガンの熱転移によ
り触媒活性が低下するという問題点を有していた。壕だ
白金、異金属を用いた後者の触媒体は、少量では、触婬
の白金族金属の被毒に弱く、捷た耐被毒性をもたせるた
めに白金族金属を多く用いた場合は、高価な触媒体とな
ると共に触媒物質の分散性の低下から、シンタリングに
よる触媒体の熱劣化が促進され、触媒寿命がかえって短
かくなるという問題点を有してい/C。
Structure of conventional examples and their problems Conventional catalyst bodies containing lime aluminate are constructed by using lime aluminate and manganese dioxide or platinum group metal. Here, although the former catalyst composed of manganese dioxide has strong resistance to poisoning,
When exposed to temperatures of 0° C. or higher, the catalytic activity is reduced due to thermal transition of manganese. The latter type of catalyst using platinum or a different metal is susceptible to poisoning by contaminated platinum group metals in small amounts, and is expensive if a large amount of platinum group metal is used to provide excellent poisoning resistance. This has the problem that the dispersibility of the catalytic material is reduced, which promotes thermal deterioration of the catalytic material due to sintering, and shortens the catalyst life.

発明の目的 本発明は、上述した従来の問題点を解決するためになさ
れたものであり、耐熱性、耐被毒性に擾れた排ガス浄化
用触媒体を得ることを目的とする。
OBJECTS OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional problems, and its object is to obtain a catalyst body for exhaust gas purification that has excellent heat resistance and toxicity resistance.

発明の構成 本発明は、少なくともアルミン酸石灰とデラフォサイト
型複合金属酸化物を含む排ガス浄化用触媒体である。
Structure of the Invention The present invention is an exhaust gas purifying catalyst body containing at least lime aluminate and a delafossite type composite metal oxide.

実施例の説明 本発明で用いるデラフォサイト型複合金属酸化物は、一
般式A+B3+02で示され、3価の金属Bを中心とし
て、平面内に酸素が稜を共有して広がっている8面体層
と、この層を直線2配位結合で結びつけている一価の金
属Aとからなる層状構造を有している。本発明で、上記
金属Aとして用いられる金属は、Cu、Aq、Pdおよ
びptであυ、金属Bとしては、Ad、Cr、Ga、F
e、Co、Rh、La。
Description of Examples The delafossite-type composite metal oxide used in the present invention is represented by the general formula A+B3+02, and is an octahedral layer centered on trivalent metal B, with oxygen spreading in the plane sharing edges. and a monovalent metal A that connects these layers with linear two-coordination bonds. In the present invention, the metals used as the metal A are Cu, Aq, Pd, and pt, and the metals B are Ad, Cr, Ga, and F.
e, Co, Rh, La.

Y、Mnより選ばれる。Selected from Y and Mn.

デラフォサイト型複合金属酸化物は、酸化触媒性能を有
し、−酸化炭素(以下COと記す)、炭化水素化合物(
以下HCと記す)を、二酸化炭素および水に酸化浄化す
る。この触媒作用は、デラフォサイト型複合金属酸化物
が、加熱−冷却によに反応に関与しうること、およびブ
ラフオサイト型破合金属酸化物で、Cu、Agを含むも
のが半導体の性質を持ち、また、Pd、Ptを含むもの
は金属的な導電性を示すことから、ブラフオサイト型複
合酸化物内での電子の移動が速やかに起こりやすいこと
等に起因しているものと考えられる。
The delafossite-type composite metal oxide has oxidation catalytic performance, and is capable of oxidizing carbon oxide (hereinafter referred to as CO) and hydrocarbon compounds (
(hereinafter referred to as HC) is oxidized and purified into carbon dioxide and water. This catalytic action is due to the fact that delafossite-type composite metal oxides can participate in the reaction by heating and cooling, and that bluffosite-type fractured metal oxides containing Cu and Ag have semiconductor properties. In addition, since those containing Pd and Pt exhibit metallic conductivity, this is thought to be due to the fact that electron movement within the bluffsite-type composite oxide tends to occur quickly. It will be done.

例えば、金属AとしてCuを、また金属BとしてMnを
用いて構成したブラフオサイト型破合金属酸化物(クレ
ドネライト)は、室温より1000℃までの加熱冷却を
行なった場合、900℃以上で構造酸素を放出し、冷却
により再び900℃付近で酸素を吸蔵する。X@分析の
結果から、上記の加熱冷却サイクルにおいて、この金属
酸化物はブラフオサイト型構造を維持しつつ、酸素の吸
脱着を行ない、加熱冷却過程で変化する酸素量は、酸素
量全体の約25係であった。
For example, a bluffsite-type fractured metal oxide (credonerite) composed of Cu as metal A and Mn as metal B will have a structure at 900°C or higher when heated and cooled from room temperature to 1000°C. Oxygen is released, and oxygen is stored again at around 900°C by cooling. From the results of the X@ analysis, it was found that during the heating and cooling cycle described above, this metal oxide adsorbs and desorbs oxygen while maintaining the bluffsite structure, and the amount of oxygen that changes during the heating and cooling process is approximately equal to the total amount of oxygen. There were about 25 people in charge.

このように、前述したデラフォサイト型複合金属酸化物
は、上述したような2種の金属に対する酸素の溝底比率
が、熱的な環境および雰囲気により変化すると考えられ
る。従って、本発明で用いるデラフォサ、イト型複合金
属酸化物は、前述した一般式AB○2で表わされるもの
以外に、ブラフオサイト型溝造が破壊されない範囲で上
述した酸素比率が多機変化した複合金属酸化物をも含む
ものである。
Thus, in the delafossite-type composite metal oxide described above, the groove bottom ratio of oxygen to the two types of metals as described above is thought to change depending on the thermal environment and atmosphere. Therefore, the delafosa, ite-type composite metal oxide used in the present invention, in addition to that represented by the general formula AB○2 described above, has the oxygen ratio that has undergone multiple changes within the range that does not destroy the bluff-osite type groove structure. It also includes composite metal oxides.

本発明で用いるデラフォサイト型複合金属酸化物は、触
媒体内に、5重量%以−ヒ、60重量係以下含むことが
望ましい。5重量係未満では、十分な触媒活性が得られ
ず、また5Q重量%を超えると触媒体0機械的強度が急
激に低下する。
The delafossite type composite metal oxide used in the present invention is preferably contained in the catalyst body in an amount of 5% by weight or more and 60% by weight or less. If it is less than 5% by weight, sufficient catalytic activity will not be obtained, and if it exceeds 5Q% by weight, the mechanical strength of the catalyst body will sharply decrease.

本発明は、上述したデラフォサイト型複合金属酸化物と
共にアルミン酸石灰を用いる。
The present invention uses lime aluminate together with the above-mentioned delafossite type composite metal oxide.

アルミン′酸石灰は、アルミナセメントともよばれ水硬
性結合剤であり、一般的にmAt203・n CaOで
表わされる。このアルミン酸石灰は、常温でも水と反応
し、水和物を形成し、強固に結合する。
Aluminate lime, also called alumina cement, is a hydraulic binder and is generally expressed as mAt203.nCaO. This lime aluminate reacts with water even at room temperature, forms a hydrate, and forms a strong bond.

この水和物を340℃以上で焼成すると、水和していた
水分が脱離し、これと同時に、水利結合体が多孔質化す
る。従って、アルミン酸石灰を結合剤として、触媒物質
のブラフオサイトを含む触媒体を構成し、上述した温度
以上で焼成することにより多孔質な触媒体を得ることが
できる。このことは、単に無焼結で触媒体を得ることが
できるというだけでなく、触媒体として非常に望ましい
多孔質な触媒体を得ることができるという点で優れたも
のである。一方、従来の触媒担体原料であるコージライ
ト、′iミライトの焼結処理の必要な材料と、デラフォ
サイト型複合金属酸化物より構成した触媒体は、焼結に
より、多孔度が非常に小さくなり、望ましい触媒活性を
有する触媒体を得ることが困難である。
When this hydrate is fired at 340° C. or higher, the hydrated water is removed, and at the same time, the water conservancy becomes porous. Therefore, a porous catalyst body can be obtained by constructing a catalyst body containing a catalytic substance, bluffsite, using lime aluminate as a binder, and firing it at the above-mentioned temperature or higher. This is excellent not only in that it is possible to obtain a catalyst body without sintering, but also in that it is possible to obtain a porous catalyst body which is highly desirable as a catalyst body. On the other hand, the porosity of the catalyst body, which is made of the conventional catalyst support raw materials cordierite and 'i-myrite, which require sintering treatment, and delafossite-type composite metal oxide, has extremely small porosity due to sintering. Therefore, it is difficult to obtain a catalyst having a desired catalytic activity.

本発明で用いるアルミン酸石灰は、そこに含まれるアル
ミナ分が6Q重量係以上、85重量係以下が望ましく、
特ド、60重量%以上、80重量%以下が望ましい。ア
ルミン酸石灰中に含まれるアルミナ分が5Q重量%未満
では、触Is体の熱劣化が著しくなり、またアルミナ分
が85重量%を超えると、@、激に触媒体の機械的強度
が低下する。
The aluminate lime used in the present invention preferably has an alumina content of 6Q or more and 85 or less by weight,
In particular, it is preferably 60% by weight or more and 80% by weight or less. If the alumina content contained in the aluminate lime is less than 5Q% by weight, the thermal deterioration of the catalyst body will be significant, and if the alumina content exceeds 85% by weight, the mechanical strength of the catalyst body will decrease drastically. .

本発明は、上記の構成だけでも十分な触媒特性を有する
触媒体を得ることができるが、さらに桁材があり、鉱物
相として、ケイ酸塩鉱物、ムライト、コランダム、シリ
マナイト、β−アルミナさらにはマグネシア、クロム、
ドロマイト、マゲクロ、クロマグ系のものを用いるのが
好ましい。また触媒の使用温度により、低温側(300
〜700℃)では一般的な粒状基骨材を用い、高温側(
7001C以上)では耐熱性粒状基骨材を用いることが
好ましい。
In the present invention, although it is possible to obtain a catalyst body having sufficient catalytic properties with the above-mentioned structure alone, there is also a support material, and as a mineral phase, silicate mineral, mullite, corundum, sillimanite, β-alumina, and even magnesia, chromium,
It is preferable to use dolomite, magekuro, and chromag type materials. Also, depending on the operating temperature of the catalyst, the low temperature side (300
~700℃), a general granular base aggregate is used, and the high temperature side (
7001C or higher), it is preferable to use a heat-resistant granular base aggregate.

さらに詳述するよ、シリカ系基骨材として、ケイ石等が
ある。これらの基骨材はSiO2を主成分表したもので
ある。シリカアルミナ系基骨材として、ンヤモノト、ロ
ウ石、高アルミナ等があり、SiO2−A12o3が主
成分である。アルミナ系基骨材として、α−A1203
.β−A1203.γ−A1203゜ρ−AI O等が
ある。さらに一般的な主要鉱物相として、ケイ酸塩鉱物
、ムライト、コランダム。
To explain in more detail, examples of the silica-based aggregate include silica stone. These base aggregates mainly contain SiO2. Examples of the silica-alumina base aggregate include Nyamonoto, Rouseki, and high alumina, and the main component is SiO2-A12O3. α-A1203 as alumina base aggregate
.. β-A1203. There are γ-A1203゜ρ-AIO, etc. More common major mineral phases are silicate minerals, mullite, and corundum.

ノリマナイト、β−アルミナ等が用いられる。これらの
基骨材をある程度に粗砕したもの、あるいは市販のコニ
カルケイ砂、アルミナ、ンヤモノト等の基骨材を用いる
ことができ、一般的には市販品のケイ砂、あるいはシャ
モットを使用するのが1更利である。
Norimanite, β-alumina, etc. are used. These base aggregates can be crushed to a certain extent, or commercially available base aggregates such as conical silica sand, alumina, and Nyamonoto can be used.Generally, it is best to use commercially available silica sand or chamotte. It is 1 Sarari.

さらに、町熱けを上げる目的で、脱アルカリガラス繊維
、繊維状鉄線、シリカ・アルミナ*、ギ(fなどの耐熱
性繊維を加えることも任意である。
Furthermore, for the purpose of increasing the excitement of the town, heat-resistant fibers such as dealkalized glass fibers, fibrous iron wire, silica/alumina*, and gi(f) may optionally be added.

化合物を加えることによって、より成型が容易となる。By adding a compound, molding becomes easier.

以上の本発明の構成により、非常に良好な触媒性能を有
する酸化触媒体を得ることができるが、さらに本発明の
触媒体を用いて三元触媒体を構成することも可能であり
、次の様に構成する。
With the configuration of the present invention described above, it is possible to obtain an oxidation catalyst having very good catalytic performance, but it is also possible to configure a three-way catalyst using the catalyst of the present invention. Configure it as follows.

少なくともアルミン酸石灰とブラフオサイト型抜合金・
萬酸化物より形成した触媒体に、Rhを含む、白金Sl
金属を担持して構成した排ガス浄化用触媒体。
At least lime aluminate and bluffsite die-cut alloy
Platinum Sl containing Rh is added to the catalyst body formed from a platinum oxide.
Catalyst for exhaust gas purification composed of supporting metal.

前述したとと・す、デラフォサイト型複合金属酸化物は
、酸化触媒能を有すると共に、酸素の吸脱着を行なう特
性を有する。このため、デラフォサイト型複合金属酸化
物は酸化触媒として働くだけでなく、良好な酸素ストレ
ージ効果を示す。従って従来の三元触媒に比べ、広いウ
ィンド幅の触媒体が得られると共に、使用する白金族金
属−計を大幅に低減することが可能である。
As mentioned above, the delafossite type composite metal oxide has an oxidation catalytic ability and also has the property of adsorbing and desorbing oxygen. Therefore, the delafossite type composite metal oxide not only functions as an oxidation catalyst but also exhibits a good oxygen storage effect. Therefore, compared to conventional three-way catalysts, it is possible to obtain a catalyst body with a wider window width and to significantly reduce the amount of platinum group metals used.

次に、本発明の具体的な実施例について述べる。Next, specific examples of the present invention will be described.

〈実施例1〉 アルミン酸石灰、デラフォサイト型複合金属酸化物とし
てCuMn○2.耐熱基骨材としてシリカ。
<Example 1> Lime aluminate, CuMn○2. as delafossite type composite metal oxide. Silica as a heat-resistant base aggregate.

および比較のためにγ−M n 02を用い、第1表に
示す扁1〜116.3の組成のものを、それぞれ乾式混
合した後、適当量の水(約2Q重量%)を加え、50<
 11−/cni、セル壁厚0.3胴のハニカム形状に
成形した後、養生、乾燥し、500℃で焼成して、それ
ぞれの組成の触媒体を得た。この、第1表に示す扁1−
A3の触媒体に、Co 500ppm、HC(プロパン
)10001)Pm、残空気の試験ガスを、300℃で
空間速度(以下SVと記す)20,0OOhで流し、触
媒体の酸化触媒能を試験した。また上述した方法により
調製した扁1〜扁3の触媒体を、80C)C−5時間熱
処理した後、再び、上述した酸化触媒能試験を行なった
。あわせて、800C熱処理前後の機械的強度を抗折力
として測定した。
And for comparison, using γ-M n 02, those with compositions of 1 to 116.3 shown in Table 1 were dry mixed, an appropriate amount of water (approximately 2Q% by weight) was added, and 50 <
After forming into a honeycomb shape with a cell wall thickness of 0.3 cm and a cell wall thickness of 0.3 cm, the catalyst bodies were cured, dried, and calcined at 500°C to obtain catalyst bodies having respective compositions. This plate 1- shown in Table 1
A test gas of Co 500ppm, HC (propane) 10001)Pm, and residual air was flowed through the A3 catalyst body at 300°C and a space velocity (hereinafter referred to as SV) of 20.0OOh to test the oxidation catalytic ability of the catalyst body. . Further, the catalyst bodies of Flats 1 to 3 prepared by the method described above were heat-treated for 80C)C-5 hours, and then the oxidation catalytic ability test described above was conducted again. In addition, the mechanical strength before and after the 800C heat treatment was measured as transverse rupture strength.

結果を第1表に示す。第1表より明らかなように、従来
の二酸化マンガンを用いた触媒体は、初期i生能は良好
なものの、触媒性能の熱劣化が著しい。また、(幾誠的
強IWにおいて、耐熱性基骨材を用いた方が、触媒体の
熱的強度劣化が少ない。
The results are shown in Table 1. As is clear from Table 1, although the conventional catalyst using manganese dioxide has good initial performance, the catalyst performance is significantly deteriorated by heat. In addition, (in the case of strong IW), the use of a heat-resistant base aggregate results in less thermal strength deterioration of the catalyst body.

〈実施例2〉 第2表に示す配合組成で、実施例1と同様の調整法によ
りハニカム形状の触媒体A1および、触媒体A2を得た
。なお、触媒体扁2は・・ニカム形状に成形、養生、乾
燥後、pt量として、o、ooswt係となる塩化白金
酸を担持した後、500℃で熱分解焼成して得た。この
調製した触媒体j61゜116、2の触媒体について、
Co 500ppm、残空気の試験ガスを用いて、実施
例1と同様の条件で酸化触媒能試験を行なった。この結
果を上記触媒体扁1.A2の初期性能とした。次に、こ
の触媒体AI、&2を、○−o1rrtq/(Jの鉛を
含むガソリンで運転したエンジン排ガス中に10時間、
600℃で置き、触媒体を鉛で被毒した。ここにおいて
、エンジンは排気量2000ccで、空燃比14.6゜
回転数200Orpm、ダイナモトルク10KVrQで
゛運転した。こうして被毒した触媒体A1.A2につい
て、上述したと同様のCo浄化能試験を行ない、これを
寿命試験後の酸化触媒性能とした。結果を第2表に示す
<Example 2> A honeycomb-shaped catalyst body A1 and a catalyst body A2 were obtained using the formulation shown in Table 2 and the same adjustment method as in Example 1. The catalyst plate 2 was formed into a nicam shape, cured, dried, supported with chloroplatinic acid having a pt amount of o, ooswt, and then thermally decomposed and calcined at 500°C. Regarding this prepared catalyst body j61゜116,2,
An oxidation catalyst ability test was conducted under the same conditions as in Example 1 using a test gas containing 500 ppm of Co and residual air. The results are summarized in the above catalyst plate 1. This is the initial performance of A2. Next, this catalyst body AI, &2 was placed in the exhaust gas of an engine operated with gasoline containing lead of ○-o1rrtq/(J) for 10 hours.
The catalyst was placed at 600°C and poisoned with lead. Here, the engine had a displacement of 2000 cc, was operated at an air-fuel ratio of 14.6 degrees, a rotational speed of 200 rpm, and a dynamo torque of 10 KVrQ. Catalyst body A1 poisoned in this way. A2 was subjected to the same Co purification ability test as described above, and this was taken as the oxidation catalyst performance after the life test. The results are shown in Table 2.

第2表より明らかなように、白金を担持した触媒体は、
上記の寿命試験により急激に触媒性能が低下した。一方
、本発明の触媒体は、破毒後も良好な触媒性能を示した
As is clear from Table 2, the catalyst supporting platinum is
As a result of the above life test, the catalyst performance suddenly decreased. On the other hand, the catalyst body of the present invention showed good catalytic performance even after detoxification.

第   2   表 〈実施例3〉 う 第3表に示すように、デフォサイト型複合金属△ 酸化物AB02で、金属Aとして、Ca 、Ag 、 
Pd 。
Table 2 (Example 3) As shown in Table 3, in the dephosite type composite metal △ oxide AB02, as metal A, Ca, Ag,
Pd.

ptを、また金属Bとして、AI 、Cr 、Ga 、
 Fe 。
pt and metal B, AI, Cr, Ga,
Fe.

Co、Rh、La、Y、Mn を用いた種々の酸化物を
用い、これと、アルミン酸石灰を20:80て混合し、
実施例1と同様の調製法により、ハニカム形状の触媒体
(第3表中AG 1〜扁15)を得た。次にこの各々の
融媒体について、実施例2で示した試験ガス、温度条件
で、SVを20ρ○○h と40.○oohとかえて酸
化触媒能を試験した。結果を第3表に示す。
Using various oxides using Co, Rh, La, Y, and Mn, this and lime aluminate were mixed at a ratio of 20:80,
Honeycomb-shaped catalyst bodies (AG 1 to AG 15 in Table 3) were obtained by the same preparation method as in Example 1. Next, for each of these melting media, under the test gas and temperature conditions shown in Example 2, the SV was set to 20ρ○○h and 40. The oxidation catalyst ability was tested instead of ○ooh. The results are shown in Table 3.

第3表より明らかなように、本発明で用いるブラフオサ
イト型複合金属酸化物は、すべて良好なCO浄化能を示
したが、特にCu M n O2が最も良好で、空間速
度が20,000 h−”から40,000 h−1に
増加しても、浄化率の低下が非常に少ながった。
As is clear from Table 3, all of the bluffsite-type composite metal oxides used in the present invention showed good CO purification ability, but CuMnO2 was particularly good, with a space velocity of 20,000 Even when increasing from 40,000 h-1 to 40,000 h-1, the reduction in purification rate was very small.

以下余白 〈実施例4〉 第4表に示すように、結合剤として用いるアルミン酸石
灰の量を46重量%とし、デラフォサイト型複合金属酸
化物としてCu M n O2を用い、この種々変化さ
せ、残量をシリカとした触媒体(第4表扁1〜jflS
)を各々実施例1と同様にして調製し、ノ・ニカム成形
体として得た。このIIl虫媒イ本に゛実施例2と同様
のco浄化能試験、および抗折力を測定し、第4表に示
した。
The following margin is <Example 4> As shown in Table 4, the amount of lime aluminate used as the binder was 46% by weight, CuM n O2 was used as the delafossite type composite metal oxide, and this was variously changed. , a catalyst body with the remaining amount of silica (Table 4)
) were prepared in the same manner as in Example 1, and obtained as non-nicum molded bodies. This IIl insect repellent was subjected to the same coli purifying ability test as in Example 2, and the transverse rupture strength was measured, and the results are shown in Table 4.

また、60重量%を超えると、C○浄イヒ6旨はシト常
に良好である反面、抗折力が急激にイ氏下する。
Moreover, when the content exceeds 60% by weight, the transverse rupture strength decreases rapidly, although the C◯ resistance is always good.

以下余白 第   4   表 〈実施例5〉 実施例1と同様の方法により、アルミン酸石灰70重量
% 、  CuMnO230重量係の配合で、成形、養
生した後、焼成温度を200℃〜500℃まで変化させ
て調製し、ハニカム触媒体A1〜71;9を得た(第5
表)。
Table 4 (Example 5) The same method as in Example 1 was used to mold and cure the mixture of 70% by weight of lime aluminate and 230% by weight of CuMnO, and then the firing temperature was varied from 200°C to 500°C. to obtain honeycomb catalyst bodies A1-71;9 (fifth
table).

次にこの触婬体/I61〜A9の見掛気孔率を、Tl5
−R2205に従い測定すると共に、それぞれの触媒体
のCO浄化能を、実施例2に示した試験ガス、空間速変
で、触媒温度を200’Cとして試験した。結果を第6
表に示す。
Next, the apparent porosity of this tentative body/I61 to A9 is Tl5
-R2205, and the CO purification ability of each catalyst was tested using the test gas shown in Example 2, varying the space velocity, and setting the catalyst temperature to 200'C. 6th result
Shown in the table.

結果より明らかなように、焼成温度が340’C未満で
は、気孔率が小さく、触媒活性も小さく、十分な触媒能
を有する触媒体が得られない。
As is clear from the results, when the calcination temperature is lower than 340'C, the porosity is low, the catalytic activity is also low, and a catalyst body having sufficient catalytic ability cannot be obtained.

第5表 〈実施例6〉 アルミン酸石灰70重量係、CuMnO230屯濱−係
の配合で、実施例1と同様の調製法によりハニカム触媒
体を得た。ここにおいてアルミンM石火中に含まれるア
ルミナ分を4o重量係〜9o重:11−%まて変化させ
たものを用い、それぞれ上記の力1去で触媒体を得た。
Table 5 (Example 6) A honeycomb catalyst body was obtained by the same preparation method as in Example 1 with a composition of 70 parts by weight of lime aluminate and 30 parts by weight of CuMnO. Here, the alumina content in the alumin M stone was varied from 4o to 9o:11-% by weight, and catalyst bodies were obtained by removing the above-mentioned force.

この鍾々のアルミナ分のアルミン酸石灰を用いた触媒体
の抗折力を測定し、結果を47図に示した。47図より
明らかなよう(fこ、アルミン酸石灰中のアルミナ分が
85重量係を超えると抗折力(機械的強度)が急激に低
下する。
The transverse rupture strength of the catalyst using lime aluminate containing the alumina of this chimney was measured, and the results are shown in Figure 47. As is clear from Figure 47, when the alumina content in the aluminate lime exceeds 85% by weight, the transverse rupture strength (mechanical strength) decreases rapidly.

また、上述した触媒体について、実施例2で述べたCo
浄化性能試、験を行なった。触媒体は、調製直後のもの
、調製後、8o○℃で5時間熱処理したもの、および調
製後1000’Cで5時間熱処理したものをそれぞれ用
いて試験した。結果をAI図に示す。
Moreover, regarding the above-mentioned catalyst body, the Co
Purification performance tests were conducted. The catalysts were tested immediately after preparation, after preparation and heat-treated at 8°C for 5 hours, and after preparation and heat-treated at 1000'C for 5 hours. The results are shown in the AI diagram.

He図より明らかなように、本発明の触媒体は、調製直
後は、アルミンは石灰中の含有アルミナ分によらず、良
好な触媒能を有するが、アルミン酸石灰中のアルミナ分
が50重量係未満の触媒体は、8oQ℃の熱処理により
、急激に触媒能が低下する。さらに1ooo℃の熱処理
後においても、アルミン酸石灰中のアルミナ分が50重
重量%以上では良好な触媒能の触媒体が得られ、特に、
アルミナ分が60.fi量係以上では、この熱処理にお
いても、触媒能の低下が少ない良好な触媒体が得られる
As is clear from the He diagram, immediately after preparation, the catalyst body of the present invention has good catalytic ability regardless of the alumina content in the lime, but the alumina content in the aluminate lime is 50% by weight. The catalytic ability of a catalyst body with a temperature lower than 8oQ°C decreases rapidly by heat treatment at 8oQ°C. Furthermore, even after heat treatment at 100°C, a catalyst body with good catalytic performance can be obtained when the alumina content in the aluminate lime is 50% by weight or more, and in particular,
Alumina content is 60. When the fi ratio is higher than the fi ratio, a good catalyst body with little decrease in catalytic performance can be obtained even in this heat treatment.

〈実施例7〉 実施例1と同様の調製法により、アルミン酸石灰とCu
 M n O2とシリカを第6表に示した配合でハニカ
ム触媒体を調製し、これに同じく第6表に示した量のP
t (!:Rhを、塩化白金酸、塩化ロジウムを用いて
熱分解により担持し、それぞれの第6表に示すAI、A
2の触媒体を調製した。これをエンジン排ガス経路内に
設置し、2つの触媒体の三元触媒性能を比較した。エン
ジンは、排気量2000CCOものを用い、エンジン回
転数200Orpm。
<Example 7> By the same preparation method as Example 1, lime aluminate and Cu
A honeycomb catalyst body was prepared with M n O2 and silica in the proportion shown in Table 6, and P in the amount also shown in Table 6 was added.
t (!: Rh was supported by thermal decomposition using chloroplatinic acid and rhodium chloride, and AI and A shown in Table 6 were prepared.
A catalyst body of No. 2 was prepared. This was installed in the engine exhaust gas path, and the three-way catalyst performance of the two catalyst bodies was compared. The engine used was one with a displacement of 2000 CCO and an engine rotation speed of 200 rpm.

トルク6に7mで空燃比を14.0〜15.0まで変化
させ、排ガスの触媒入口温度を400℃とし、排ガス成
分、HC,Coおよび窒素酸化物(NOx)がすべてs
o%以上浄化される空燃比幅をウィンド幅として、この
ウィンド幅によって三元触媒性能を評価した。性能評価
は、触媒体調製直後と、実施例2で示した有鉛ガソリン
を用いた被毒処理した後に2回行なった。結果を第6表
に示す。
The air-fuel ratio was changed from 14.0 to 15.0 at a torque of 6 to 7 m, the exhaust gas catalyst inlet temperature was set to 400°C, and the exhaust gas components, HC, Co, and nitrogen oxides (NOx) were all s
The three-way catalyst performance was evaluated based on the air-fuel ratio range in which the air-fuel ratio was purified by 0% or more as the window width. Performance evaluation was performed twice: immediately after the preparation of the catalyst body and after the poisoning treatment using leaded gasoline shown in Example 2. The results are shown in Table 6.

第6表で明らかなように、従来の白金族金属の7%を用
いた触媒体(扁2)よりも本発明の触媒体の方が、白金
族金属量が少なく、かつ寿命特性の良好なものが得られ
た。
As is clear from Table 6, the catalyst body of the present invention has a lower amount of platinum group metals and has better life characteristics than the conventional catalyst body (flat 2) using 7% of platinum group metals. I got something.

第   6   表 発明の効果 以上のように、本発明によれば、耐熱性、耐被毒性に優
れた触媒体を得ることができる。
Table 6 Effects of the Invention As described above, according to the present invention, a catalyst body having excellent heat resistance and poisoning resistance can be obtained.

【図面の簡単な説明】 図は本発明の触媒体に用いるアルミン酸石灰に含まれる
アルミナ分に対する、触媒体のco浄化率および抗折力
変化を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS The figure is a diagram showing the change in co-purification rate and transverse rupture strength of the catalyst body with respect to the alumina content contained in the lime aluminate used in the catalyst body of the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)少なくともアルミン酸石灰と、デラフォサイト型
複合金属酸化物を含むことを特徴とする排ガス浄化用触
媒体。
(1) A catalyst body for exhaust gas purification characterized by containing at least lime aluminate and a delafossite type composite metal oxide.
(2)デラフォサイト型複合金属酸化物が、ABO_2
の一般式で示される化合物であり、Aサイトの金属は、
Cu、Aq、Pd、Ptより選ばれ、また、Bサイトの
金属は、Al、Cr、Ga、Fe、Co、Rh、La、
Y、Mnより選ばれることを特徴とする特許請求の範囲
第1項記載の排ガス浄化用触媒体。
(2) The delafossite type composite metal oxide is ABO_2
It is a compound represented by the general formula, and the metal at the A site is
selected from Cu, Aq, Pd, and Pt, and the metal at the B site is Al, Cr, Ga, Fe, Co, Rh, La,
The catalyst body for exhaust gas purification according to claim 1, characterized in that the catalyst body is selected from Y and Mn.
(3)デラフォサイト型複合金属酸化物が、5重量%以
上50重量%以下含まれることを特徴とする特許請求の
範囲第1項記載の排ガス浄化用触媒体。
(3) The exhaust gas purifying catalyst body according to claim 1, characterized in that the delafossite type composite metal oxide is contained in an amount of 5% by weight or more and 50% by weight or less.
(4)アルミン酸石灰に含有されるアルミナ分が50重
量%以上、85重量%以下であることを特徴とする特許
請求の範囲第1項または第4項記載の排ガス浄化用触媒
体。
(4) The exhaust gas purifying catalyst body according to claim 1 or 4, wherein the alumina content contained in the aluminate lime is 50% by weight or more and 85% by weight or less.
(5)少なくともアルミン酸石灰とデラフォサイト型複
合酸化物とで構成した成型体に、ロジウムを含む白金族
金属を担持したことを特徴とする特許請求の範囲第1項
記載の排ガス浄化用触媒体。
(5) A catalyst for exhaust gas purification according to claim 1, characterized in that a platinum group metal containing rhodium is supported on a molded body composed of at least lime aluminate and delafossite type composite oxide. Medium.
JP59207302A 1984-10-02 1984-10-02 Catalyst for purifying exhaust gas Granted JPS6186944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59207302A JPS6186944A (en) 1984-10-02 1984-10-02 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59207302A JPS6186944A (en) 1984-10-02 1984-10-02 Catalyst for purifying exhaust gas

Publications (2)

Publication Number Publication Date
JPS6186944A true JPS6186944A (en) 1986-05-02
JPH054135B2 JPH054135B2 (en) 1993-01-19

Family

ID=16537526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59207302A Granted JPS6186944A (en) 1984-10-02 1984-10-02 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS6186944A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580535A (en) * 1994-07-07 1996-12-03 Engelhard Corporation System and method for abatement of food cooking fumes
EP0788829A1 (en) * 1996-02-08 1997-08-13 Sakai Chemical Industry Co., Ltd., Catalyst and method for catalytic reduction of nitrogen oxides
JP2002255548A (en) * 2001-02-26 2002-09-11 Japan Science & Technology Corp Stacked mixed layer irregular crystal structure delafossite-type oxide and method for producing the same
JP2008156130A (en) * 2006-12-20 2008-07-10 Mitsui Mining & Smelting Co Ltd Delafossite type oxide, method for manufacturing the same and exhaust gas purification catalyst
EP2092978A1 (en) * 2008-02-05 2009-08-26 Air Products and Chemicals, Inc. Hydrogen production using complex metal oxide pellets
JP2009219970A (en) * 2007-03-20 2009-10-01 Denso Corp Catalyst material
JP2009219971A (en) * 2007-03-20 2009-10-01 Denso Corp Ceramic honeycomb structure
JP2009219972A (en) * 2007-03-20 2009-10-01 Denso Corp Method for producing catalyst material
US7973207B2 (en) 2005-09-02 2011-07-05 Sud-Chemie Inc. Endothermic hydrocarbon conversion process
JP2012086187A (en) * 2010-10-21 2012-05-10 Denso Corp Catalyst material, and method for manufacturing the same
US8388898B2 (en) 2000-07-13 2013-03-05 Pall Corporation Ceramic filter element
JPWO2014103597A1 (en) * 2012-12-27 2017-01-12 三井金属鉱業株式会社 Exhaust gas purification catalyst composition and exhaust gas purification catalyst
EP3013752A4 (en) * 2013-06-06 2017-02-01 Clean Diesel Technologies, Inc. Systems and methods for using pd1+ in a twc
WO2018123862A1 (en) * 2016-12-27 2018-07-05 国立大学法人秋田大学 Exhaust gas purification catalyst
CN110167670A (en) * 2016-12-27 2019-08-23 三井金属矿业株式会社 Exhaust gas purifying catalyst delafossite type oxide and the exhaust gas purifying catalyst for using the delafossite type oxide
JP2019188389A (en) * 2018-04-24 2019-10-31 トヨタ自動車株式会社 Nitrogen oxide occlusion material and exhaust purification method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580535A (en) * 1994-07-07 1996-12-03 Engelhard Corporation System and method for abatement of food cooking fumes
US5756053A (en) * 1994-07-07 1998-05-26 Engelhard Corporation System and method for abatement of food cooking fumes
EP0788829A1 (en) * 1996-02-08 1997-08-13 Sakai Chemical Industry Co., Ltd., Catalyst and method for catalytic reduction of nitrogen oxides
US8388898B2 (en) 2000-07-13 2013-03-05 Pall Corporation Ceramic filter element
JP2002255548A (en) * 2001-02-26 2002-09-11 Japan Science & Technology Corp Stacked mixed layer irregular crystal structure delafossite-type oxide and method for producing the same
US7973207B2 (en) 2005-09-02 2011-07-05 Sud-Chemie Inc. Endothermic hydrocarbon conversion process
JP2008156130A (en) * 2006-12-20 2008-07-10 Mitsui Mining & Smelting Co Ltd Delafossite type oxide, method for manufacturing the same and exhaust gas purification catalyst
JP2009219970A (en) * 2007-03-20 2009-10-01 Denso Corp Catalyst material
JP2009219971A (en) * 2007-03-20 2009-10-01 Denso Corp Ceramic honeycomb structure
JP2009219972A (en) * 2007-03-20 2009-10-01 Denso Corp Method for producing catalyst material
US8038981B2 (en) 2008-02-05 2011-10-18 Air Products And Chemicals, Inc. Hydrogen production using complex metal oxide pellets
EP2092978A1 (en) * 2008-02-05 2009-08-26 Air Products and Chemicals, Inc. Hydrogen production using complex metal oxide pellets
JP2012086187A (en) * 2010-10-21 2012-05-10 Denso Corp Catalyst material, and method for manufacturing the same
JPWO2014103597A1 (en) * 2012-12-27 2017-01-12 三井金属鉱業株式会社 Exhaust gas purification catalyst composition and exhaust gas purification catalyst
US10350581B2 (en) 2012-12-27 2019-07-16 Mitsui Mining & Smelting Co., Ltd. Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
EP3013752A4 (en) * 2013-06-06 2017-02-01 Clean Diesel Technologies, Inc. Systems and methods for using pd1+ in a twc
WO2018123862A1 (en) * 2016-12-27 2018-07-05 国立大学法人秋田大学 Exhaust gas purification catalyst
CN110139710A (en) * 2016-12-27 2019-08-16 三井金属矿业株式会社 Exhaust gas purifying catalyst
CN110167670A (en) * 2016-12-27 2019-08-23 三井金属矿业株式会社 Exhaust gas purifying catalyst delafossite type oxide and the exhaust gas purifying catalyst for using the delafossite type oxide
JPWO2018123862A1 (en) * 2016-12-27 2019-10-31 国立大学法人秋田大学 Exhaust gas purification catalyst
US10722870B2 (en) 2016-12-27 2020-07-28 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purification catalyst
JP2019188389A (en) * 2018-04-24 2019-10-31 トヨタ自動車株式会社 Nitrogen oxide occlusion material and exhaust purification method
US11298674B2 (en) * 2018-04-24 2022-04-12 Toyota Jidosha Kabushiki Kaisha Nitrogen oxide storage material and exhaust gas purification method

Also Published As

Publication number Publication date
JPH054135B2 (en) 1993-01-19

Similar Documents

Publication Publication Date Title
JPS6186944A (en) Catalyst for purifying exhaust gas
USRE31719E (en) Supported catalyst for purifying gas and method of manufacturing the same
JP4172272B2 (en) Exhaust gas purification catalyst and internal combustion engine provided with the catalyst
JPS63162043A (en) Catalyst for cleaning exhaust gas
JPH08192030A (en) Method and catalyst for decreasing simultaneously huydrocarbon,oxygenated organic compound,carbon monoxide andnitrogen oxide included in internal combustion engine
JP2005066559A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JPS63116741A (en) Catalyst for purifying exhaust gas
WO2012093599A1 (en) Exhaust gas purifying catalyst
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP2004216305A (en) Exhaust gas purification catalyst, exhaust gas purification material using same, and production method therefor
JP4556716B2 (en) Exhaust gas purification catalyst, production method thereof, exhaust gas purification material, and exhaust gas purification system
JP5119531B2 (en) Ceramic catalyst material and exhaust purification method using the same
JP6770265B2 (en) Exhaust gas purification catalyst
JP2020062645A (en) Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JPH01142208A (en) Filter for collecting diesel particulate
JP2007260564A (en) Exhaust gas-purifying catalyst and method for regenerating the same
JPH07194973A (en) Exhaust gas purifying catalyst
JP6741666B2 (en) Exhaust gas purification catalyst
JPS581627B2 (en) Catalyst for exhaust gas purification
JPS5926339B2 (en) Catalyst for gas purification
JP3817679B2 (en) Exhaust gas purification catalyst
KR100384016B1 (en) High durable Pd-Rh three way catalyst for NOx reduction
JPH07328442A (en) Filter for purifying waste gas and its production
JPS6186945A (en) Catalyst for purifying catalyst