JP6741666B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP6741666B2
JP6741666B2 JP2017528862A JP2017528862A JP6741666B2 JP 6741666 B2 JP6741666 B2 JP 6741666B2 JP 2017528862 A JP2017528862 A JP 2017528862A JP 2017528862 A JP2017528862 A JP 2017528862A JP 6741666 B2 JP6741666 B2 JP 6741666B2
Authority
JP
Japan
Prior art keywords
cual
exhaust gas
catalyst
peak area
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017528862A
Other languages
Japanese (ja)
Other versions
JPWO2017212944A1 (en
Inventor
弘幸 堀村
弘幸 堀村
弘嗣 植野
弘嗣 植野
駿平 鈴木
駿平 鈴木
利春 守屋
利春 守屋
克哉 岩品
克哉 岩品
中原 祐之輔
祐之輔 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Mitsui Mining and Smelting Co Ltd
Original Assignee
Honda Motor Co Ltd
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Mitsui Mining and Smelting Co Ltd filed Critical Honda Motor Co Ltd
Publication of JPWO2017212944A1 publication Critical patent/JPWO2017212944A1/en
Application granted granted Critical
Publication of JP6741666B2 publication Critical patent/JP6741666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、内燃機関から排出される排気ガスを浄化するために用いることができる排気ガス浄化触媒に関する。 The present invention relates to an exhaust gas purification catalyst that can be used to purify exhaust gas emitted from an internal combustion engine.

ガソリンを燃料とする自動車の排気ガス中には、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害成分が含まれる。前記炭化水素(HC)に関しては酸化させて水と二酸化炭素とに転化させて、又、前記一酸化炭素(CO)に関しては酸化させて二酸化炭素に転化させて、又、前記窒素酸化物(NOx)に関しては還元させて窒素に転化させて、それぞれの有害成分を触媒で浄化する必要がある。
このような排気ガスを処理するための触媒(以下「排気ガス浄化触媒」と称する)として、CO、HC及びNOを酸化還元することができる三元触媒(Three way catalysts:TWC)が用いられている。当該三元触媒は、排気パイプのエンジンとマフラーの中間位置にコンバーターの形態で取付けられるのが一般的である。
Exhaust gas from an automobile that uses gasoline as a fuel contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ). The hydrocarbon (HC) is oxidized and converted into water and carbon dioxide, the carbon monoxide (CO) is oxidized and converted into carbon dioxide, and the nitrogen oxide (NO) is converted. With regard to x ), it is necessary to reduce and convert it into nitrogen and purify each harmful component with a catalyst.
As a catalyst for treating such exhaust gas (hereinafter referred to as “exhaust gas purification catalyst”), three-way catalysts (TWCs) capable of oxidizing and reducing CO, HC and NO x are used. ing. The three-way catalyst is generally attached in the form of a converter at an intermediate position between the engine and the muffler of the exhaust pipe.

このような三元触媒としては、高い比表面積を有する耐火性酸化物多孔質体、例えば高い比表面積を有するアルミナ多孔質体に、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属を担持し、これを基材、例えば耐火性セラミック又は金属製ハニカム構造で出来ているモノリス型(monolithic)基材に担持したり、或いは、耐火性粒子に担持したりしたものが知られている。 Examples of such a three-way catalyst include a refractory oxide porous body having a high specific surface area, for example, an alumina porous body having a high specific surface area, and platinum (Pt), palladium (Pd), rhodium (Rh), and the like. It is known that a noble metal is supported on a substrate, for example, a monolithic substrate made of a refractory ceramic or a metal honeycomb structure, or a refractory particle. There is.

しかし、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属は、とても高価であるため、排気ガス浄化触媒の開発においては、貴金属元素の使用量を削減することが求められている。 However, since precious metals such as platinum (Pt), palladium (Pd), and rhodium (Rh) are very expensive, it is required to reduce the amount of precious metal elements used in the development of exhaust gas purification catalysts. ..

そこで、これら貴金属に代えて、例えば遷移金属である銅(Cu)を活性成分として触媒担体(アルミナ、ゼオライトなど)に担持させた触媒が提案されている(例えば特許文献1参照)。 Therefore, in place of these noble metals, for example, a catalyst has been proposed in which a transition metal such as copper (Cu) is supported as an active component on a catalyst carrier (alumina, zeolite, etc.) (see, for example, Patent Document 1).

また、特許文献2は、Cuを含有する化合物と、アルミナとを混合して混合物を調製し、前記混合物を、850℃以上1200℃未満で熱処理することにより得られる排気ガス浄化触媒を開示している。 Patent Document 2 discloses an exhaust gas purifying catalyst obtained by mixing a compound containing Cu and alumina to prepare a mixture, and heat-treating the mixture at 850° C. or higher and less than 1200° C. There is.

特許文献3は、希土類元素が添加されたスピネル結晶構造を有するCuAl24を含む触媒であって、前記希土類元素がランタノイドであり、前記CuAl24の表面にCuOが担持された状態で存在しており、Cu−Kα線によるX線回折パターンにおいて、CuO及びCuAl24に帰属する回折ピークを有し、且つα−Al23に帰属する回折ピークを有さないことを特徴とする触媒を開示している。
この特許文献3には、アルミナへCuを担持させて、CuAlの生成させる温度で焼成することにより([0030])、CuOがCuAlの表面に担持された状態で存在することになるから、CuOによる触媒活性を確保しながら、CuAlの助長作用を利用することができる旨が記載されている([0009])。
Patent Document 3 is a catalyst containing CuAl 2 O 4 having a spinel crystal structure to which a rare earth element is added, wherein the rare earth element is a lanthanoid, and CuO is supported on the surface of CuAl 2 O 4. It is present and has an X-ray diffraction pattern by Cu-Kα ray, which has a diffraction peak attributed to CuO and CuAl 2 O 4 and does not have a diffraction peak attributed to α-Al 2 O 3. Is disclosed.
The Patent Document 3, by supporting the Cu to alumina by calcining at a temperature to produce the CuAl 2 O 4 ([0030] ), present in the form of CuO is supported on the surface of CuAl 2 O 4 Therefore, it is described that the promoting action of CuAl 2 O 4 can be utilized while ensuring the catalytic activity of CuO ([0009]).

特開平5−96132号公報JP-A-5-96132 特開2012−071271号公報JP 2012-071271 A 特開2012−115771号公報Japanese Patent Laid-Open No. 2012-115771

本発明者は、触媒活性成分としての銅(Cu)に着目し、アルミナ粒子の表面にCu元素が存在してなる構成を備えた排気ガス浄化触媒について研究を行ったところ、Cuの担持量を高めても、期待した程には触媒活性が高まらないことを見出した。さらにこの原因について研究を進めたところ、CuAlの生成によって、Cuの触媒活性が阻害されていることが分かってきた。The present inventor has focused on copper (Cu) as a catalytically active component and studied an exhaust gas purifying catalyst having a structure in which Cu element is present on the surface of alumina particles. It was found that the catalytic activity does not increase as expected even if it is increased. Further research on the cause has revealed that CuAl 2 O 4 formation inhibits the catalytic activity of Cu.

かかる知見に基づき、本発明者は、アルミナ粒子の表面にCu元素が存在してなる構成を備えた排気ガス浄化触媒に関し、優れた触媒活性を発揮し、三元触媒として有効に使用することができる、新たな排気ガス浄化触媒を提供せんとするものである。 Based on this finding, the present inventor has demonstrated that an exhaust gas purifying catalyst having a structure in which Cu element is present on the surface of alumina particles exhibits excellent catalytic activity and can be effectively used as a three-way catalyst. It aims to provide a new exhaust gas purification catalyst that can be used.

かかる課題解決のため、本発明は、アルミナ粒子の表面にCu元素が存在してなる構成を備えた排気ガス浄化触媒であって、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)で測定される、Cuの2p軌道(Cu2p)及びAlの2p軌道(Al2p)の結合エネルギーに対応する各ピークの合計面積を100%としたとき、Cu2pのピーク面積の割合(「Cu被覆率」とも称する)が7〜28%であることを特徴とする排気ガス浄化触媒を提案する。 In order to solve such a problem, the present invention is an exhaust gas purifying catalyst having a structure in which Cu element is present on the surface of alumina particles, which is measured by X-ray Photoelectron Spectroscopy (XPS). When the total area of the peaks corresponding to the binding energies of the Cu 2p orbital (Cu2p) and the Al 2p orbital (Al2p) is 100%, the ratio of the Cu2p peak area (also referred to as “Cu coverage”) ) Is 7 to 28%, an exhaust gas purifying catalyst is proposed.

本発明が提案する排気ガス浄化触媒によれば、触媒活性成分として貴金属を担持しなくても、優れた触媒活性を発揮し、三元触媒として有効に使用することができる。 According to the exhaust gas purifying catalyst proposed by the present invention, excellent catalytic activity can be exhibited without using a noble metal as a catalytically active component, and the catalyst can be effectively used as a three-way catalyst.

次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。 Next, the present invention will be described based on embodiments. However, the present invention is not limited to the embodiment described below.

<本排気ガス浄化触媒>
本発明の実施形態の一例に係る排気ガス浄化触媒(「本排気ガス浄化触媒」と称する)は、アルミナ粒子の表面にCu元素が存在してなる構成を備えた排気ガス浄化触媒である。
<This exhaust gas purification catalyst>
An exhaust gas purifying catalyst according to an example of an embodiment of the present invention (hereinafter referred to as “main exhaust gas purifying catalyst”) is an exhaust gas purifying catalyst having a structure in which Cu element is present on the surface of alumina particles.

(アルミナ粒子)
上記アルミナ粒子は、Al23からなる粒子でもよいし、Al23のほかに他の成分を含有する粒子でもよい。
(Alumina particles)
The alumina particles may be particles of Al 2 O 3, it may be particles containing in addition to the other components of the Al 2 O 3.

上記アルミナ粒子が含有し得るAl23以外の上記「他の成分」としては、例えばランタノイドや、バリウム(Ba)の酸化物を挙げることができる。
該ランタノイドとしては、例えばランタン(La),セリウム(Ce),プラセオジム(Pr),ネオジム(Nd),プロメチウム(Pm),サマリウム(Sm),ユーロピウム(Eu),ガドリニウム(Gd),テルビウム(Tb),ジスプロジウム(Dy),ホルミウム(Ho),エルビウム(Er),ツリウム(Tm),イッテルビウム(Yb),ルテチウム(Lu)から選ばれる一種または二種以上を挙げることができる。
Examples of the “other components” other than Al 2 O 3 that the alumina particles may contain include lanthanoids and barium (Ba) oxides.
Examples of the lanthanoid include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), and terbium (Tb). , Dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu).

上記「他の成分」の含有量に関しては、Cuが当該「他の成分」と反応することでCuの分散性が低下して、触媒活性が低下してしまうのを防止する観点からすると、Al23に対して5質量%以下であるのが好ましく、特に3質量%以下であるのがより好ましい。他方、熱的安定性確保の観点からすると、当該「他の成分」の含有量は、Al23に対して0.5質量%以上であるのが好ましい。Regarding the content of the “other component”, from the viewpoint of preventing the Cu from reacting with the “other component” to reduce the dispersibility of Cu and reduce the catalytic activity, It is preferably 5% by mass or less, and more preferably 3% by mass or less, based on 2 O 3 . On the other hand, from the viewpoint of ensuring thermal stability, the content of the “other component” is preferably 0.5% by mass or more based on Al 2 O 3 .

アルミナ粒子を構成するAl23の結晶構造としては、δ−Al23、γ−Al23、θ−Al23及びα−Al23を挙げることができる。中でも、本排気ガス浄化触媒においては、耐熱性と比表面積のバランスの観点から、γ−Al23及びθ−Al23が好ましく、中でも耐熱性を維持したままCuの分散性を高くすることができる観点から、θ−Al23が特に好ましい。
なお、上記アルミナ粒子は、これら結晶構造の異なる2種類以上のAl23が複数組み合わさったアルミナ粒子であってもよい。
Examples of the crystal structure of Al 2 O 3 forming the alumina particles include δ-Al 2 O 3 , γ-Al 2 O 3 , θ-Al 2 O 3 and α-Al 2 O 3 . Among them, in the present exhaust gas purification catalyst, γ-Al 2 O 3 and θ-Al 2 O 3 are preferable from the viewpoint of the balance between heat resistance and specific surface area, and among them, the dispersibility of Cu is high while maintaining heat resistance. From the viewpoint of being able to do so, θ-Al 2 O 3 is particularly preferable.
The alumina particles may be alumina particles in which two or more kinds of Al 2 O 3 having different crystal structures are combined.

(平均粒子径)
アルミナ粒子の平均粒子径(D50)は1μm〜60μmであるのが好ましい。
アルミナ粒子の平均粒子径(D50)が1μm以上であれば、剥離強度を維持しつつ、耐熱性を維持できるから好ましい。他方、本アルミナの平均粒子径(D50)が60μm以下であれば、剥離強度を維持しつつガス接触性を高めることができるから好ましい。
かかる観点から、アルミナ粒子の平均粒子径(D50)は1μm〜60μmであるのが好ましく、中でも3μmより大きく或いは50μm以下、その中でも特に5μm以上或いは40μm以下であるのが好ましい。
(Average particle size)
The average particle diameter (D50) of the alumina particles is preferably 1 μm to 60 μm.
When the average particle diameter (D50) of the alumina particles is 1 μm or more, heat resistance can be maintained while maintaining peel strength, which is preferable. On the other hand, if the average particle diameter (D50) of the present alumina is 60 μm or less, it is possible to improve the gas contact property while maintaining the peel strength.
From this point of view, the average particle diameter (D50) of the alumina particles is preferably 1 μm to 60 μm, more preferably more than 3 μm or 50 μm or less, and particularly preferably 5 μm or more or 40 μm or less.

(Cu元素)
アルミナ粒子の表面に存在するCu元素は、CuO(0≦x≦1)、CuAlなどの状態で存在している場合を包含する。
この際、当該CuAlは、アルミナ粒子の表面において、Cu元素がアルミナに固溶した状態で存在すると推定され、当該CuO(0≦x≦1)は、アルミナ粒子表面に担持された状態で存在すると推定される。
(Cu element)
The Cu element existing on the surface of the alumina particles includes the case where it exists in the state of CuO x (0≦x≦1), CuAl 2 O 4 or the like.
At this time, the CuAl 2 O 4 was presumed to exist on the surface of the alumina particles in a state where the Cu element was in solid solution with alumina, and the CuO x (0≦x≦1) was supported on the surface of the alumina particles. Presumed to exist in the state.

本排気ガス浄化触媒においては、アルミナ粒子の表面に存在するCu元素の存在割合に関し、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)で測定される、Cuの2p軌道(「Cu2p」とも称する)及びAlの2p軌道(「Al2p」とも称する)の結合エネルギーに対応する各ピークの合計面積を100%としたとき、Cu2pのピーク面積の割合すなわちCu被覆率は7〜28%であることが好ましい。
この際、X線光電子分光法で測定される、Cu2p及びAl2pの各ピーク面積の合計面積に対するCu2pのピーク面積の割合は、アルミナ粒子表面のCu元素の存在割合を示していると言える。表面に露出しているCuが活性種として作用するから、Cu被覆率は大きいほどよいが、大きすぎるとシンタリングしてしまう。
かかる観点から、上記Cu被覆率は7〜28%であるのが好ましく、中でもCuのシンタリングを防ぎ、NO浄化性能をより向上させる観点から20%以下とすることがより好ましく、その中でも18%以下、特に15%以下であるのが好ましい。
なお、「アルミナ粒子の表面にCu元素が存在」とは、例えばCu元素がCuAlとなっているように、アルミナに固溶した状態で存在する場合も含むし、またCuOなどとしてアルミナ粒子表面に担持された状態で存在する場合も含む。
また、「担持」とは、Cuなどの活性金属が、アルミナなどの無機多孔質材料と反応せずに固定化されている状態を指す。
In this exhaust gas purification catalyst, the Cu 2p orbital (also referred to as “Cu2p”) measured by X-ray photoelectron spectroscopy (XPS) with respect to the abundance ratio of Cu element present on the surface of alumina particles And the total area of each peak corresponding to the binding energy of the Al 2p orbital (also referred to as “Al2p”) is 100%, the ratio of the peak area of Cu2p, that is, the Cu coverage is 7 to 28%. Is preferred.
At this time, the ratio of the peak area of Cu2p to the total area of the peak areas of Cu2p and Al2p measured by X-ray photoelectron spectroscopy can be said to indicate the existence ratio of the Cu element on the surface of the alumina particles. Since Cu exposed on the surface acts as an active species, the larger the Cu coverage is, the better, but if it is too large, sintering will occur.
From this viewpoint, the Cu coverage is preferably 7 to 28%, and more preferably 20% or less from the viewpoint of preventing Cu sintering and further improving the NO x purification performance. % Or less, and particularly preferably 15% or less.
In addition, "the presence of the Cu element on the surface of the alumina particles" includes the case where the Cu element exists in a solid solution state in the alumina, such as the Cu element being CuAl 2 O 4, and the alumina is used as CuO. It also includes the case of existing in the state of being supported on the particle surface.
In addition, "supporting" refers to a state in which an active metal such as Cu is immobilized without reacting with an inorganic porous material such as alumina.

さらに本排気ガス浄化触媒は、Cu0〜1価及びCu2価を含み、且つ、触媒に含まれるCu2価量よりも、触媒に含まれるCu0〜1価量の方が多い方が好ましい。Cu2価よりもCu0〜1価の方が、よりメタルのCuに近いから触媒活性が高いからである。 Further, the exhaust gas purification catalyst preferably contains Cu0 to 1 valence and Cu2 valence, and the Cu0 to 1 valence contained in the catalyst is larger than the Cu2 valence contained in the catalyst. This is because Cu0 to 1 valences are higher in catalytic activity than Cu2 valences because they are closer to metal Cu.

かかる観点から、前記Cuの2p軌道の結合エネルギーをX線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)で測定して得られる、925eV〜940eVのピーク面積(Cu0〜2価に相当)に対する、925eV〜935eVのピーク面積(Cu0〜1価に相当:Cu1価ピークのショルダー部分に、Cu0価ピークが重複して観測されるため、このショルダー部分を含めてCu0〜1価ピークとする)の比率(「Cu0〜1価の面積率」とも称する)は50%以上であるのが好ましい。 From such a viewpoint, with respect to the peak area of 925 eV to 940 eV (corresponding to Cu0 to divalence) obtained by measuring the binding energy of the 2p orbital of Cu by X-ray photoelectron spectroscopy (XPS), Ratio of peak area of 925 eV to 935 eV (corresponding to Cu0 to 1 valence: Cu0 valence peak is observed overlapping with shoulder portion of Cu1 valence peak, and thus Cu0 to 1 valence peak is included in this shoulder portion) (Also referred to as "Cu0 to monovalent area ratio") is preferably 50% or more.

この際、925eV〜940eVのピーク面積は0〜2価のCuの含有量と相関し、925eV〜935eVのピーク面積は0〜1価のCuの含有量に相関するから、当該「Cu0〜1価の面積率」が50%以上であるのが好ましいということは、Cu0〜1価(Cu、CuOなど)及びCu2価(CuO、CuAlなど)の中で、Cu0〜1価の存在割合が高い方が好ましいことを意味している。Cu2価よりもCu0〜1価の方が触媒活性が高いため、Cu0〜1価の存在割合を高めることで、本排気ガス浄化触媒の触媒活性を高めることができる。
かかる観点から、当該Cu0〜1価の面積率は、55%以上であるのがより好ましく、中でも60%以上であるのがさらに好ましい。
後述するように、窒素雰囲気下で焼成することにより、Cu2価よりもCu0〜1価の存在比率を高めることができる。但し、かかる方法に限定するものではなく、水素や一酸化炭素などの還元雰囲気でも構わない。
At this time, the peak area of 925 eV to 940 eV correlates with the content of Cu of 0 to 2 valence, and the peak area of 925 eV to 935 eV correlates with the content of Cu of 0 to 1 valence. It is preferable that the “area ratio of Cu” is 50% or more. Among Cu 0 to 1 valence (Cu, Cu 2 O, etc.) and Cu 2 valence (CuO, CuAl 2 O 4, etc.), Cu 0 to 1 valence It means that a higher abundance ratio is preferable. Since the catalytic activity of Cu0 to 1 valence is higher than that of Cu2 valence, the catalytic activity of the present exhaust gas purification catalyst can be enhanced by increasing the existence ratio of Cu0 to 1 valence.
From this viewpoint, the area ratio of Cu0 to monovalent Cu is more preferably 55% or more, and even more preferably 60% or more.
As will be described later, by firing in a nitrogen atmosphere, the abundance ratio of Cu0 to 1 valence can be increased rather than Cu2 valence. However, the method is not limited to such a method, and a reducing atmosphere such as hydrogen or carbon monoxide may be used.

また、本排気ガス浄化触媒は、CuO(0≦x≦1)及びCuAlを含み、Hによる昇温反応法(H−TPR)により得られる水素消費ピークにおける前記CuO及びCuAlのピーク面積において、CuO及びCuAlのピーク面積に対するCuAlのピーク面積率((CuAl/(CuO+CuAl))×100)が50%以下であるのが好ましい。Further, the exhaust gas purifying catalyst, CuO x (0 ≦ x ≦ 1) and CuAl 2 O 4 wherein the warm reaction method by H 2 (H 2 -TPR) the CuO x and in the hydrogen consumption peak obtained by In the peak area of CuAl 2 O 4 , the peak area ratio of CuAl 2 O 4 to the peak areas of CuO x and CuAl 2 O 4 ((CuAl 2 O 4 /(CuO x +CuAl 2 O 4 ))×100) is 50. % Or less is preferable.

本発明者の研究結果から、Cu被覆量を高めても、CuAlの含有量が多くなると、触媒活性種であるCu元素の触媒活性が阻害されることが分かってきた。
かかる観点から、上記ピーク面積率((CuAl/(CuO+CuAl))×100)は50%以下であるのが好ましく、中でも45%以下、その中でも40%以下であるのがさらに好ましい。
後述するように、窒素雰囲気下で焼成することにより、Cu被覆量を高めつつ、CuAlの生成を抑制することができることが確認されている。但し、かかる方法に限定するものではなく、前述したような水素や一酸化炭素などの還元雰囲気でも、窒素雰囲気での焼成と同様の効果を得ることができると考えられる。
From the research results of the present inventor, it has been found that even if the Cu coating amount is increased, if the content of CuAl 2 O 4 increases, the catalytic activity of the Cu element that is the catalytically active species is inhibited.
From such a viewpoint, the peak area ratio ((CuAl 2 O 4 /(CuO x +CuAl 2 O 4 ))×100) is preferably 50% or less, more preferably 45% or less, and even more preferably 40% or less. Is more preferable.
As will be described later, it has been confirmed that it is possible to suppress the generation of CuAl 2 O 4 while increasing the Cu coating amount by firing in a nitrogen atmosphere. However, the method is not limited to such a method, and it is considered that the same effect as firing in a nitrogen atmosphere can be obtained even in a reducing atmosphere of hydrogen or carbon monoxide as described above.

また、ピーク面積(水素消費量)から、CuAl量を定量すると、CuAlの含有量は本排気ガス浄化触媒中15質量%以下であるのが好ましい。
本排気ガス浄化触媒において、CuAlの含有量を15質量%以下とすることで、触媒活性が良好に維持されることになる。
かかる観点から、CuAlの含有量が10質量%以下であるのがより一層好ましく、特に9質量%以下であるのがさらに好ましい。
Further, when the amount of CuAl 2 O 4 is quantified from the peak area (hydrogen consumption), the content of CuAl 2 O 4 is preferably 15% by mass or less in the exhaust gas purification catalyst.
In this exhaust gas purifying catalyst, by setting the content of CuAl 2 O 4 to be 15% by mass or less, the catalytic activity will be favorably maintained.
From this viewpoint, the content of CuAl 2 O 4 is more preferably 10 mass% or less, and particularly preferably 9 mass% or less.

<本排気ガス浄化触媒の製造方法>
本排気ガス浄化触媒は、例えば硝酸銅を水に溶解して水溶液を作製し、これにアルミナを入れて含浸させてスラリーとし、このスラリーを乾燥させた後、600〜1000℃、好ましくは600〜900℃で、窒素雰囲気下で焼成(「N焼成」とも称する)することにより得ることができる。
また、上記スラリーを基材に塗布し、600〜1000℃、好ましくは600〜900℃でN焼成することにより得ることができる。
但し、かかる製法に限定するものではない。
<Method of manufacturing the exhaust gas purifying catalyst>
The exhaust gas purifying catalyst of the present invention is prepared by, for example, dissolving copper nitrate in water to prepare an aqueous solution, and impregnating alumina with this to make a slurry, and drying the slurry, and then 600 to 1000° C., preferably 600 to It can be obtained by firing at 900° C. in a nitrogen atmosphere (also referred to as “N 2 firing”).
Further, it can be obtained by applying the above-mentioned slurry to a base material and firing at N 2 at 600 to 1000° C., preferably 600 to 900° C.
However, the production method is not limited to this.

焼成することにより、Cu被覆量を高めつつ、CuAlの生成を抑制することができる。しかも、N焼成することにより、Cu0〜1価の比率を高めることができる。大気焼成では、Cu0〜1価よりもCu2価の比率が高まるのに対し、N焼成では、逆にCu2価よりもCu0〜1価の比率が高まり易いことが確認されている。By firing with N 2, it is possible to suppress the generation of CuAl 2 O 4 while increasing the Cu coating amount. Moreover, the ratio of Cu0 to monovalent can be increased by firing N 2 . The air annealing, while increasing the ratio of Cu2 valence than Cu0~1 valence, the N 2 firing, it is easy increased Cu0~1 monovalent ratio is confirmed than Cu2 valence reversed.

<本排気ガス浄化触媒の特徴と用途>
本排気ガス浄化触媒は、触媒活性種としての貴金属を担持することなく、排気ガス浄化触媒性能を発揮することができる。すなわち、炭化水素(HC)及び一酸化炭素(CO)は酸化し、且つ、窒素酸化物(NOx)を還元して浄化する触媒活性を備えており、中でもNOxの還元性能及びCOの酸化性能が特に優れている。よって、CO、HC及びNOを酸化還元することができる三元触媒として有効利用することができる。もっとも、貴金属を担持することを妨げるものではない。
<Characteristics and applications of this exhaust gas purification catalyst>
The exhaust gas purifying catalyst can exhibit the exhaust gas purifying catalytic performance without supporting a noble metal as a catalytically active species. That is, hydrocarbons (HC) and carbon monoxide (CO) oxidize and have a catalytic activity for reducing and purifying nitrogen oxides (NO x ). Among them, NO x reducing performance and CO oxidation. Especially good performance. Therefore, CO, HC and NO x can be effectively used as a three-way catalyst capable of redox. However, it does not prevent carrying the noble metal.

本排気ガス浄化触媒は、ペレット状などの適宜形状に成形され、単独で触媒として用いることもできるし、また、セラミックス又は金属材料からなる基材に担持された形態として用いることもできる。 The exhaust gas purification catalyst can be molded into an appropriate shape such as pellets and used alone as a catalyst, or can be used as a form supported on a base material made of a ceramic or metal material.

本排気ガス浄化触媒は、ハニカム形状を呈する基材表面に、例えばバインダーや水酸化BaなどのNO吸蔵剤と共に触媒層を形成することで三元触媒を作製することができる。この触媒層は、単層構造であっても、二層以上の多層構造であってもよい。The exhaust gas purifying catalyst can be produced as a three-way catalyst by forming a catalyst layer on the surface of a base material having a honeycomb shape together with, for example, a binder and an NO X storage agent such as Ba hydroxide. The catalyst layer may have a single layer structure or a multilayer structure of two or more layers.

より具体的には、本排気ガス浄化触媒と、必要に応じて無機多孔質体、OSC材、NO吸蔵剤、バインダーなどとを、水を混合・撹拌してスラリーとし、得られたスラリーを、例えばセラミックハニカム体などの基材に塗工し、これを焼成して、基材表面に触媒層を形成するようにして製造することができる。More specifically, the present exhaust gas purifying catalyst, the inorganic porous material as required, OSC materials, NO X absorbent, and the like as a binder, mixing water and stirring to form a slurry and the resulting slurry For example, it can be manufactured by coating a base material such as a ceramic honeycomb body and firing the base material to form a catalyst layer on the surface of the base material.

上記の基材としては、セラミックス等の耐火性材料や金属材料を挙げることができる。
セラミック製基材の材質としては、耐火性セラミック材料、例えばコージライト、コージライト−アルファアルミナ、窒化ケイ素、ジルコンムライト、スポジュメン、アルミナ−シリカマグネシア、ケイ酸ジルコニウム、シリマナイト(sillimanite)、ケイ酸マグネシウム、ペタライト(petalite)、アルファアルミナおよびアルミノシリケート類などを挙げることができる。
金属製基材の材質としては、耐火性金属、例えばステンレス鋼または鉄を基とする他の適切な耐食性合金などを挙げることができる。
Examples of the base material include fire resistant materials such as ceramics and metal materials.
The material of the ceramic substrate, refractory ceramic material, for example, cordierite, cordierite-alpha alumina, silicon nitride, zircon mullite, spodumene, alumina-silica magnesia, zirconium silicate, sillimanite, magnesium silicate, Mention may be made of petalite, alpha alumina and aluminosilicates.
The material of the metallic substrate may include refractory metals such as stainless steel or other suitable iron-based corrosion resistant alloys.

上記基材の形状は、ハニカム状、フィルター状、ペレット状、球状を挙げることができる。
ハニカム材料としては、例えばセラミックス等のコージェライト質のものを用いることができる。また、フェライト系ステンレス等の金属材料からなるハニカムを用いることもできる。
ハニカム形状の基材を用いる場合、例えば基材内部を流体が流通するように、基材内部に平行で微細な気体流通路、すなわちチャンネルを多数有するモノリス型基材を使用することができる。この際、モノリス型基材の各チャンネル内壁表面に、触媒組成物をウォッシュコートなどによってコートして触媒層を形成することができる。
Examples of the shape of the base material include a honeycomb shape, a filter shape, a pellet shape, and a spherical shape.
As the honeycomb material, for example, a cordierite material such as ceramics can be used. Alternatively, a honeycomb made of a metal material such as ferritic stainless steel can be used.
When a honeycomb-shaped substrate is used, for example, a monolithic substrate having a large number of parallel fine gas flow passages, that is, channels, can be used inside the substrate so that a fluid flows through the substrate. At this time, the catalyst layer can be formed by coating the inner wall surface of each channel of the monolith-type substrate with the catalyst composition by wash coating or the like.

上記無機多孔質体としては、例えばシリカ、アルミナおよびチタニア化合物から成る群から選択される化合物の多孔質体、例えばアルミナ、シリカ、シリカ−アルミナ、アルミノ−シリケート類、アルミナ−ジルコニア、アルミナ−クロミアおよびアルミナ−セリアから選択される化合物からなる多孔質体を挙げることができる。 As the inorganic porous body, for example, silica, a porous body of a compound selected from the group consisting of alumina and titania compounds, such as alumina, silica, silica-alumina, alumino-silicates, alumina-zirconia, alumina-chromia and A porous body made of a compound selected from alumina-ceria can be mentioned.

上記OSC材、すなわち酸素ストレージ能(OSC:Oxygen Storage Capacity)を有する助触媒としては、例えばセリウム化合物、ジルコニウム化合物、セリア・ジルコニア複合酸化物、セリア・ジルコニア・アルミナ複合酸化物などを挙げることができる。 Examples of the OSC material, that is, a cocatalyst having an oxygen storage capacity (OSC) include a cerium compound, a zirconium compound, a ceria-zirconia composite oxide, and a ceria-zirconia-alumina composite oxide. ..

上記NO吸蔵剤としては、例えばアルカリ土類金属やアルカリ金属を挙げることができる。中でも、マグネシウム、バリウム、ホウ素、トリウム、ハフニウム、ケイ素、カルシウムおよびストロンチウムから成る群から選択される金属のうちの一種又は二種以上を選択可能である。その中でも、低温でのより良好なNO吸着性の観点から、バリウムが好ましい。Examples of the NO X storage agent include alkaline earth metals and alkali metals. Among them, one or more metals selected from the group consisting of magnesium, barium, boron, thorium, hafnium, silicon, calcium and strontium can be selected. Among them, barium is preferable from the viewpoint of better NO adsorption property at low temperature.

上記バインダー成分としては、有機系バインダーや無機系バインダー、例えばジルコニアゾルやアルミナゾル等の水溶液を使用することができる。 As the binder component, an organic binder or an inorganic binder such as an aqueous solution of zirconia sol or alumina sol can be used.

<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of terms>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), “preferably larger than X” or “preferably Y” is included together with the meaning of “X or more and Y or less” unless otherwise specified. It also means "less than".
Further, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it means “preferably greater than X” or “less than Y”. It also includes intent.

以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。 Hereinafter, the present invention will be described in more detail based on the following examples and comparative examples.

<実施例1>
硝酸銅水溶液にLa1質量%含有θ−Al23粉末を加えて撹拌した後、ジルコニアゾルを添加することで、Cu担持アルミナスラリーを得た。
Φ40mm×L60mm(300セル):担体容積0.0754Lの合志技研製ステンレスハニカム基材に、上記で得たスラリーを165g/L塗布し、過剰なスラリーを吹き払った後、100℃の熱風がスラリー塗布面に直接あたるようにして乾燥させた。
次に、450℃で1時間焼成して硝酸根を除去した後、窒素中600℃で4時間焼成して、実施例1の触媒(サンプル)を得た。
なお、スラリー中の各成分は、酸化銅11.3質量部、La1質量%含有アルミナ80.2質量部、ジルコニアゾル8.5質量部であった。
<Example 1>
A Cu-supported alumina slurry was obtained by adding a 1 mass% La-containing θ-Al 2 O 3 powder to a copper nitrate aqueous solution and stirring the mixture, and then adding a zirconia sol.
Φ40 mm×L60 mm (300 cells): 165 g/L of the slurry obtained above was applied to a Koshigiken stainless honeycomb substrate having a carrier volume of 0.0754 L, and after blowing excess slurry, hot air at 100° C. was used as a slurry. The coated surface was dried by directly contacting it.
Next, after calcining at 450° C. for 1 hour to remove nitrate radicals, calcining was performed at 600° C. for 4 hours in nitrogen to obtain a catalyst (sample) of Example 1.
Each component in the slurry was 11.3 parts by mass of copper oxide, 80.2 parts by mass of alumina containing 1% by mass of La, and 8.5 parts by mass of zirconia sol.

<実施例2〜7、比較例1〜3>
表1に示すように、酸化銅の質量%、アルミナ種、焼成温度、焼成雰囲気を変更した以外、実施例1と同様の手順にて、実施例2〜7及び比較例1〜3の触媒(サンプル)を得た。
なお、比較例3については、実施例1と同様にCu担持アルミナスラリーを調製及びステンレスハニカム基材への塗布・乾燥を行い、450℃で1時間焼成して硝酸根を除去して作製した。しかし、窒素中600℃で4時間の焼成は行わなかった。
<Examples 2 to 7, Comparative Examples 1 to 3>
As shown in Table 1, the catalysts of Examples 2 to 7 and Comparative Examples 1 to 3 were prepared in the same procedure as in Example 1 except that the mass% of copper oxide, the type of alumina, the firing temperature, and the firing atmosphere were changed. Sample) was obtained.
In Comparative Example 3, a Cu-supported alumina slurry was prepared, applied to a stainless honeycomb substrate and dried in the same manner as in Example 1, and baked at 450° C. for 1 hour to remove nitrate radicals. However, firing was not performed in nitrogen at 600° C. for 4 hours.

<XPSによる表面分析>
X線光電子分光分析(XPS:X-ray Photoelectron Spectroscopy)により、実施例・比較例で得た触媒(サンプル)表面の分析を行った。
XPSの分析装置としてアルバック・ファイ株式会社製のQuantum2000(ビーム条件:50W、200μm径)を用い、解析ソフトウェアとして「MultiPack ver.6.1」を用いて状態・半定量用ナロー測定を行った。X線源として、Al−Kα線(1486.8eV)を用いて、17kV×0.023Aで操作した。
帯電補正:C1sを284.0eVとして帯電補正を行った。
<Surface analysis by XPS>
The surfaces of the catalysts (samples) obtained in Examples and Comparative Examples were analyzed by X-ray photoelectron spectroscopy (XPS).
Quantum 2000 (beam condition: 50 W, 200 μm diameter) manufactured by ULVAC-PHI, Inc. was used as an XPS analyzer, and narrow measurement for state/semi-quantification was performed using “MultiPack ver. 6.1” as analysis software. An Al-Kα ray (1486.8 eV) was used as an X-ray source, and operation was performed at 17 kV×0.023A.
Charge correction: Charge correction was performed with C1s set to 284.0 eV.

より具体的には、実施例・比較例で得た触媒(サンプル)について、X線光電子分光装置(XPS)を用いて、上記条件で触媒表面を分析し、得られたX線光電子分光スペクトルにおいて、Cu2pの結合エネルギーに対応するCu0〜2価の光電子を検出して得られるピーク面積及びAl2pの結合エネルギーに対応するAl酸化物の光電子を検出して得られるピーク面積の合計面積を100%としたときのCu2pのピーク面積の割合(表1の「Cu被覆率」)を求めた。
また、X線光電子分光装置(XPS)を用いて上記条件でCu表面を分析し、925eV〜940eVのピーク及び925eV〜935eVのピークを波形分離し、925eV〜940eVのピーク面積(Cu0〜2価に相当)に対する、925eV〜935eVのピーク面積(Cu0〜1価に相当)の比率(表1の「Cu0〜1価の面積率(%)」)を算出した。
なお、X線光電子分光装置(XPS)は、粒子表面から約十nmまでの深さの元素成分について半定量分析を行うことができる。
More specifically, for the catalysts (samples) obtained in Examples and Comparative Examples, the catalyst surface was analyzed under the above conditions using an X-ray photoelectron spectrometer (XPS), and the obtained X-ray photoelectron spectrum , The total area of the peak areas obtained by detecting the Cu0 to divalent photoelectrons corresponding to the binding energy of Cu2p and the peak areas obtained by detecting the photoelectrons of the Al oxide corresponding to the binding energy of Al2p is 100%. The ratio of the peak area of Cu2p (“Cu coverage” in Table 1) was calculated.
Moreover, the Cu surface is analyzed under the above conditions using an X-ray photoelectron spectrometer (XPS), the peaks of 925 eV to 940 eV and the peaks of 925 eV to 935 eV are waveform-separated, and the peak areas of 925 eV to 940 eV (Cu0 to valence 2). The ratio of the peak area (corresponding to Cu0 to 1 valence) of 925 eV to 935 eV to (corresponding to) was calculated (“Cu0 to 1 valence area ratio (%)” in Table 1).
The X-ray photoelectron spectrometer (XPS) can perform semi-quantitative analysis on elemental components having a depth of about 10 nm from the particle surface.

<平均粒子径の測定>
アルミナの平均粒子径(D50)はレーザー回折・散乱式粒度径分布を用いて測定し、表1に示した。
レーザー回折粒子径分布測定装置用自動試料供給機(日機装株式会社製「Microtorac SDC」)を用い、サンプル(粉体)を水溶性溶媒に投入し、50%の流速中、30Wの超音波を360秒間照射した後、日機装株式会社製レーザー回折粒度分布測定機「MT3000II」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートからD50を測定した。この際、測定条件は、粒子屈折率1.5、粒子形状真球形、溶媒屈折率1.3、セットゼロ30秒、測定時間30秒、2回測定の平均値として求めた。
<Measurement of average particle size>
The average particle size (D50) of alumina was measured using a laser diffraction/scattering type particle size distribution and is shown in Table 1.
A sample (powder) was put into a water-soluble solvent using an automatic sample feeder for a laser diffraction particle size distribution measuring device (“Microtorac SDC” manufactured by Nikkiso Co., Ltd.), and 30 W ultrasonic waves were applied at a flow rate of 50%. After irradiation for a second, the particle size distribution was measured using a laser diffraction particle size distribution measuring device "MT3000II" manufactured by Nikkiso Co., Ltd., and D50 was measured from the obtained volume-based particle size distribution chart. At this time, the measurement conditions were a particle refractive index of 1.5, a spherical particle shape, a solvent refractive index of 1.3, a set zero of 30 seconds, a measurement time of 30 seconds, and an average value of two measurements.

<H2−TPR>
による昇温反応法(H−TPR)により、実施例・比較例で得た触媒粉体(サンプル)の水素消費ピークを測定した。
具体的には、熱伝導型検出器を備えた流通式管型反応器を用いて、2%水素(アルゴンバランス)を流通して常温〜800℃の条件の下、H−TPRの測定を行った。なお、H−TPR測定でみられる100〜350℃の水素消費ピークをCuO、350℃以上に現れる水素消費ピークをCuAlとして前記CuO及びCuAlのピーク面積において、CuO及びCuAlのピーク面積に対するCuAlのピーク面積率((CuAl/(CuO+CuAl))×100、表1の「CuAlピーク面積率(%)」を求めた。また、得られたピーク面積(水素消費量)からCuAlの定量を行い、表1の「触媒中のCuAl量(質量%)」を求めた。
<H 2 -TPR>
Heating the reaction method using H 2 by (H 2-TPR), hydrogen was measured consumption peaks of the catalyst powder obtained in Examples and Comparative Examples (samples).
Specifically, using a flow-through tubular reactor equipped with a heat conduction type detector, 2% hydrogen (argon balance) was circulated to measure H 2 -TPR at room temperature to 800° C. went. Incidentally, in the peak area of the CuO x and CuAl 2 O 4 hydrogen consumption peaks appearing hydrogen consumption peak of 100 to 350 ° C. seen in H 2-TPR measurements CuO x, 350 ° C. or more as CuAl 2 O 4, CuO x and CuAl 2 O CuAl 2 O 4 of the peak area ratio to the peak area of 4 ((CuAl 2 O 4 / (CuO x + CuAl 2 O 4)) × 100, "CuAl 2 O 4 peak area ratio of Table 1 ( %). Also, the amount of CuAl 2 O 4 was quantified from the obtained peak area (hydrogen consumption), and the “amount of CuAl 2 O 4 in the catalyst (mass %)” in Table 1 was determined.

なお、表1中のCuAlピーク面積率(%)=0の場合は、CuがすべてCuOとしてアルミナに担持された状態を指し、0より大きい場合は、Cuの一部はCuOとしてアルミナに担持され、一部はCuAlのようにアルミナに固溶された状態で存在していることを指す。
また、実施例6及び比較例2では触媒中の酸化銅の含有量が他の材料よりも多かったため、H−TPRによる水素消費ピークが他と異なる挙動を示し、CuAlの正確なピークを抽出することができなかった。そのため、「CuAlのピーク面積率」及び「触媒中のCuAl量」は定量不可とした。しかし、XRDから実施例6ではCuの大部分がCuO、比較例2ではCuの大部分がCuAlとして存在することが確認された。
In addition, when CuAl 2 O 4 peak area ratio (%)=0 in Table 1, it means a state where all Cu is supported on alumina as CuO x , and when larger than 0, part of Cu is CuO x. Is supported on alumina as a part, and a part thereof exists as a solid solution in alumina like CuAl 2 O 4 .
In addition, in Example 6 and Comparative Example 2, the content of copper oxide in the catalyst was higher than that of the other materials, so that the hydrogen consumption peak by H 2 -TPR behaved differently from the others, and the accurate CuAl 2 O 4 content was shown. The peak could not be extracted. Therefore, "CuAl 2 peak area ratio of O 4" and "CuAl 2 O 4 content in the catalyst" was quantified impossible. However, it was confirmed from XRD that most of Cu was present as CuO x in Example 6 and most of Cu was present as CuAl 2 O 4 in Comparative Example 2.

<排気ガス浄化性能評価試験>
各実施例・比較例で得られた触媒(浄化性能評価サンプル)を、下記組成のモデルガス中のCO、HCおよびNOそれぞれの50%浄化率に到達する温度(℃)を測定して、各々の触媒の三元浄化性能を評価した。評価条件は下記の通りである。
<Exhaust gas purification performance evaluation test>
The catalyst (purification performance evaluation sample) obtained in each of the examples and comparative examples was measured for the temperature (° C.) at which 50% purification rate of CO, HC and NO x in the model gas having the following composition was reached. The three-way purification performance of each catalyst was evaluated. The evaluation conditions are as follows.

(モデルガス組成)
CO:1.25%
:1740ppm
NO:2450ppm
:0.6%
CO:14%
O:10%
:残部
A/F:14.5
ガス流速:25L/min
昇温速度:20℃/min
(Model gas composition)
CO: 1.25%
C 3 H 6: 1740ppm
NO: 2450ppm
O 2 : 0.6%
CO 2 : 14%
H 2 O: 10%
N 2 : balance A/F: 14.5
Gas flow rate: 25 L/min
Temperature rising rate: 20°C/min

上記実施例・比較例並びにこれまで本発明者が行ってきた試験結果から、アルミナ粒子の表面にCu元素が存在してなる構成を備えた排気ガス浄化触媒に関しては、X線光電子分光法(XPS)で測定される、Cu2p及びAl2pの各ピーク面積の合計面積を100%としたとき、Cu2pのピーク面積の割合(「Cu被覆率」)が7〜28%であれば、触媒活性成分として貴金属を担持しなくても、優れた触媒活性を発揮することが分かった。 From the above-mentioned Examples/Comparative Examples and the test results conducted by the present inventor so far, regarding the exhaust gas purifying catalyst having the structure in which the Cu element is present on the surface of the alumina particles, the X-ray photoelectron spectroscopy (XPS) ), when the total area of each peak area of Cu2p and Al2p measured as 100%, if the ratio of the peak area of Cu2p ("Cu coverage") is 7 to 28%, the noble metal as a catalytically active component. It was found that excellent catalytic activity is exhibited even without supporting.

さらに、上記実施例・比較例並びにこれまで本発明者が行ってきた試験結果から、前記Cuの2p軌道の結合エネルギーをX線光電子分光法で測定して得られる、925eV〜940eVのピーク面積(Cu0〜2価に相当)に対する、925eV〜935eVのピーク面積(Cu0〜1価に相当)の比率(「Cu0〜1価の面積率」)が50%以上であれば、触媒活性をさらに高めることができることが分かった。 Further, from the above-mentioned Examples/Comparative Examples and the test results conducted by the present inventor so far, the peak energy of 925 eV to 940 eV obtained by measuring the binding energy of the 2p orbital of Cu by X-ray photoelectron spectroscopy ( If the ratio of the peak area of 925 eV to 935 eV (corresponding to Cu0 to 1 valence) to Cu0 to valence of 2 (equivalent to Cu0 to 1 valence) is 50% or more, further increase the catalytic activity. It turns out that you can do it.

また、上記実施例・比較例並びにこれまで本発明者が行ってきた試験結果から、CuO(0≦x≦1)及びCuAlを含み、Hによる昇温反応法(H−TPR)により得られる水素消費ピークにおける前記CuO及びCuAlのピーク面積において、CuO及びCuAlのピーク面積に対するCuAlのピーク面積率((CuAl/(CuO+CuAl))×100)が50%以下であれば、触媒活性をさらに高めることができることが分かった。Further, from the above Examples and Comparative Examples and the test results to date present inventors have carried out, CuO x (0 ≦ x ≦ 1) and CuAl 2 O 4 wherein the warm reaction method by H 2 (H 2 - in the peak area of the CuO x and CuAl 2 O 4 in the hydrogen consumption peak obtained by TPR), the peak area ratio of CuO x and CuAl 2 O 4 of CuAl 2 O 4 to the peak area ((CuAl 2 O 4 / ( CuO It has been found that the catalytic activity can be further increased when x + CuAl 2 O 4 ))×100) is 50% or less.

Claims (4)

アルミナ粒子の表面にCu元素が存在してなる構成を備えた排気ガス浄化触媒であって、X線光電分光法(XPS:X−ray Photoelectron Spectroscopy)で測定される、Cu2p及びAl2pの各ピーク面積の合計面積を100%としたとき、Cu2pのピーク面積の割合が7〜28%であり、かつ、前記X線光電分光法(XPS:X−ray Photoelectron Spectroscopy)で測定して得られる、925eV〜940eVのピーク面積(Cu0〜2価に相当)に対する、925eV〜935eVのピーク面積(Cu0〜1価に相当)の比率が50%以上であることを特徴とする排気ガス浄化触媒。An exhaust gas purifying catalyst having a structure in which Cu element is present on the surface of alumina particles, each peak area of Cu2p and Al2p measured by X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy). , The peak area ratio of Cu2p is 7 to 28%, and is obtained by measurement by the X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy), 925 eV to An exhaust gas purifying catalyst, wherein the ratio of the peak area of 925 eV to 935 eV (corresponding to Cu 0 to 1 valence) to the peak area of 940 eV (corresponding to Cu 0 to 2 valence) is 50% or more. CuO(0≦x≦1)及びCuAlを含み、Hによる昇温反応法(H−TPR)により得られる水素消費ピークにおけるCuO及びCuAlのピーク面積において、CuO及びCuAlのピーク面積に対するCuAlのピーク面積率((CuAl/(CuO+CuAl))×100)が50%以下であることを特徴とする請求項1に記載の排気ガス浄化触媒。Include CuO x (0 ≦ x ≦ 1 ) and CuAl 2 O 4, in the peak area of the CuO x and CuAl 2 O 4 in the hydrogen consumption peak obtained by heating the reaction method using H 2 (H 2 -TPR), CuO claims x and CuAl 2 O peak area ratio of CuAl 2 O 4 to the peak area of 4 ((CuAl 2 O 4 / (CuO x + CuAl 2 O 4)) × 100) is equal to or less than 50% The exhaust gas purifying catalyst according to 1. 触媒に含まれるCuAlの含有量が15質量%以下である請求項1又は3に記載の排気ガス浄化触媒。The exhaust gas purifying catalyst according to claim 1 or 3, wherein the content of CuAl 2 O 4 contained in the catalyst is 15% by mass or less. 三元触媒であることを特徴とする請求項1,3,4の何れかに記載の排気ガス浄化触媒。The exhaust gas purifying catalyst according to claim 1, wherein the exhaust gas purifying catalyst is a three-way catalyst.
JP2017528862A 2016-06-06 2017-05-26 Exhaust gas purification catalyst Active JP6741666B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016112795 2016-06-06
JP2016112795 2016-06-06
PCT/JP2017/019652 WO2017212944A1 (en) 2016-06-06 2017-05-26 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPWO2017212944A1 JPWO2017212944A1 (en) 2019-04-04
JP6741666B2 true JP6741666B2 (en) 2020-08-19

Family

ID=60577724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017528862A Active JP6741666B2 (en) 2016-06-06 2017-05-26 Exhaust gas purification catalyst

Country Status (4)

Country Link
JP (1) JP6741666B2 (en)
CN (1) CN109219480B (en)
BR (1) BR112018072184B1 (en)
WO (1) WO2017212944A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859236A (en) * 1994-08-19 1996-03-05 Toyota Motor Corp Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
US6455464B1 (en) * 1996-03-21 2002-09-24 Engelhard Corporation Preparation and use of non-chrome catalysts for Cu/Cr catalyst applications
DE19724545A1 (en) * 1997-06-11 1998-12-24 Basf Ag Storage catalytic converter
US6306795B1 (en) * 1999-09-07 2001-10-23 Cytec Technology Corp. Stable highly active supported copper based catalysts
GB0028240D0 (en) * 2000-11-20 2001-01-03 Johnson Matthey Plc Three-way catalyst composition
JP4607715B2 (en) * 2005-09-06 2011-01-05 株式会社東芝 Catalyst and method for producing catalyst
JP4772561B2 (en) * 2006-03-31 2011-09-14 株式会社東芝 Methanol reforming catalyst, shift catalyst, method for producing methanol reforming catalyst, and method for producing shift catalyst
WO2010064497A1 (en) * 2008-12-03 2010-06-10 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and exhaust gas purifying method
JP2012071271A (en) * 2010-09-29 2012-04-12 Daihatsu Motor Co Ltd Catalyst for cleaning exhaust gas and method for manufacturing the same
JP2012115769A (en) * 2010-12-01 2012-06-21 Toyota Industries Corp Catalyst, and method of producing catalyst
US9409152B2 (en) * 2012-06-20 2016-08-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst support for purification of exhaust gas, catalyst for purification of exhaust gas using the same, and method for producing the catalyst support for purification of exhaust gas
CN102974347B (en) * 2012-12-03 2015-05-20 南京大学 Method for preparing copper-based nano-catalyst with different valence states

Also Published As

Publication number Publication date
BR112018072184A2 (en) 2019-02-12
WO2017212944A1 (en) 2017-12-14
CN109219480A (en) 2019-01-15
BR112018072184B1 (en) 2022-05-03
JPWO2017212944A1 (en) 2019-04-04
CN109219480B (en) 2021-08-06

Similar Documents

Publication Publication Date Title
KR102483435B1 (en) Nitrous oxide removal catalysts for exhaust systems
ES2522965T3 (en) NOx storage materials and thermal aging resistant traps
WO2014041984A1 (en) Exhaust-gas-purification catalyst carrier
JP4730709B2 (en) NOx storage reduction catalyst
JP2022061979A (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst for automobile
WO2016158656A1 (en) Exhaust purification catalyst
JP6715351B2 (en) Delafossite-type oxide for exhaust gas purification catalyst and exhaust gas purification catalyst using the same
WO2014104181A1 (en) Catalyst carrier and exhaust gas purifying catalyst
JPWO2018123862A1 (en) Exhaust gas purification catalyst
WO2014123232A1 (en) CATALYST FOR PURIFYING NOx OCCLUSION REDUCTION-TYPE EXHAUST GAS AND EXHAUST GAS PURIFICATION METHOD USING SAID CATALYST
CN106457226B (en) Catalyst for exhaust gas purification
JP5896902B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6216234B2 (en) Exhaust gas purification catalyst
JP6741666B2 (en) Exhaust gas purification catalyst
JPWO2020039903A1 (en) Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using it, and exhaust gas purification method
JP7466535B2 (en) EXHAUST GAS PURIFICATION CATALYST AND EXHAUST GAS PURIFICATION SYSTEM USING THE EXHAUST GAS PURIFICATION CATALYST
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP6807447B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP6770265B2 (en) Exhaust gas purification catalyst
WO2022209154A1 (en) Exhaust gas purifying catalyst and exhaust gas purification system
WO2023047185A1 (en) Exhaust gas purification catalyst, and exhaust gas purification catalyst device for vehicles
JP2007260568A (en) Catalyst for controlling exhaust gas and its regenerating method
JP6774654B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP6746097B2 (en) NOx purification catalyst and NOx purification method using the same
JP6392704B2 (en) PM oxidation catalyst for oxidizing and removing particulate matter (PM) in exhaust gas, exhaust gas purification filter and exhaust gas purification method using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6741666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250