JPS6184941A - Clock synchronizing system in transmission system - Google Patents

Clock synchronizing system in transmission system

Info

Publication number
JPS6184941A
JPS6184941A JP59206224A JP20622484A JPS6184941A JP S6184941 A JPS6184941 A JP S6184941A JP 59206224 A JP59206224 A JP 59206224A JP 20622484 A JP20622484 A JP 20622484A JP S6184941 A JPS6184941 A JP S6184941A
Authority
JP
Japan
Prior art keywords
clock
phase difference
phase
reception
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59206224A
Other languages
Japanese (ja)
Other versions
JP2609582B2 (en
Inventor
Makoto Nomi
能見 誠
Shoji Miyamoto
宮本 捷二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59206224A priority Critical patent/JP2609582B2/en
Publication of JPS6184941A publication Critical patent/JPS6184941A/en
Application granted granted Critical
Publication of JP2609582B2 publication Critical patent/JP2609582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Small-Scale Networks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PURPOSE:To attain stable transmission by providing a dead band to phase adjustment of data and a clock in the reproduction of a reception clock at each node to eliminate the clock supply and phase difference adjustment at a specific node. CONSTITUTION:A reception data changing point detection section 131, a phase comparison section 132 and a clock generating section 133 are provided in a clock synchronizing circuit reproducing a reception clock RXC synchronizing with a reception data RD and the clock RXC adjusted in response to the phase difference theta is outputted. The comparison section 132 detects a phase difference thetabetween the data changing point and the clock RXC generated by the generating section 133, which changes the generated frequency (f) by + or -DELTAf around a center value f0 according to the difference theta. Thus, a dead band is provided to the phase synchronizing circuit to absorb the phase difference thereby eliminating the need for the clock supply and phase difference adjustment at the specific node.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、データ伝送系のクロック同期方式に係り、特
にループ状に結合された。ループ伝送系等に好適な伝送
系におけるクロック同期方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a clock synchronization method for a data transmission system, and particularly relates to a clock synchronization method for a data transmission system, and particularly to a clock synchronization system connected in a loop. This invention relates to a clock synchronization method in a transmission system suitable for a loop transmission system, etc.

〔発明の背景〕[Background of the invention]

ループ伝送系における1つの問題は、クロックの同期で
ある。すなわち、直線状の伝送路では、最上流からクロ
ックを供給し、下流はそれに同期させれば良いが、ルー
プの場合最上流すなわち始点がない、そのため、現在は
、特定の1つのノードを始点および終点にして、そのノ
ードで伝播遅延による位相のずれを調整しているが、そ
の機構が複雑になり、また装置が同じ物で実現できない
という問題があった 〔発明の目的〕 本発明の目的は、これまで特定なノードで元になるクロ
ックを供給し、かつ位相調整が必要であったループ伝送
系を各ノードで行ない、ノード装置を均一な構造とし、
かつ位相調整の機構を単純化する伝送系におけるクロッ
ク同期方式を提供することにある。
One problem with loop transmission systems is clock synchronization. In other words, in a straight transmission line, it is sufficient to supply a clock from the most upstream and synchronize the downstream with it, but in the case of a loop, there is no most upstream or starting point.Therefore, currently, one specific node is designated as the starting point. At the end point, the phase shift due to propagation delay is adjusted at that node, but there is a problem that the mechanism is complicated and the device cannot be realized with the same device. , a loop transmission system that previously required a specific node to supply the source clock and phase adjustment is performed at each node, and the node equipment has a uniform structure.
Another object of the present invention is to provide a clock synchronization method in a transmission system that simplifies the phase adjustment mechanism.

〔発明の概要〕[Summary of the invention]

本発明は、各ノードで行なう受信クロックの再生におけ
るデータとクロックの位相調整に不感帯を設けることに
よって、ループ状に結合した場合−巡したクロックの位
相差を各ノードの位相差不感帯で吸収することによって
、特殊ノードでのクロック供給と位相差調整を不要にし
たものである。
The present invention provides a dead zone in the phase adjustment of the data and clock during the regeneration of the received clock performed at each node, so that when the clocks are coupled in a loop, the phase difference between the circulated clocks is absorbed by the phase difference dead zone of each node. This eliminates the need for clock supply and phase difference adjustment at special nodes.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

第1図は1本発明の効果を最大に発揮できる、ループ伝
送系の一構成を示したもので、 1 (1’a〜lc)
は伝送制御装置(以下ノードと呼ぶ)、2は伝送路、3
 (3A〜3B)は伝送系を利用する端末装置あるいは
コンピュータを示したもので、3A〜3Bは、18〜1
bを介して互いに通信を行なうものである。
Figure 1 shows a configuration of a loop transmission system that can maximize the effects of the present invention.1 (1'a~lc)
is a transmission control device (hereinafter referred to as a node), 2 is a transmission path, and 3 is a transmission control device (hereinafter referred to as a node).
(3A to 3B) indicate terminal devices or computers that use the transmission system, and 3A to 3B indicate 18 to 1
They communicate with each other via b.

このようなループ伝送系において、各ノードから送信さ
れるデータはビットシリアルに送り出され、下流のノー
ドでそれを受信し、あるいは中継して、さらに下流へ送
信する。
In such a loop transmission system, data transmitted from each node is transmitted bit serially, received by a downstream node, or relayed, and transmitted further downstream.

この場合、一般には、ビットシリアルなデータは、受信
側においてそのデータに同期したクロックを再生し、そ
のクロックによってシフトレジスタに入力し、それを並
列に変換、あるいは1ビット程度の遅延で下流に中継す
る。
In this case, generally, for bit-serial data, the receiving side regenerates a clock synchronized with the data, inputs it to a shift register using that clock, converts it into parallel data, or relays it downstream with a delay of about 1 bit. do.

このクロックの再生には一般に位相同期回路(Phas
e 1ocked 1oop : PLL)を用いる。
A phase synchronized circuit (Phas) is generally used to reproduce this clock.
e 1ocked 1oop: PLL) is used.

これは、データ線の他にクロックを設ける必要がないた
めである。第2図は、そのメカニズムを従来方式で説明
したもので、ノード1の内部のグロック同期に係わる部
分を抽出して示したものであり、11a+11bは送受
信制御回路で例えばMotorola社の伝送制御L 
S I (MC6854)などが用いられる。13a。
This is because there is no need to provide a clock in addition to the data line. Fig. 2 explains the mechanism in a conventional manner, and shows the extracted parts related to clock synchronization inside node 1. 11a+11b is a transmission/reception control circuit, for example, Motorola's transmission control L
S I (MC6854) and the like are used. 13a.

13bは、クロック再生回路、12は基準クロック発生
回路であり、llaの送信部Tは12のクロックTXC
に従ってデータを送信し、llbの受信部Rは第3図に
示したようなタイミングで。
13b is a clock regeneration circuit, 12 is a reference clock generation circuit, and the transmitter T of lla is a clock TXC of 12.
The receiving section R of llb transmits data according to the timing shown in FIG.

13bによって再生されたクロックRXCで受信し、送
信部はRXCと同じタイミングの送信クロックTXCで
送信を行なう。llaの受信部Rでは、1bの受信と同
様にクロック再生回路1°3aで作ったクロックRXC
で受信する。この場合当然1aにおいては元のクロック
TXCと再生したRX、Cとの間には伝送路の時間遅延
によって位相差が生じる。そのため、1aにおいてはそ
の位相差を吸収することが必要となる。
The signal is received using the clock RXC reproduced by the transmitter 13b, and the transmitter transmits using the transmission clock TXC having the same timing as RXC. In the receiving section R of lla, the clock RXC generated by the clock recovery circuit 1°3a is used in the same way as in the reception of 1b.
Receive at. In this case, of course, in 1a, a phase difference occurs between the original clock TXC and the reproduced clocks RX and C due to the time delay of the transmission path. Therefore, in 1a, it is necessary to absorb the phase difference.

そこで本発明は、第4図に示す位相同期回路に不感帯を
設けることによって、その位相差を吸収することによっ
て、すべてのノードで第2図における1bの回路構成と
することができ、1aのような回路構成のノードを不要
とするものである。
Therefore, in the present invention, by providing a dead zone in the phase-locked circuit shown in FIG. 4 and absorbing the phase difference, all nodes can have the circuit configuration 1b in FIG. This eliminates the need for nodes with complicated circuit configurations.

以下第4図の回路によってその詳細を説明する。The details will be explained below using the circuit shown in FIG.

第4図は、受信データRDからそれに同期した受信クロ
ックRXCを再生するクロック同期回路を示したもので
、131は受信データの変化点検出部、132は位相比
較部、133はクロック発生部であり、θに応じて調整
したクロックRXCを出力する。
FIG. 4 shows a clock synchronization circuit that reproduces a reception clock RXC synchronized with reception data RD, in which 131 is a reception data change point detection section, 132 is a phase comparison section, and 133 is a clock generation section. , θ, and outputs a clock RXC adjusted according to θ.

132においては、データの変化点と、133で作られ
たRXCの位相差θを検出し、133はそのθに従って
発生周波数fを中心値f0から±Afたけ変化させる 第5図はその特性を示したもので、第6図に示すRDと
RXCの位相差Oに対して、θが正(進み)のときはf
o−Afとし、θが負(遅れ)のときはf0+/Ufと
することによってRXCの位相を調整する。
132 detects the data change point and the phase difference θ of the RXC created in 133, and 133 changes the generated frequency f by ±Af from the center value f0 according to the detected θ. Figure 5 shows its characteristics. With respect to the phase difference O between RD and RXC shown in FIG. 6, when θ is positive (advanced), f
The phase of RXC is adjusted by setting o−Af and f0+/Uf when θ is negative (lag).

このとき、θとfとの関係に第5図に示すθ。At this time, the relationship between θ and f is θ as shown in FIG.

(−bitなる不感帯を設ける。(A dead zone of -bit is provided.

すなわち、第6図に示すように、受信データRDはRX
Cの立ち上り点Aでサンプルされるため、1θ1(−b
itの範囲を変動している間はビットずれは発生しない
。この不感帯±θ。は、ループ状に結合した場合のvi
衝となり、−巡したときの位相を整合させることが出来
る。
That is, as shown in FIG. 6, the received data RD is
Since it is sampled at the rising point A of C, 1θ1(-b
No bit shift occurs while changing the range of it. This dead zone ±θ. is vi when connected in a loop
They become opposites, and the phases can be matched when they cycle.

以上は、受信クロック、送信クロックを共通した場合で
あるが、第7図はそれを分離した場合を示したもので、
14はTXC再生回路で、142は位相差検出部、14
3はTXC発生回路で、13と同様にRXCとTXCの
位相差θ7に応じてTXCの周波数fTえ。を制御する
The above is a case where the reception clock and transmission clock are common, but Figure 7 shows the case where they are separated.
14 is a TXC regeneration circuit, 142 is a phase difference detection section, 14
3 is a TXC generation circuit, which, like 13, generates the TXC frequency fT according to the phase difference θ7 between RXC and TXC. control.

このTXCの周波数f7え。は13の機能と同じく不感
帯θI、7を持たせるものであり、受信データの波形の
ゆらぎによって受信用クロック再生回路の不感帯を大き
くとれない場合に有効とするものである。
This TXC frequency f7. Like function 13, function 7 has a dead zone θI, 7, and is effective when the dead zone of the receiving clock recovery circuit cannot be made large due to fluctuations in the waveform of received data.

〔発明の効果〕〔Effect of the invention〕

以上のごとく、本発明によれば、各ノードの構成を同じ
くしてループ伝送系を構成することができ、かつ多少の
擾乱が発生しても安定した伝送を行なうことができ、伝
送系の経済性、各装置の互換性を向上させ、また伝送の
信頼性を向上させる上で効果がある。
As described above, according to the present invention, it is possible to configure a loop transmission system by making each node have the same configuration, and to perform stable transmission even when some disturbance occurs, thereby making the transmission system economical. This is effective in improving the performance, compatibility of each device, and the reliability of transmission.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するループ伝送系の構成を示すブ
ロック図、第2図はクロック同期方法の従来例を示す構
成図、第3図は第2図の波形を示した波形図、第4図は
本発明クロック同期回路の構成を示すブロック図、第5
図はその特性を示す関係図、第6図はその波形を示す波
形図、第7図は本発明における受信と送信のクロックを
分離した同期回路のブロック図、第8図はその波形を示
す波形図、第9図はその特性を示した関係図である。 1(18〜1c):伝送制御装置、2・・・伝送路、3
(3A〜3C):端末装置、13,14・・・クロ第 
1 目 %  2  I21 第 3 図 O 箭4− 図 第5図 yt  図 一一一→−て
Fig. 1 is a block diagram showing the configuration of a loop transmission system implementing the present invention, Fig. 2 is a block diagram showing a conventional example of a clock synchronization method, Fig. 3 is a waveform diagram showing the waveforms of Fig. 2, Figure 4 is a block diagram showing the configuration of the clock synchronization circuit of the present invention.
The figure is a relationship diagram showing its characteristics, Figure 6 is a waveform diagram showing its waveform, Figure 7 is a block diagram of a synchronization circuit that separates the reception and transmission clocks in the present invention, and Figure 8 is a waveform showing its waveform. 9 are relationship diagrams showing the characteristics. 1 (18-1c): Transmission control device, 2... Transmission line, 3
(3A-3C): Terminal device, 13th, 14th...
1st % 2 I21 Figure 3 O Arrow 4- Figure 5 yt Figure 111 →-te

Claims (1)

【特許請求の範囲】 1、複数の伝送制御装置を伝送線路で結合した伝送系に
おける、各伝送制御装置の受信データに同期した受信お
よび中継送信クロック再生方式において、受信データの
変化タイミングを抽出し、再生クロックとの位相差を検
出し、該位相差を小さくするよう再生クロックの位相を
調整する際に、位相差に対して一定の不感帯を設けるこ
とを特徴とする伝送系におけるクロック同期方式。 2、第1項記載のクロック同期方式において、受信クロ
ックと中継送信クロックを分離し、中継送信クロックを
受信クロックに位相同期させ、受信クロック同様に位相
差に不感帯を設けることを特徴とする伝送系におけるク
ロック同期方式。
[Claims] 1. In a transmission system in which a plurality of transmission control devices are coupled via a transmission line, in a reception and relay transmission clock regeneration method synchronized with the reception data of each transmission control device, the change timing of received data is extracted. A clock synchronization method for a transmission system, characterized in that when detecting a phase difference with a reproduced clock and adjusting the phase of the reproduced clock to reduce the phase difference, a certain dead zone is provided with respect to the phase difference. 2. In the clock synchronization method described in item 1, a transmission system characterized in that the reception clock and the relay transmission clock are separated, the relay transmission clock is phase-synchronized with the reception clock, and a dead zone is provided for the phase difference like the reception clock. Clock synchronization method in
JP59206224A 1984-10-03 1984-10-03 Clock synchronization method in transmission system Expired - Lifetime JP2609582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206224A JP2609582B2 (en) 1984-10-03 1984-10-03 Clock synchronization method in transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206224A JP2609582B2 (en) 1984-10-03 1984-10-03 Clock synchronization method in transmission system

Publications (2)

Publication Number Publication Date
JPS6184941A true JPS6184941A (en) 1986-04-30
JP2609582B2 JP2609582B2 (en) 1997-05-14

Family

ID=16519816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206224A Expired - Lifetime JP2609582B2 (en) 1984-10-03 1984-10-03 Clock synchronization method in transmission system

Country Status (1)

Country Link
JP (1) JP2609582B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097124C (en) * 1995-12-19 2002-12-25 东丽株式会社 Fiber structure and process for the prodcution thereof
JP2005160025A (en) * 2003-09-04 2005-06-16 Oasis Silicon Systems Circuit, system, and method for preventing communication system absent dedicated clocking master from producing clocking frequency outside acceptable range

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619263A (en) * 1979-07-26 1981-02-23 Meidensha Electric Mfg Co Ltd Waveform shaping circuit
JPS5713838A (en) * 1980-06-30 1982-01-23 Hitachi Ltd Clock pulse reproduction system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619263A (en) * 1979-07-26 1981-02-23 Meidensha Electric Mfg Co Ltd Waveform shaping circuit
JPS5713838A (en) * 1980-06-30 1982-01-23 Hitachi Ltd Clock pulse reproduction system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097124C (en) * 1995-12-19 2002-12-25 东丽株式会社 Fiber structure and process for the prodcution thereof
JP2005160025A (en) * 2003-09-04 2005-06-16 Oasis Silicon Systems Circuit, system, and method for preventing communication system absent dedicated clocking master from producing clocking frequency outside acceptable range

Also Published As

Publication number Publication date
JP2609582B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JPH055710Y2 (en)
US20020199124A1 (en) System and method for synchronizing data transfer across a clock domain boundary
JPH08228147A (en) Control of clock generator,phase detector and pll
JPH05508983A (en) Token ring synchronization
JPS63115415A (en) Method and apparatus for supplying clock signal
US4320515A (en) Bit synchronizer
JPS6214546A (en) Quasi-synchronous buffer control system
JPS6184941A (en) Clock synchronizing system in transmission system
US5418496A (en) Serial data clock recovery circuit using dual oscillator circuit
JPS5926136B2 (en) clock regeneration circuit
JPS61127243A (en) Bit phase synchronizing circuit
JPH0142177B2 (en)
JPS62102636A (en) Clock recovery circuit
JPH0247144B2 (en) ISOSETSUTEIHOSHIKI
JPS5819056A (en) Clock reproducing circuit
JP3097737B2 (en) Memory circuit for burst clock
US20030053578A1 (en) Synchronous receiver
JPS61293048A (en) Loop type communication system
JPH08335932A (en) Inter-station clock synchronization circuit
JPH02145040A (en) Clock recovery device
JP2805606B2 (en) Digital signal reproduction device
JP2979811B2 (en) Clock output circuit
JPH04115637A (en) Method and device for automatic adjustment of receiving clock phase in clock synchronization type communication system
JPS6316935B2 (en)
JPH08340312A (en) Frame synchronization control circuit