JPS6184053A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6184053A
JPS6184053A JP59204001A JP20400184A JPS6184053A JP S6184053 A JPS6184053 A JP S6184053A JP 59204001 A JP59204001 A JP 59204001A JP 20400184 A JP20400184 A JP 20400184A JP S6184053 A JPS6184053 A JP S6184053A
Authority
JP
Japan
Prior art keywords
substrate
capacity
electrode
layer
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59204001A
Other languages
Japanese (ja)
Inventor
Katsuhiro Shimohigashi
下東 勝博
Yoshio Sakai
芳男 酒井
Osamu Minato
湊 修
Yoshifumi Kawamoto
川本 佳史
Toshiaki Masuhara
増原 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59204001A priority Critical patent/JPS6184053A/en
Publication of JPS6184053A publication Critical patent/JPS6184053A/en
Priority to US06/934,556 priority patent/US4901128A/en
Priority to US07/452,683 priority patent/US5214496A/en
Priority to US07/822,325 priority patent/US5237528A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To increase a storage capacity by a method wherein a groove penetrating surface layer to a substrate and an electrode in the groove are provided while one of the electrodes opposing to said electrode is made into a substrate. CONSTITUTION:A charge storage part 5 formed of e.g. polycrystalline Si in a groove is connected to an N<+> diffusion layer 12 of cell selective transistor 9. One storage capacity CS1 as a depletion layer capacity between the storage parts 5 and a P type epitaxial layer 2 is smaller than other capacities. Next CS2 as another capacity between the storage part 5 and a high concentration P<+> or N<+> substrate to be a capacity equivalent to a capacity between a metallic layer and another metallic layer through the intermediary of a thin insulating film. Moreover CS3 is a capacity between the storage part 5 and e.g. a polycrystalline electrode 7 through the intermediary of the other insulating film to be equivalent to a capacity between a metallic layer and another metallic layer. In such a constitution, a capacity per unit space may be increased almost two times larger than a capacity of conventional structure.

Description

【発明の詳細な説明】 本発明は、1トランジスタ型メモリセルに係り、特に小
面積で蓄積容量が大きくでき、種々の雑音耐性に優れ、
超高集積メモリに好適なメモリセル構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a one-transistor type memory cell, which can have a large storage capacity with a small area, and has excellent resistance to various noises.
The present invention relates to a memory cell structure suitable for ultra-highly integrated memory.

〔発明の背景〕[Background of the invention]

超高集積メモリに好適なメモリセルの一例は、特開昭5
1−130.1711に記載の溝形容量セルがある。
An example of a memory cell suitable for ultra-highly integrated memory is disclosed in Japanese Patent Application Laid-open No. 5
There is a trench-type capacitive cell described in 1-130.1711.

禾セルは、シリコン基板に設けられた溝側面を容量とし
て用いホさい平面面積で大なる容量を得るものである。
The cell uses the side surface of a groove provided in a silicon substrate as a capacitor to obtain a large capacitance with a small planar area.

しかし容量は従来通りシリコン表面との容量のみを利用
するもので、溝構造の利点を効果的に生かす配慮が十分
でない。
However, as in the past, only the capacitance with the silicon surface is utilized, and insufficient consideration has been given to effectively utilizing the advantages of the groove structure.

又、溝型容量ゆえに生じるセル間リーク電流の問題につ
いては何ら考慮していない。
Furthermore, no consideration is given to the problem of inter-cell leakage current caused by the trench capacitance.

〔発明の目的〕[Purpose of the invention]

本発明の第1の目的は、溝構造の利点を十分に活用し、
同一面積で従来構造より大きな容量を有するメモリセル
構造を提供することにある。第2の目的は、従来より種
々の雑音耐性に優れたメモリセル構造を提供することに
ある。
The first object of the present invention is to fully utilize the advantages of the groove structure,
It is an object of the present invention to provide a memory cell structure having a larger capacity than a conventional structure in the same area. A second purpose is to provide a memory cell structure that has better resistance to various noises than conventional ones.

〔発明の概要〕[Summary of the invention]

従来の溝形容量セルは、基本的には単一の容量部分しか
利用できないという不十分さがあった。
Conventional trench-type capacitive cells have the disadvantage that basically only a single capacitive portion can be utilized.

すなわち基板表面とゲート電極(特開昭51−130.
178 )間の容量、もしくは溝内の多結晶シリコン電
極間の容量のいずれかである。本発明は、これらの容量
要素を同時に多数利用できれば、同一平面面積で従来よ
り大きな記憶容量が実現できるという考え方に基づき、
基板表面でなく基板自体を工夫して一つの容量電極とす
る発想を得、上記目標が達成できることを示した。
That is, the substrate surface and the gate electrode (JP-A-51-130.
178 ) or the capacitance between polycrystalline silicon electrodes in the trench. The present invention is based on the idea that if a large number of these capacitive elements can be used simultaneously, a larger storage capacity than before can be achieved with the same planar area.
By devising the idea of using the substrate itself as a single capacitive electrode rather than the surface of the substrate, we have shown that the above goal can be achieved.

更に本発明では高濃度基板上に、低濃度層を設け、該高
濃度層により、蓄積容量の増加、及びセル間リーク電流
の防止をも図るものである。
Furthermore, in the present invention, a low concentration layer is provided on the high concentration substrate, and the high concentration layer increases the storage capacity and prevents leakage current between cells.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。本実
施例は、1トランジスタ形メモリセルであり、電荷蓄積
部5は、3mの電極材料との間の容量の総和とでき、従
来に比べ約2倍の記憶容量が得られる特徴を有する。以
下説明を明解にするため、Nチャネル形のメモリセルに
ついて説明するが、Pチャネル形の場合は、下記導電形
をP。
An embodiment of the present invention will be described below with reference to FIG. This embodiment is a one-transistor type memory cell, and the charge storage section 5 can be formed by the sum of the capacitances between the charge storage section 5 and the electrode material of 3 m, and has a feature that a storage capacity approximately twice as large as that of the conventional one can be obtained. To make the explanation clear, an N-channel type memory cell will be explained below, but in the case of a P-channel type, the following conductivity type is P.

N逆にすればよい。電荷蓄積部5は、例えば多結晶シリ
コンであり、セル選択用トランジスタ9の一方のN゛拡
散層領域12と接続され、溝内に形成される。記憶容量
の一つC51は、電荷蓄積部5とP形エピタキシャル層
2との間の空之層容吸である。この容量は、通常エピタ
キシ1ル層の濃度を通常のNチャネルMO5LSIの基
板濃度10 ”〜l Q ll′cffl−3と19定
する方が妥当なため、他の容量に比し小さい。次にC3
2は、電荷蓄積部5と高濃度P゛またはN“基板との間
の容量であり、薄い絶縁膜(単層でも多層でもよい)を
介した金層−全層間容量と等価な容量と見なせる。更に
Cは。
N You can do it the other way around. The charge storage section 5 is made of polycrystalline silicon, for example, and is connected to one of the N2 diffusion layer regions 12 of the cell selection transistor 9 and formed in the trench. One of the storage capacitances C51 is an empty layer capacity between the charge storage section 5 and the P-type epitaxial layer 2. This capacitance is usually smaller than other capacitances because it is more appropriate to define the concentration of the epitaxial layer as the substrate concentration of a normal N-channel MO5LSI, which is 10'' to lQll'cffl-3.Next, C3
2 is the capacitance between the charge storage section 5 and the high concentration P'' or N'' substrate, which can be considered to be equivalent to the capacitance between the gold layer and the entire layer through a thin insulating film (either a single layer or a multilayer). .Furthermore, C.

1gI蓄積部5と、他の絶縁膜(単層でも多層でもよい
)を介して例えば多結晶電極7との間の容量であり、C
52と同じく、金層−全層間容量と等価な容量である。
It is the capacitance between the 1gI storage section 5 and, for example, the polycrystalline electrode 7 via another insulating film (which may be a single layer or a multilayer), and C
Similar to 52, the capacitance is equivalent to the capacitance between the gold layer and all the layers.

以上の如く基板そのものの構造および容量形成を第1図
の様にすれば、単位平面面積当りの容量を第2図に参考
として示す従来構造(容量C5は、電荷蓄積部5(表面
反転層領域)と多結晶シリコン7との間の容量のみ)に
比し。
As described above, if the structure of the substrate itself and the formation of capacitance are as shown in FIG. 1, the capacitance per unit plane area is shown in FIG. ) and polycrystalline silicon 7).

約2倍程度大きくできる。本発明による構造と従来構造
との蓄積容量の詳細な比較を第3図に示す。
It can be made about twice as large. A detailed comparison of storage capacity between the structure according to the present invention and the conventional structure is shown in FIG.

第3図では溝深さdに対する蓄積容量を本発明の構造(
図中、構造I)と、従来構造(図中、構造■)とで比較
している。本発明による構造■では溝深さdが大きくな
ればなるほど、従来構造に比べ、大きな蓄積容量が得ら
れる。第1図の基板構造はたとえばPonP”のエピタ
キシャル基板を使うことにより実現可能である。また単
に第2図のW造に上記エピタキシャル基板を使うことは
意味がないことは明らかである。何故ならP+層部分に
は反転層ができず電荷蓄積部5が形成できない。
In FIG. 3, the storage capacity is plotted against the groove depth d in the structure of the present invention (
In the figure, structure I) is compared with a conventional structure (structure ■ in the figure). In structure (2) according to the present invention, as the groove depth d becomes larger, a larger storage capacity can be obtained compared to the conventional structure. The substrate structure shown in FIG. 1 can be realized by using, for example, a PonP" epitaxial substrate. It is also obvious that there is no point in simply using the above epitaxial substrate for the W structure shown in FIG. 2.The reason is that P+ An inversion layer is not formed in the layer portion, and the charge storage portion 5 cannot be formed.

なお、容量を形成する絶縁膜4,6は薄いSiO2膜、
 513 Na  膜Ta 205  膜や、それらの
複合膜を用いることができる。
Note that the insulating films 4 and 6 forming the capacitance are thin SiO2 films,
513 Na film, Ta 205 film, or a composite film thereof can be used.

第4図は、本発明の他の実施例である。本質的には第1
図と変わりはないがセル選択トランジスタのゲート配線
30が容量部の上部にも配置できることを示したもので
このような構造は折返しビット線構成のメモリセルには
必要である(例えばl5SCCDigest of T
ech Papers、 P 283 +第1図参照)
FIG. 4 shows another embodiment of the invention. Essentially the first
This is the same as the figure, but it shows that the gate wiring 30 of the cell selection transistor can also be placed above the capacitor section, and such a structure is necessary for memory cells with a folded bit line configuration (for example, 15SCCDigest of T
ech Papers, P 283 + see Figure 1)
.

本発明の他の実施例を第5図に示す。本発明の特長は、
C,J、を大きくするためP基板領域の溝と接する表面
にP領域12より、やや濃度の高い同一導電形の不純物
(略々l Q 17cm−3オーダー)領域41を設け
ることにある。空乏層容量に逆比例する空乏層厚は、領
域41の不純物濃度の平方根に逆比例するため、C51
を約3倍大きくでき(P領域12の不純物濃度をl Q
 16cIff−3、領域41の濃度をl Q l7c
m−3とした場合)、全体の電荷蓄積容量を更に大きく
できる。領域41は、溝エッチ後にP形不純物1例えば
ボロンを溝内より拡散することにより形成可能である。
Another embodiment of the invention is shown in FIG. The features of the present invention are:
In order to increase C and J, an impurity region 41 of the same conductivity type (approximately lQ 17 cm-3 order) having a slightly higher concentration than the P region 12 is provided on the surface of the P substrate region in contact with the groove. Since the depletion layer thickness, which is inversely proportional to the depletion layer capacitance, is inversely proportional to the square root of the impurity concentration in the region 41, C51
can be increased by about 3 times (the impurity concentration of P region 12 can be increased by l Q
16cIff-3, the concentration of region 41 is l Q l7c
m-3), the overall charge storage capacity can be further increased. The region 41 can be formed by diffusing a P-type impurity 1, for example, boron, from within the trench after etching the trench.

本発明の他の実施例を第6図に示す。本実施例では電荷
が蓄積される電極5が、セル選択用トランジスタのゲー
ト電極9の上にも重なっているため電極6と電極7との
間に形成される蓄積容量はさらに増加することになる。
Another embodiment of the invention is shown in FIG. In this embodiment, since the electrode 5 on which charges are stored also overlaps the gate electrode 9 of the cell selection transistor, the storage capacitance formed between the electrodes 6 and 7 further increases. .

本発明の他の実施例を第7図に示す。本発明は第1図の
Ca3をなくした構造であり、プロセスの簡略化を目的
としている。CI!3をなくした分電荷蓄積容量は、第
2図と略々同じとなる。しかしながら本実施例ばかりで
なく本発明の他の実施例筒1.4,5.6図についても
同様に言えることであるが、本構造は、種々の雑音耐性
が従来に増し優れており同一容量でも本構造が有利であ
る。すなわち、従来構造第2図に比し、以下の利点を有
する。
Another embodiment of the invention is shown in FIG. The present invention has a structure in which Ca3 in FIG. 1 is eliminated, and is aimed at simplifying the process. CI! 3 is removed, the charge storage capacity is approximately the same as that in FIG. 2. However, the same can be said not only for this embodiment but also for the other embodiments of the present invention shown in FIGS. However, this structure is advantageous. That is, compared to the conventional structure shown in FIG. 2, it has the following advantages.

1)電源電圧のバンプ雑音がない(反転層を作る必要が
ないので電極材料1,2.7には電源電圧を加える必要
がな(グランド電位とできる。
1) There is no bump noise in the power supply voltage (there is no need to create an inversion layer, so there is no need to apply a power supply voltage to the electrode materials 1, 2.7 (they can be at ground potential).

2)メモリセルの反転層間のリーク電流がない。2) There is no leakage current between the inversion layers of the memory cell.

3)α線によるアンプセットに強い(主な電荷蓄積部が
シリコン基板上になく、溝内の低抵抗ポリシリコン電極
であること)。
3) Resistant to amplifier set by alpha rays (the main charge storage part is not on the silicon substrate, but is a low resistance polysilicon electrode in the groove).

本発明によるメモリセルの平面レイアウト図を第8図(
A)、(B)に示す。(A)は第1図に示す構造に対応
する平面レイアウト図であり、(B)は第4図に示す構
造に対応する平面レイアウト図である。2つの平面レイ
アウト図より明らかなように、2つのメモリセルとも、
深溝領域20の小さな領域に大きな蓄積容量が形成され
ている。
A plan layout diagram of a memory cell according to the present invention is shown in FIG.
Shown in A) and (B). (A) is a plan layout diagram corresponding to the structure shown in FIG. 1, and (B) is a plan layout diagram corresponding to the structure shown in FIG. 4. As is clear from the two plan layout diagrams, both memory cells are
A large storage capacitor is formed in a small region of the deep groove region 20.

以上の如く、本発明のメモリセル構造は、超高集積メモ
リLSIに好適であることが明らかである。
As described above, it is clear that the memory cell structure of the present invention is suitable for ultra-highly integrated memory LSI.

次に主に第1図の発明につき詳細な製造方法の一例を第
9図に示す。製造方法は、以下の通りである。
Next, an example of a detailed manufacturing method mainly for the invention shown in FIG. 1 is shown in FIG. The manufacturing method is as follows.

(a)例えばP (2)onP”  (1)の基板の所
望部をLOCO5法により酸化し、電荷蓄積部の溝加工
を行う。本加工は、ドライエッチ技術で可能であるので
詳細は省略する。表面に薄い絶縁膜4を形成し、電荷蓄
積電極5の一部となる多結晶シリコン51を最終仕上り
厚の略々半分の厚さに堆積し。
(a) For example, a desired part of the substrate of P (2) on P" (1) is oxidized by the LOCO5 method, and a groove for the charge storage part is processed. This process can be done using dry etching technology, so the details are omitted. A thin insulating film 4 is formed on the surface, and polycrystalline silicon 51, which will become part of the charge storage electrode 5, is deposited to a thickness approximately half of the final finished thickness.

所望部以外をエツチングで除去する。Remove parts other than the desired parts by etching.

(b)マスクを用い多結晶シリコンと基板との接触部6
2の絶縁膜を除去する。このとき絶縁膜をオーバエッチ
する。これにより接触部のマスク寸法が小さくできセル
サイズを小さくできる効果がある。
(b) Contact area 6 between polycrystalline silicon and substrate using a mask
Remove the insulating film No. 2. At this time, the insulating film is overetched. This has the effect of reducing the mask size of the contact portion and reducing the cell size.

(c)多結晶シリコンを堆積後、ヒ素(As)もしくは
リン(P)のn形不純物を拡散もしくは打込みにより、
多結晶シリコン5に添加し熱処理を加えると、多結晶シ
リコン5よりn形不純物がシリコン基板に拡散していき
、n形波散層部12が形成される。その後多結晶シリコ
ン5をエツチング除去し絶縁膜6を形成する。
(c) After depositing polycrystalline silicon, by diffusing or implanting n-type impurities such as arsenic (As) or phosphorus (P),
When added to polycrystalline silicon 5 and subjected to heat treatment, n-type impurities diffuse from polycrystalline silicon 5 into the silicon substrate, forming n-type wave dispersion layer portion 12. Thereafter, polycrystalline silicon 5 is removed by etching and an insulating film 6 is formed.

(d)容量C33の電極となる多結晶シリコン7を堆積
し所望部以外を除去し、更に所望部以外の絶縁膜6も除
去する。
(d) Polycrystalline silicon 7, which will become the electrode of the capacitor C33, is deposited and removed in areas other than the desired areas, and the insulating film 6 is also removed in areas other than the desired areas.

(e)表面酸化、ゲート電極9の形成、ソースおよびド
レイン領域3,12の形成は従来どおりである。
(e) Surface oxidation, formation of gate electrode 9, and formation of source and drain regions 3 and 12 are as conventional.

この後メタライゼーションを行えば第1図を得る。第4
図の製造法は、本製造法にP形不純物拡散工程を追加す
ればよいことは明らかである。
If metallization is then carried out, the result shown in FIG. 1 will be obtained. Fourth
It is clear that the manufacturing method shown in the figure can be achieved by adding a P-type impurity diffusion step to the present manufacturing method.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば、従来の溝形状を有
するメモリセルに比べ、同一平面面積で約2倍の電荷蓄
積容量が得られ、超高集積化に好適となる。更に本発明
によれば、 ■)電源電圧バンプ雑音が除去でき。
As described above, according to the present invention, a charge storage capacity approximately twice as large as that of a conventional memory cell having a groove shape can be obtained in the same planar area, making it suitable for ultra-high integration. Furthermore, according to the present invention, (1) power supply voltage bump noise can be removed;

2)メモリセル間干渉がなく、 3)α線耐性に優れたメモリセルが実現できる。2) No interference between memory cells, 3) A memory cell with excellent resistance to alpha rays can be realized.

これらの特性も、本発明のメモリセルが超高集積化に好
適であることを示すものである。
These characteristics also indicate that the memory cell of the present invention is suitable for ultra-high integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の一実施例を示す断面図、第2
図は、従来の1トランジスタセルの断面図、第3図は、
従来構造(1)と本構造(II)での蓄積容量の溝深さ
依存性を示す図、第4図は本発明の第2の実施例を示す
断面図、第5図は、本発明の第3の実施例を示す断面図
、第6図は、本発明の第4の実施例を示す断面図、第7
図は、本発明の第5の実施例を示す断面図、第8図は、
本発明による実施例の平面図を示す図、第9図は、第1
の実施例の製造工程を工程順に示す断面図である。 1・・・高濃度基板、2・・高濃度基板と同一導電形の
低濃度層、3・・・N゛もしくはP“領域、4および6
・・・薄い絶縁膜、5・・・電荷蓄積電極、7・・電極
、8・・・絶縁膜、9・・・ゲート電極、10・・・絶
縁膜。 第 7 口 早 27 第 4 力 第 60 第 7 z 第8 図 (八つ (B、) 第 9 口 C) −2,/
FIG. 1 is a sectional view showing a first embodiment of the present invention, and FIG.
The figure is a cross-sectional view of a conventional one-transistor cell, and FIG.
A diagram showing the groove depth dependence of storage capacitance in the conventional structure (1) and the present structure (II), FIG. 4 is a cross-sectional view showing the second embodiment of the present invention, and FIG. 6 is a sectional view showing the third embodiment of the present invention, and FIG. 7 is a sectional view showing the fourth embodiment of the present invention.
The figure is a sectional view showing the fifth embodiment of the present invention, and FIG.
FIG. 9 is a diagram showing a plan view of an embodiment of the present invention.
FIG. 3 is a cross-sectional view illustrating the manufacturing process of the embodiment in order of process. 1...High concentration substrate, 2...Low concentration layer of the same conductivity type as the high concentration substrate, 3...N'' or P'' region, 4 and 6
... Thin insulating film, 5... Charge storage electrode, 7... Electrode, 8... Insulating film, 9... Gate electrode, 10... Insulating film. 7th Fast Mouth 27 4th Power 60th 7z 8th Figure (Eight (B,) 9th Mouth C) -2,/

Claims (1)

【特許請求の範囲】 1、第1の導電形でかつ高濃度の不純物を有するシリコ
ン基板上に設けられた該基板と同一もしくは反対の導電
形で該基板より濃度の低い不純物を有する第1の層を備
え、表面より上記第1の層を貫通して上記基板まで達す
る溝を有し、更に溝内に第1の電極を有し、該電極との
間に容量を形成する少なくとも一つの対向電極が上記基
板であることを特徴とする半導体装置。 2、第2の対向電極が、上記電荷蓄積用の電極と絶縁膜
を介して基板と反対方向に設けられたことを特徴とした
請求範囲第1項記載の半導体装置。 3、該半導体装置は、1トランジスタセルであり該第1
の電極は、電荷蓄積部であることを特徴とした請求範囲
第1項記載の半導体装置。 4、上記基板上の低濃度不純物層は、基板上に形成され
たエピタキシャル層であることを特徴とした請求範囲第
1項記載の半導体装置。
[Scope of Claims] 1. A first silicon substrate having an impurity of the same or opposite conductivity type and having a lower concentration than the substrate, provided on a silicon substrate having a first conductivity type and having impurities at a high concentration; layer, has a groove that penetrates the first layer from the surface and reaches the substrate, further has a first electrode in the groove, and at least one opposing electrode that forms a capacitance between the groove and the first electrode. A semiconductor device characterized in that an electrode is the substrate described above. 2. The semiconductor device according to claim 1, wherein the second counter electrode is provided in a direction opposite to the substrate with an insulating film interposed between the charge storage electrode and the substrate. 3. The semiconductor device is a one-transistor cell, and the first
2. The semiconductor device according to claim 1, wherein the electrode is a charge storage portion. 4. The semiconductor device according to claim 1, wherein the low concentration impurity layer on the substrate is an epitaxial layer formed on the substrate.
JP59204001A 1982-11-04 1984-10-01 Semiconductor device Pending JPS6184053A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59204001A JPS6184053A (en) 1984-10-01 1984-10-01 Semiconductor device
US06/934,556 US4901128A (en) 1982-11-04 1986-11-24 Semiconductor memory
US07/452,683 US5214496A (en) 1982-11-04 1989-12-19 Semiconductor memory
US07/822,325 US5237528A (en) 1982-11-04 1992-01-17 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59204001A JPS6184053A (en) 1984-10-01 1984-10-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6184053A true JPS6184053A (en) 1986-04-28

Family

ID=16483129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59204001A Pending JPS6184053A (en) 1982-11-04 1984-10-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6184053A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187359A (en) * 1984-10-05 1986-05-02 Nec Corp Semiconductor memory cell
JPS6249650A (en) * 1985-08-28 1987-03-04 Nec Corp Semiconductor device
US4798794A (en) * 1984-06-05 1989-01-17 Kabushiki Kaisha Toshiba Method for manufacturing dynamic memory cell
US5041887A (en) * 1989-05-15 1991-08-20 Kabushiki Kaisha Toshiba Semiconductor memory device
US5075248A (en) * 1988-09-22 1991-12-24 Hyundai Electronics Industries Co., Ltd. Method of making DRAM having a side wall doped trench and stacked capacitor structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798794A (en) * 1984-06-05 1989-01-17 Kabushiki Kaisha Toshiba Method for manufacturing dynamic memory cell
JPS6187359A (en) * 1984-10-05 1986-05-02 Nec Corp Semiconductor memory cell
JPS6249650A (en) * 1985-08-28 1987-03-04 Nec Corp Semiconductor device
US5075248A (en) * 1988-09-22 1991-12-24 Hyundai Electronics Industries Co., Ltd. Method of making DRAM having a side wall doped trench and stacked capacitor structure
US5041887A (en) * 1989-05-15 1991-08-20 Kabushiki Kaisha Toshiba Semiconductor memory device

Similar Documents

Publication Publication Date Title
US4641166A (en) Semiconductor memory device having stacked capacitor-type memory cells
JPS60126861A (en) Semiconductor memory device
JPS62286270A (en) Semiconductor memory
JPS6014462A (en) Semiconductor memory element
JPS60189964A (en) Semiconductor memory
JPS6184053A (en) Semiconductor device
JPS60224260A (en) Semiconductor memory device
JPH01100960A (en) Semiconductor integrated circuit device
JP2503661B2 (en) Semiconductor memory device and manufacturing method thereof
JP3019038B2 (en) Semiconductor device
JPS63184360A (en) Semiconductor storage device and manufacture of the same
JPS6156444A (en) Semiconductor device
JPH02116160A (en) Semiconductor device and manufacture thereof
JPS6182459A (en) Semiconductor memory device
JPS6240868B2 (en)
JPS6028260A (en) Semiconductor memory element
JPS602781B2 (en) semiconductor storage device
JPS627152A (en) Semiconductor memory
JPS63260065A (en) Semiconductor memory device and its manufacture
JPS59112646A (en) Semiconductor memory device
JPS61289657A (en) Semiconductor storage device
JPS6053470B2 (en) Manufacturing method of semiconductor memory
JPS61233494A (en) Semiconductor device
JPS6379370A (en) Semiconductor storage device and manufacture thereof
JPH04145660A (en) Semiconductor memory