JPS6180896A - Multilayer wiring substrate - Google Patents

Multilayer wiring substrate

Info

Publication number
JPS6180896A
JPS6180896A JP59201934A JP20193484A JPS6180896A JP S6180896 A JPS6180896 A JP S6180896A JP 59201934 A JP59201934 A JP 59201934A JP 20193484 A JP20193484 A JP 20193484A JP S6180896 A JPS6180896 A JP S6180896A
Authority
JP
Japan
Prior art keywords
multilayer wiring
layer
multilayer
wiring board
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59201934A
Other languages
Japanese (ja)
Other versions
JPH0434838B2 (en
Inventor
昭雄 高橋
捷夫 菅原
正博 小野
信宏 佐藤
晃 永井
和嶋 元世
奈良原 俊和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59201934A priority Critical patent/JPS6180896A/en
Publication of JPS6180896A publication Critical patent/JPS6180896A/en
Publication of JPH0434838B2 publication Critical patent/JPH0434838B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、少なくとも2個以上のLSIテップあるいは
チップキャリアを直接搭載することが可能な有機材料系
の高密度多層配線基板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an organic material-based high-density multilayer wiring board on which at least two or more LSI chips or chip carriers can be directly mounted.

〔発明の背景〕[Background of the invention]

従来の多層配線基板について、以下図面に基づい℃説明
する。
A conventional multilayer wiring board will be explained below based on the drawings.

第2図及び第6図は、それぞれ従来の多層配線基板の断
面概略図である。   、 第2図において、符号1及び4は積層セラミック基板、
2は配線導体、3はスルーホールを意味する。また第3
図において、符号5は絶縁樹脂層、6はセラミック基板
、7及び9は配線導体、8はスルーホール、10は導通
穴を意味する。
FIGS. 2 and 6 are schematic cross-sectional views of conventional multilayer wiring boards, respectively. , In FIG. 2, numerals 1 and 4 are laminated ceramic substrates,
2 means a wiring conductor, and 3 means a through hole. Also the third
In the figure, reference numeral 5 indicates an insulating resin layer, 6 indicates a ceramic substrate, 7 and 9 indicate wiring conductors, 8 indicates a through hole, and 10 indicates a conductive hole.

第2図に示す従来の多層配線板はセラミック板を多層に
積層し、その間隙に高融点金属系の導体配線層を形成し
たものである。
The conventional multilayer wiring board shown in FIG. 2 is one in which ceramic plates are laminated in multiple layers, and a high-melting point metal-based conductor wiring layer is formed in the gaps between them.

第3図に示す構造はセラミック基板上に焼成等の方法に
よって固化可能な絶縁ペースト等を絶縁層として用いる
ことにより、導体配線層と上記絶縁層とt積上げて多層
化したものである。
The structure shown in FIG. 3 is multilayered by stacking a conductor wiring layer and the above-mentioned insulating layer on a ceramic substrate by using an insulating paste or the like that can be solidified by a method such as firing as an insulating layer.

前者の構造では、セラミック板が焼成前の生シート、い
わゆるグリーンシートの状態の時に、その表面にモリブ
デンやタングステンなどの高融点金屑系の導体ペースト
を配線パターン状に印刷し、各層を位置合せして積j脅
し、同時に焼成することにより固化させるという製法が
用いられている。しかし、グリーン7−トの状態で、導
体パターンの印刷、位置合せ等の高flKを要求される
作業が行われるため、焼成固化後に現われる寸法誤差が
大きく、導体パターンの実現可能な最小寸法はたかだか
100μm1格子間隔500μm程度である。更に、導
体層とセラミック板が同時に焼成によつ℃形成されるた
め、導体mの材料としては、高温においても反応性の低
い高融点全屈系を用いる必要があり、これらの金属はい
ずれも導電性の面で銅や銀に劣るという欠点があった。
In the former structure, when the ceramic plate is in a green sheet state before firing, a conductive paste made of high-melting point metal scraps such as molybdenum or tungsten is printed on the surface in the form of a wiring pattern, and each layer is aligned. A manufacturing method is used in which the material is piled up and simultaneously baked to solidify it. However, since work that requires high flK, such as printing and positioning the conductor pattern, is performed in the green state, the dimensional errors that appear after firing and solidification are large, and the minimum achievable size of the conductor pattern is at most The grid spacing is about 100 μm and 500 μm. Furthermore, since the conductor layer and the ceramic plate are formed at the same time by firing at °C, it is necessary to use a high melting point total bending material with low reactivity even at high temperatures as the material for the conductor m. It had the disadvantage of being inferior to copper and silver in terms of electrical conductivity.

後者では、絶縁層としてセラミック系のものt用いるこ
とも、有機高分子材料を用いることも可能なため、導体
層の材料としては特に制約が無く線幅30μm1格子間
隔200〜300μ気程度のものも実現可能である。
In the latter case, it is possible to use a ceramic material or an organic polymer material as the insulating layer, so there are no particular restrictions on the material for the conductor layer, and a line width of 30 μm and a lattice spacing of 200 to 300 μm may also be used. It is possible.

しかし、後者の場合、セラミック基板上に、絶縁層を積
上げた場合、セラミック基板と絶縁層の熱膨張収縮差が
生じ、全体に反りが生じたり、層間はく離を生じるため
、高多層化を進める上では大きなネックとなっている。
However, in the latter case, when insulating layers are stacked on a ceramic substrate, there will be a difference in thermal expansion and contraction between the ceramic substrate and the insulating layer, which will cause warping and interlayer delamination, making it difficult to increase the number of layers. This is a big bottleneck.

そのため、セラミック基板と絶縁層の厚み比や材料等に
制約がでてくる。
Therefore, there are restrictions on the thickness ratio and materials of the ceramic substrate and the insulating layer.

〔発明の目的〕[Purpose of the invention]

本祐明の目的は、前述した問題点χ解決した高密度多層
配線基板を提供することにある。
The purpose of Yumei Moto is to provide a high-density multilayer wiring board that solves the above-mentioned problems.

〔発明の概要〕[Summary of the invention]

本発明を概説すれば、本発明は多層配線基板に関する発
明であって、導体パターンと絶縁層とを交互に有した多
層配線層における絶縁層が有機系ポリマーを必須成分と
する層であり、かつ該多層配線層化、耐熱性及び熱放散
性が優れかつ熱膨張率の小さい基板の両面に有する構造
であることを特徴とする。
To summarize the present invention, the present invention relates to a multilayer wiring board, in which an insulating layer in a multilayer wiring layer having conductive patterns and insulating layers alternately is a layer containing an organic polymer as an essential component, and The structure is characterized by the multi-layer wiring structure, which has excellent heat resistance and heat dissipation properties, and has a small coefficient of thermal expansion on both sides of the substrate.

本発明の構造により、多層配線層の低熱膨張化と反り発
生の問題が解決された。
The structure of the present invention solves the problems of low thermal expansion and warping of multilayer wiring layers.

また、上記絶縁層として無機あるいは有機繊維で補強さ
れた有機系ポリマーを用いれば、更に多層配線層の低熱
膨張化が図れることを見出した。
It has also been found that by using an organic polymer reinforced with inorganic or organic fibers as the insulating layer, it is possible to further reduce the thermal expansion of the multilayer wiring layer.

本発明における耐熱性及び熱放散性が優れかつ熱膨張率
の小さい基板としては各種の公知のもの、例えば、セラ
ミック、導電材料があるが、中でも特にセラミック基板
を用いると、低熱膨張化を達成し、かつ反りを低減する
のに大きな効果が奏せられると共に、作成工程も簡便で
あることを確認した。
In the present invention, there are various known substrates that have excellent heat resistance and heat dissipation properties and a low coefficient of thermal expansion, such as ceramics and conductive materials. Among them, the use of ceramic substrates in particular achieves low thermal expansion. It was also confirmed that the manufacturing process was simple and had a great effect on reducing warpage.

本発明の多層配線基板を製造するには、例えば無機繊維
で補強された樹脂板の上下に導体配線を形成させた両面
配線板な、無機繊維に半硬化の樹脂ヲ塗布したプリプレ
グシートで多数枚同時に加熱加圧下で接着させて多層化
させる。
In order to manufacture the multilayer wiring board of the present invention, a large number of prepreg sheets made of inorganic fibers coated with semi-cured resin are used, such as double-sided wiring boards with conductor wiring formed on the top and bottom of a resin board reinforced with inorganic fibers. At the same time, they are bonded under heat and pressure to form a multilayer structure.

このとき、接着層の樹脂は加熱により重合して硬化する
At this time, the resin of the adhesive layer is polymerized and hardened by heating.

次に、各層導体間の導通化のため、マイクロドリル又は
レーザ等により穴あl’に行い、金属めっき又は金属蒸
着等によりスルーホール導体を形成させる。更に上記多
層配線層化セラミック基板の上下に上記プリプレグシー
トを介して一体化接着させる。このとき、セラミック基
板の上下の多層配線層は独立に機能しても良いし、上下
の接続を必要とする場合は、セラミック基板にあらかじ
め接続部に穴あけt行い穴内部を導電化処理しておいて
上下の配線層’に711気的に、接続しても良いし、一
体化した後、接続部に穴あけを行い導電化しても良い。
Next, in order to establish electrical conductivity between the conductors in each layer, holes 1' are formed using a micro-drill or a laser, and through-hole conductors are formed by metal plating or metal vapor deposition. Furthermore, the multilayer wiring layered ceramic substrate is integrally bonded to the top and bottom of the multilayer wiring layered ceramic substrate via the prepreg sheet. At this time, the multilayer wiring layers on the top and bottom of the ceramic substrate may function independently, or if a connection between the top and bottom is required, the ceramic substrate is pre-drilled at the connection part and the inside of the hole is treated to be conductive. It may be connected directly to the upper and lower wiring layers, or it may be made electrically conductive by drilling a hole in the connection portion after integration.

また、セラミック基板の上下の配線層は必ずしも同じで
ある必要はなく、その機能に応じて選択できる。ただし
、上下の多層配線層の厚さはできるだけ同じにすること
が好ましい。また、厚み比が異なつ℃も本発明の効果は
あるが、6:1〜1:3の範囲で選択するのが良い。
Furthermore, the wiring layers above and below the ceramic substrate do not necessarily have to be the same, and can be selected depending on their functions. However, it is preferable that the thicknesses of the upper and lower multilayer wiring layers be the same as possible. The present invention also has the effect of having a different thickness ratio in degrees Celsius, but it is better to select it within the range of 6:1 to 1:3.

また、多層配線層のトータル厚さとセラミソり基板の厚
さは、要求される熱膨張率により自由に選択できる。
Further, the total thickness of the multilayer wiring layer and the thickness of the ceramic soldered substrate can be freely selected depending on the required coefficient of thermal expansion.

本)6明の多層配線基板を製造するには、前記の基板の
両面に一体化接着させる方式の代りに、セラミック基板
の上下に一層ずつ絶縁層及び配置層を逐次積層していく
方式を用いてもよく、その効果は同様に達成される。
In order to manufacture a multilayer wiring board according to the present invention, a method is used in which insulating layers and arrangement layers are successively laminated one layer at a time on the top and bottom of a ceramic substrate, instead of the method of integrally adhering it to both sides of the board. The effect may be achieved similarly.

本96明の高密度配服基板の場合、多層化接着時の寸法
収猫率はせいぜい0.02〜0.06チ程肢であり、従
来のセラミックグリーンシート法の12〜14チに比べ
て極端に小さいため多層化時の位置精度が大幅に向上し
、例えば格子間隔500μm間に30μ毒幅の配線を3
〜5本用いろことも可能になる。そして、多層化接着時
の加熱温度が500℃以下で行えるため、i多体金属に
、114のような等電性の良い金属を使用することがで
きる。また、絶縁ノ0の誘電率がセラミンク基板よりは
るかに低いため演算速度の点でも有利になる。
In the case of the high-density distribution board of this 96-year-old, the dimensional compaction rate during multilayer bonding is at most about 0.02 to 0.06 inches, compared to 12 to 14 inches using the conventional ceramic green sheet method. Because it is extremely small, the positioning accuracy when multilayering is greatly improved.
It becomes possible to use up to 5 pieces. Since the heating temperature during multilayer adhesion can be 500° C. or lower, a metal with good isoelectricity such as 114 can be used as the i-polymetal. Furthermore, since the dielectric constant of the insulation layer is much lower than that of the ceramic substrate, it is advantageous in terms of calculation speed.

一般に、無機繊維を補強材に用いた多層基板の場合、平
面方向の熱膨張率が9〜12X10−’wa/ +m 
/ ℃と通常のLSIチップの場合の4×10−6■/
 sa/ CK比べて犬ぎい。このため、無機繊維を補
強材に用いた多層基板にLSIチップを直接搭載した場
合、ヒートサイクル時の熱膨張差により、LSIと基板
間の十分な接続信頼性が得られなかった。そこで、本発
明でを工、無機繊維を補強材としたものに限らず、有機
系ポリマーの多層基板な熱膨張率の小さいセラミック基
板の両側に張合せて使用した結果、多層基板の熱壓張率
が小さくなりかつ反りもないため、LSIチップをその
表面K例えばCCBKより直接搭載することが可能にな
り、LSIチップと多層基板との接続信頼性が大幅に向
上することがわかった。
Generally, in the case of a multilayer board using inorganic fiber as a reinforcing material, the coefficient of thermal expansion in the plane direction is 9 to 12X10-'wa/+m
/℃ and 4×10-6■/ for a normal LSI chip
sa/ It's a dog compared to CK. For this reason, when an LSI chip is directly mounted on a multilayer board using inorganic fibers as a reinforcing material, sufficient connection reliability between the LSI and the board cannot be obtained due to the difference in thermal expansion during heat cycles. Therefore, in the present invention, we have developed not only a material using inorganic fiber as a reinforcing material, but also a multilayer substrate made of an organic polymer, which is laminated on both sides of a ceramic substrate with a small coefficient of thermal expansion. It has been found that since the ratio is small and there is no warpage, it becomes possible to directly mount the LSI chip on the surface K, for example, the CCBK, and the reliability of the connection between the LSI chip and the multilayer board is greatly improved.

本発明でいう有機繊維とし1:はポリアラミド系の繊維
があり、無機繊維としてはSiO2,A/40s。
The organic fiber 1 in the present invention is polyaramid fiber, and the inorganic fiber is SiO2, A/40s.

等を成分とするE−ガラス、C−ガラス、A−ガラス、
S−ガラス、D−ガラス、YM−51−A−ガラス及び
石英を使用したQ−ガラス等の各種ガラス繊維がある。
E-glass, C-glass, A-glass, etc.
There are various types of glass fibers such as S-glass, D-glass, YM-51-A-glass, and Q-glass using quartz.

また、有機繊維と無機繊維の混紡あるいは併用も効果が
ある。
Blending or combining organic fibers and inorganic fibers is also effective.

そして、樹脂としては、通常のエポキシ樹脂、フェノー
ル系iA脂等の熱硬化性樹脂が使用できるが、好ましく
は付加重合型のポリイミド系樹脂、脱水稲合曵のポリイ
ミド系樹脂、シアネート系付加重合型樹脂例えば、イソ
シアネート、シアン敗エステル、芳香族系シアナミド等
を素原料とする耐熱性樹脂がLSIを搭1成する場合、
耐熱性の点で有利である。
As the resin, a thermosetting resin such as a normal epoxy resin or a phenolic iA resin can be used, but preferably an addition polymerization type polyimide resin, a dehydrated rice paddy polyimide resin, or a cyanate addition polymerization type resin. For example, when a heat-resistant resin made from isocyanate, cyanide ester, aromatic cyanamide, etc. is used as a base material for LSI,
It is advantageous in terms of heat resistance.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明乞実施ν14により更に具体的に説明する
が、本発明は実施例に限定されるものではない。
Hereinafter, the present invention will be explained in more detail using the embodiment ν14, but the present invention is not limited to the embodiment.

実施例1 本発明の1実施a1]を添付の第1図に基づいて説明す
る。すなわち第1図は、本発明の多層配録基板の1例の
断面概略図である。第1図において、符号11は無機繊
維補強樹脂基板、12は無機趙維補強接后層、13はセ
ラミック基板、14及び15は配線導体、16はスルー
ホール、17は導通穴、18は接着剤を意味する。
Embodiment 1 Embodiment a1 of the present invention] will be described based on the attached FIG. 1. That is, FIG. 1 is a schematic cross-sectional view of one example of the multilayer wiring board of the present invention. In FIG. 1, reference numeral 11 is an inorganic fiber reinforced resin substrate, 12 is an inorganic fiber reinforced adhesive layer, 13 is a ceramic substrate, 14 and 15 are wiring conductors, 16 is a through hole, 17 is a conductive hole, and 18 is an adhesive. means.

まず、Q−ガラス繊維を補強材にした付加型ポリイミド
系樹脂板の両面に厚さ9μ鴬の銅箔を張合せた両面銅張
り積層板(厚さ100μ仇)110両面に化学銅めっき
及びエンチング法により回路15ft形成させて信号帰
、電m、層、整合層等の導体層を有する両面板を4枚ず
つ作成した。次に、各層剤の両面配線板同志を4枚ずつ
付加型ポリイミド系の半硬化街月1’Q−ガラス繊維ク
ロスに合成させて作成した接着層12を介して180℃
、60分、30 kg f /cm2の加熱加圧下、多
層化接着し、2株類の多層板を作成した。なお、多層化
接着はノjイドピンを用いる方法で位置ずれを防止して
行った。その後、マイクロドリルを用いて穴あけを行い
、全面に化学鋼めっきを行ってスルーホール導体16を
形成した。欠罠、最外層回路をエツチングにより形成さ
せて2枚の多層配線板を作成した。
First, 110 double-sided copper-clad laminates (100μ thick) are made by laminating copper foil with a thickness of 9μ on both sides of an additive polyimide resin plate using Q-glass fiber as a reinforcing material. A 15-ft circuit was formed using the method, and four double-sided boards each having conductor layers such as signal return, electric current, matching layers, etc. were fabricated. Next, four double-sided wiring boards of each layer were bonded together at 180°C through an adhesive layer 12 made by synthesizing the semi-cured polyimide 1'Q-glass fiber cloth.
, and 60 minutes under heat and pressure of 30 kgf/cm2 to form a multilayer adhesive, thereby creating two types of multilayer boards. Note that multilayer adhesion was performed using a method using a nodular pin to prevent positional shift. Thereafter, holes were drilled using a micro drill, and the entire surface was plated with chemical steel to form through-hole conductors 16. Two multilayer wiring boards were fabricated by forming missing traps and outermost layer circuits by etching.

次に厚さ3 mm ci) SiC、Jt!m板15に
、cOtガスレーザ装置により所定の位置に穴あけし、
化学銅めっきにより大向を導通化17する。この導通化
処理した穴の上下以外の部分にスクリーン印刷により付
加型ポリイミド接着剤18を塗布し、溶剤を除去した後
、導通化処理した穴の上下にハンダボールを乗せる。そ
の後、前記した高密度多層配線板ftSiC基板の上下
に重ね220℃、120分、10kgf/の2の加熱加
圧下で接着した。なお、この接着は、スルーホール16
とSiC基板のハンダボールを乗せた導通穴17とが重
ね合うようにガイドピンを用いる方法で行った。
Next, the thickness is 3 mm ci) SiC, Jt! Drill a hole in the m plate 15 at a predetermined position using a cOt gas laser device,
Make Omukai conductive17 by chemical copper plating. Additive polyimide adhesive 18 is applied by screen printing to the areas other than the top and bottom of the conductive hole, and after removing the solvent, solder balls are placed on the top and bottom of the conductive hole. Thereafter, they were stacked on top and bottom of the above-described high-density multilayer wiring board ftSiC substrate and bonded under heat and pressure of 10 kgf/2 for 120 minutes at 220°C. Note that this adhesion is performed through the through hole 16.
This was done by using a guide pin so that the conductive hole 17 on which the solder ball of the SiC substrate was placed overlapped.

本実施例により作成した多層配線基板の反りは100+
w+角で50〜40μ慣であり、上記と全く同じ多層配
線板をSiCの片側に張合せた基板の70〜90μ倶に
比べ大幅に低減できた。
The warpage of the multilayer wiring board created according to this example is 100+
The thickness was 50 to 40μ at the w+ angle, which was significantly reduced compared to the 70 to 90μ of a board made by laminating the same multilayer wiring board as above on one side of SiC.

また、多層化接着時の寸法変化も0.02 〜0.03
%であり、従来のセラミックグリーンシート法の12〜
14%に比べ大幅に低減できたため微細パターン同志の
接着が可能となり、一平面当りの配線密度を4倍以上廻
向上させることが可能になった。
In addition, the dimensional change during multilayer adhesion is 0.02 to 0.03.
%, and the conventional ceramic green sheet method is 12~
Since it was significantly reduced compared to 14%, it became possible to bond fine patterns together, and it became possible to increase the wiring density per plane by more than four times.

次に、上記高密度配線基板に10頭角のLSIチップg
ccB法により搭載し、−65℃〜+150℃の1サイ
クル2時間のヒートサイクル試験1000サイクルを行
った後、基板とLSIチップの接続信頼性を評価した結
果、全く異常が認められなかった。
Next, a 10-head square LSI chip g is placed on the high-density wiring board.
After mounting by the ccB method and performing 1,000 heat cycle tests of -65° C. to +150° C. for 2 hours per cycle, the connection reliability between the board and the LSI chip was evaluated, and no abnormality was observed.

また、前記した多層基板の補強繊維としてQ−ガラス繊
維の代りにポリアラミド繊維を使用した場合、SiCの
片面に多層配線板を張合せた場合の反り100簡角当り
100〜150μmに比べ本発明に従ってSiCの両面
に張合せた場合100噛角当り30〜40μmと本発明
の反り低減効果が大きいことを確認した。
Furthermore, when polyaramid fiber is used instead of Q-glass fiber as the reinforcing fiber of the multilayer board described above, according to the present invention, the warpage is 100 to 150 μm per 100 simple squares when a multilayer wiring board is laminated on one side of SiC. When laminated on both sides of SiC, it was confirmed that the warpage reduction effect of the present invention is 30 to 40 μm per 100 angles, which is large.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の多層配線基板   1で
は、低熱膨張化が図れることはもちろんのこと、従来の
ものより大幅に反りを低減することができたので、各種
の用途に有用であるという顕著な効果が奏せられた。
As explained above, the multilayer wiring board 1 of the present invention not only achieves low thermal expansion but also significantly reduces warping compared to conventional ones, so it is said to be useful for various applications. A remarkable effect was achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多層配線基板の1例の断面概略図、第
2図及び第3図は従来の多層配線基板の断面概略図であ
る。 1及び4二槙層セラミック基板、2.7.9.14及び
15:配線6体、6.8及び16:スルーホール、5:
絶縁樹脂JΔ、6及び16:セラミック基板、11:無
機繊維補強樹脂基板、12:無機繊維補強接着層、10
及び17:4通穴、18:接着剤
FIG. 1 is a schematic cross-sectional view of one example of a multilayer wiring board according to the present invention, and FIGS. 2 and 3 are schematic cross-sectional views of a conventional multilayer wiring board. 1 and 4 two-layer ceramic substrate, 2.7.9.14 and 15: 6 wiring bodies, 6.8 and 16: through hole, 5:
Insulating resin JΔ, 6 and 16: Ceramic substrate, 11: Inorganic fiber reinforced resin substrate, 12: Inorganic fiber reinforced adhesive layer, 10
and 17: 4 through holes, 18: adhesive

Claims (1)

【特許請求の範囲】 1、導体パターンと絶縁層とを交互に有した多層配線層
における絶縁層が有機系ポリマーを必須成分とする層で
あり、かつ該多層配線層化、耐熱性及び熱放散性が優れ
かつ熱膨張率の小さい基板の両面に有する構造であるこ
とを特徴とする多層配線基板。 2、該絶縁層が、無機あるいは有機繊維で補強された有
機系ポリマーである特許請求の範囲第1項記載の多層配
線基板。 3、該耐熱性及び熱放散性が優れかつ熱膨張率の小さい
基板が、セラミック基板である特許請求の範囲第1項又
は第2項記載の多層配線基板。
[Claims] 1. The insulating layer in the multilayer wiring layer having conductive patterns and insulating layers alternately is a layer containing an organic polymer as an essential component, and the multilayer wiring layer, heat resistance and heat dissipation A multilayer wiring board characterized by having a structure on both sides of the board that has excellent properties and a low coefficient of thermal expansion. 2. The multilayer wiring board according to claim 1, wherein the insulating layer is an organic polymer reinforced with inorganic or organic fibers. 3. The multilayer wiring board according to claim 1 or 2, wherein the substrate having excellent heat resistance and heat dissipation properties and a small coefficient of thermal expansion is a ceramic substrate.
JP59201934A 1984-09-28 1984-09-28 Multilayer wiring substrate Granted JPS6180896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201934A JPS6180896A (en) 1984-09-28 1984-09-28 Multilayer wiring substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201934A JPS6180896A (en) 1984-09-28 1984-09-28 Multilayer wiring substrate

Publications (2)

Publication Number Publication Date
JPS6180896A true JPS6180896A (en) 1986-04-24
JPH0434838B2 JPH0434838B2 (en) 1992-06-09

Family

ID=16449207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201934A Granted JPS6180896A (en) 1984-09-28 1984-09-28 Multilayer wiring substrate

Country Status (1)

Country Link
JP (1) JPS6180896A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324696A (en) * 1986-07-17 1988-02-02 日本電気株式会社 High multilayer interconnection board
JPH01262696A (en) * 1988-03-11 1989-10-19 Internatl Business Mach Corp <Ibm> Electronic circuit board structure
JP2021077758A (en) * 2019-11-08 2021-05-20 日本特殊陶業株式会社 Multilayer wiring board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365975A (en) * 1976-11-25 1978-06-12 Fujitsu Ltd Method of producing multilayer printed circuit board
JPS53122765A (en) * 1977-03-31 1978-10-26 Matsushita Electric Works Ltd Multilayer printed circuit board
JPS5641198A (en) * 1979-09-12 1981-04-17 Showa Hikouki Kogyo Kk Operating device for bottom valve in tank truck

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365975A (en) * 1976-11-25 1978-06-12 Fujitsu Ltd Method of producing multilayer printed circuit board
JPS53122765A (en) * 1977-03-31 1978-10-26 Matsushita Electric Works Ltd Multilayer printed circuit board
JPS5641198A (en) * 1979-09-12 1981-04-17 Showa Hikouki Kogyo Kk Operating device for bottom valve in tank truck

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324696A (en) * 1986-07-17 1988-02-02 日本電気株式会社 High multilayer interconnection board
JPH01262696A (en) * 1988-03-11 1989-10-19 Internatl Business Mach Corp <Ibm> Electronic circuit board structure
JP2021077758A (en) * 2019-11-08 2021-05-20 日本特殊陶業株式会社 Multilayer wiring board

Also Published As

Publication number Publication date
JPH0434838B2 (en) 1992-06-09

Similar Documents

Publication Publication Date Title
TW448709B (en) Low-thermal expansion circuit board and multilayer circuit board
KR100517009B1 (en) Multilayer Wiring Substrate and Manufacturing Method Thereof
JP3059568B2 (en) Method of manufacturing multilayer printed circuit board
EP1589795A1 (en) Laminate ceramic circuit board and process therefor
WO2017096167A1 (en) Pcb hybrid redistribution layer
JP2001028483A (en) Wiring board, multilayer wiring board, circuit component package, and manufacturing method of wiring board
JPH0716094B2 (en) Wiring board manufacturing method
JP4201436B2 (en) Manufacturing method of multilayer wiring board
WO2006078027A1 (en) Multilayer printed wiring board
EP0981268A1 (en) Circuit board with an electronic component mounted thereon and multi-layer board
WO2013146931A1 (en) Multilayer wiring board
JP4694007B2 (en) Manufacturing method of three-dimensional mounting package
JPS6180896A (en) Multilayer wiring substrate
JP3440174B2 (en) Multilayer printed wiring board and method of manufacturing the same
JPH08186376A (en) High-density thin film maltilayer wiring board, mounting structure thereof, and manufacture thereof
JP2749472B2 (en) Multilayer thin-film wiring board, module using the board
JP4817835B2 (en) Wiring board
JPH11163522A (en) Multilayer wiring boar and its manufacture
JPH07106770A (en) Multilayered printed wiring board
JP2004228521A (en) Wiring board and its manufacturing method
JPH0653684A (en) Thin film multilayer wiring board and module using the same
JPH0671144B2 (en) Multi-layer high-density mounting module
JPH025029B2 (en)
JPS5987896A (en) Multilayer printed board
JP4467341B2 (en) Manufacturing method of multilayer wiring board