JPS6180207A - Substrate for electrical and optical circuit element - Google Patents

Substrate for electrical and optical circuit element

Info

Publication number
JPS6180207A
JPS6180207A JP20148284A JP20148284A JPS6180207A JP S6180207 A JPS6180207 A JP S6180207A JP 20148284 A JP20148284 A JP 20148284A JP 20148284 A JP20148284 A JP 20148284A JP S6180207 A JPS6180207 A JP S6180207A
Authority
JP
Japan
Prior art keywords
optical
substrate
electrical
holes
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20148284A
Other languages
Japanese (ja)
Other versions
JPH0566564B2 (en
Inventor
Takanobu Noro
野呂 孝信
Hideo Arima
有馬 英夫
Seiichi Onoda
誠一 斧田
Yasumasa Koakutsu
小圷 泰正
Ataru Yokono
中 横野
Akizo Toda
堯三 戸田
Tamio Takeuchi
竹内 民雄
Masao Yano
矢野 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20148284A priority Critical patent/JPS6180207A/en
Publication of JPS6180207A publication Critical patent/JPS6180207A/en
Publication of JPH0566564B2 publication Critical patent/JPH0566564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Structure Of Printed Boards (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To reduce the size and cost of a module by providing insertion holes meeting the shape and size of a light emitting element, photodetector and optical fibers for transmission to be mounted and connected to the terminal part of the optical waveguides embedded into a ceramic substrate. CONSTITUTION:A guide hole 2 for installation of the light emitting element, a guide hole 3 for installation of the photodetector and a face plate insertion hole 8-1 layer in diameter than said hole are provided to the ceramic substrate 1. A stainless steel screen is placed on the substrate 1 and Au and Ag-Pd paste is printed on the substrate to form wiring conductors 4 which are then calcined in a belt furnace. A face plate 6 is put into the hole 8-1 and the spacing is filled by an adhesive agent 7 and is heated, by which the circuit substrate is obtd. The light emitting element 11 and the photodetector 12 are then set in the guide holes 2, 3 by which the circuit connection is executed. The decrease in the optical coupling loss, the reduction in the size of the module, etc. are thus made possible.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電気及び光学素子基板に係り、特に小型、低廉
な光伝送モジュールの電気及び光学回路素子基板に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electrical and optical element substrate, and more particularly to an electrical and optical circuit element substrate for a small and inexpensive optical transmission module.

〔発明の背景〕[Background of the invention]

近年、光ファイバを伝送路とした光通信の発達はめざま
しく、通信幹線をはじめ、電力、とプラント、オフィス
オートメーション(OA)、ファクトリオートメーショ
ン、構内通信網(LAN)などの適用、さらに高度情報
通信網(INS)計画における加入者系伝送システムへ
の応用が検討されている。
In recent years, the development of optical communication using optical fiber as a transmission route has been remarkable, and it has been applied to communication trunk lines, electric power, plants, office automation (OA), factory automation, local area networks (LAN), and even advanced information communication networks. Application to subscriber transmission systems in the (INS) plan is being considered.

これら通信分野への光通信の適用においては、今後シス
テムを構成する機器、部品などが低廉であり、かつモジ
ュールの小型化、組立の簡素化、量産技術の確立が重要
になってくる。
In applying optical communications to these communications fields, it will be important in the future for the equipment and parts that make up the system to be inexpensive, to miniaturize modules, to simplify assembly, and to establish mass production technology.

この光通信の信号の受発信に必要な光伝送モジュールは
、主に受発光素子と伝送用ファイバを結合する光学系回
路部と送受信に必要なIC等の電気素子及びその電気配
線回路部からなっている。
The optical transmission module necessary for receiving and transmitting signals in optical communication mainly consists of an optical system circuit section that connects the light receiving and emitting elements and the transmission fiber, electrical elements such as ICs necessary for transmitting and receiving, and their electrical wiring circuit section. ing.

従来、光伝送モジュールは、上記二者は全く異質の実装
系であり、これらはそれぞれ別個の空間に設置していた
Conventionally, the above-mentioned two types of optical transmission modules have been completely different mounting systems, and they have been installed in separate spaces.

すなわち受発光素子−収光レンズー伝送用ファイバなど
の光学部品は立体的に配置して光路を形成し、IC等は
基板上に平面的に設置していた。
That is, optical components such as a light receiving/emitting element, a condensing lens, and a transmission fiber are arranged three-dimensionally to form an optical path, and ICs and the like are arranged two-dimensionally on a substrate.

このため、モジュールは上記二者の系の部品を収めるス
ペースを必ず必要としていた。このことは、モジュール
の小型化の障害となっていた。
For this reason, the module always required space to accommodate the two types of components mentioned above. This has been an obstacle to miniaturization of modules.

また光学部品を組合せ光路を形成する光学系回路部は、
モジュールの組立作業を著しく非能率にする原因となっ
ていた。その理由は、個々の光学部品、たとえばロッド
レンズや球レンズと受発光素子及び伝送用ファイバとそ
れぞれの光軸を合せたり、レンズの焦点距離に合せるな
どの調整作業が多いためである。
In addition, the optical system circuit unit that combines optical components to form an optical path is
This caused the module assembly work to be extremely inefficient. The reason for this is that there is a lot of adjustment work, such as aligning the optical axes of individual optical components, such as rod lenses, ball lenses, light receiving and emitting elements, and transmission fibers, and matching the focal length of the lenses.

また、前記光学系部品を固定(接着)するとき接着剤が
乾固する際の収縮作用によって、一旦調整した光軸や焦
点距離に合せた部品間隔が位置ずれを起し、光結合部で
の不良を発生させる欠点があった。
Furthermore, when the optical system components are fixed (glued), the shrinkage effect of the adhesive as it dries causes the component spacing that matches the once adjusted optical axis and focal length to become misaligned, causing problems at the optical coupling section. It had the drawback of causing defects.

このような理由によって、従来の光伝送モジュールの小
型化を阻み、また量産性や製品の歩留の向上を阻害して
いた。これらが、ひいては光伝送モジュールの低コトス
化を阻んでいた(特開昭55−117114)。
For these reasons, miniaturization of conventional optical transmission modules has been hindered, and improvements in mass productivity and product yield have been hindered. These factors have hindered the cost reduction of optical transmission modules (Japanese Unexamined Patent Publication No. 117114/1983).

〔発明の目的〕[Purpose of the invention]

本発明の目的は前記した従来技術の欠点を改善し、小型
、低廉な光伝送モジュール用の電気及び光学回路素子基
板を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide a small and inexpensive electrical and optical circuit element substrate for an optical transmission module.

〔発明の概要〕[Summary of the invention]

本発明はセラミックス基板に光導波路が埋設され、この
導波路の端末部に位置する基板部には搭載・接続しよう
とする受発光素子及び伝送用ファイバの(光ファイバ)
形状寸法に合った挿入穴(ガイド穴)が設けられている
ものを用いる。
In the present invention, an optical waveguide is embedded in a ceramic substrate, and a substrate section located at the end of the waveguide is used for mounting and connecting the light receiving and emitting elements and the transmission fiber (optical fiber).
Use one that has an insertion hole (guide hole) that matches the shape and dimensions.

このようなガイド穴が設けられていると、受発光素子及
びファイバが、極めて容易に実装できる。
If such a guide hole is provided, the light receiving/emitting element and the fiber can be mounted extremely easily.

また、上記セラミックス基板には、厚膜または薄膜法に
よって、電気配線が施されている。
Furthermore, electrical wiring is provided on the ceramic substrate by a thick film or thin film method.

本発明の電気及び光学回路素子基板を構成する材料とし
て、好ましいものを第1表に示した。
Preferred materials for forming the electrical and optical circuit element substrate of the present invention are shown in Table 1.

(以下余白) −4= なお、同表中の導波材であるフェースプレートとは、通
常開口率の大きいファイバの集合体からなる板を言う。
(The following is a blank space) -4= Note that the face plate, which is a waveguide material in the same table, usually refers to a plate made of an aggregate of fibers with a large aperture ratio.

たとえば、コア径が約15〜25μm以下のガラスせん
維を多数本束ねて、低融点ガラス(クラッドの役目)で
融着固定し、これの光軸方向と直交して接断した板であ
る。この板の両面を研磨することによって、一方の片面
からもう一方の片面に光(たとえば光点または像)を拡
散させることなく導くことができる。
For example, it is a plate made by bundling a large number of glass fibers with a core diameter of about 15 to 25 μm or less, fusing and fixing them with low melting point glass (which acts as a cladding), and cutting the bundles at right angles to the optical axis direction. By polishing both sides of the plate, it is possible to direct light (eg, a light spot or image) from one side to the other without scattering it.

このため、フェースプレートをセラミックス基板に埋設
することによって、そのセラミックス基板を介して光伝
送用ファイバと受発光素子を結合し、光路を形成できる
Therefore, by embedding the face plate in the ceramic substrate, the optical transmission fiber and the light receiving/emitting element can be coupled through the ceramic substrate to form an optical path.

この光の導波材としてはフェースプレートに限ぎらず、
従来からのロンドレンズないしは光ファイバまたは球レ
ンズなど、光の導波機能を有するものであれば使用でき
る(第2表)。
The waveguide material for this light is not limited to face plates.
Any material having a light waveguide function, such as a conventional Rondo lens, optical fiber, or ball lens, can be used (Table 2).

これらの導波材を電気配線されたセラミックス基板に埋
設し、電気及び光の回路を一体化することによって、光
の結合部に要したスペースを別個に設けることは不用と
なる。このため光伝送モジュールは大幅に小型化できる
By embedding these waveguide materials in a ceramic substrate with electrical wiring and integrating the electrical and optical circuits, it becomes unnecessary to separately provide the space required for the optical coupling section. Therefore, the optical transmission module can be significantly downsized.

また、これによって、個別の光学部品を組合せる必要は
なく、光学系の組立作業が簡素化され、部品点数や工程
数が大幅に削減できる。さらに本発明では、一枚の基板
に光伝送モジュールに必要な部品を一括搭載できる利点
がある。
Furthermore, this eliminates the need to combine individual optical components, simplifying the assembly work of the optical system, and greatly reducing the number of parts and steps. Furthermore, the present invention has the advantage that components necessary for the optical transmission module can be mounted all at once on a single board.

(以下余白) 〔発明の実施例〕 以下、本発明を実施例により更に詳細に説明する。(Margin below) [Embodiments of the invention] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 まず、第1図(a)(b)に示した形状の発光素子設置
用穴2、受光素子設置用穴3、及びフェースプレート挿
入穴8−1を設けたアルミナ系のセラミックス基板1を
キャスティング法で作った。
Example 1 First, an alumina-based ceramic substrate 1 was prepared with a light emitting element installation hole 2, a light receiving element installation hole 3, and a face plate insertion hole 8-1 having the shapes shown in FIGS. 1(a) and 1(b). was made using the casting method.

次にこの基板1上にステンレス製スクリーンを置き、A
u並びにAg−Pd系ペーストを印刷して、第2図に示
した未焼成の配線導体4を形成した。
Next, place a stainless steel screen on this substrate 1, and
U and Ag--Pd based paste were printed to form the unfired wiring conductor 4 shown in FIG.

ここでAu導電ペーストは第2図の発信用電気素子搭載
部13及び受信用電子素子搭載部14のワイヤボンディ
ング用の配線部に、またAg−Pd導電ペーストはリー
ドピン5をつける部分の配線部に用いた。
Here, the Au conductive paste is applied to the wire bonding wiring part of the transmitting electric element mounting part 13 and the receiving electronic element mounting part 14 shown in FIG. 2, and the Ag-Pd conductive paste is applied to the wiring part where the lead pin 5 is attached. Using.

このようにして印刷した基板をベルト炉を用い850℃
で焼成し、第2図に示した厚膜配線導体を有する配線基
板を得た。
The substrate printed in this way was heated to 850°C using a belt furnace.
A wiring board having a thick film wiring conductor as shown in FIG. 2 was obtained.

次に上記配線部のセラミックス基板1を裏がえし、第3
図に示したフェースプレート(導波材)6をフェースプ
レート挿入穴8−1の中に置き、この穴とフェースプレ
ー1−6とのすきまをガラスフリットをリング状に固め
た接合剤7を挿入して充填した。
Next, turn over the ceramic substrate 1 of the wiring section, and
Place the face plate (waveguide material) 6 shown in the figure in the face plate insertion hole 8-1, and insert the bonding agent 7 made of glass frit hardened into a ring shape into the gap between this hole and the face plate 1-6. and filled it.

このようにして、フェースプレートとリング状の接合剤
をセラ1−シた配線済の基板をベルト炉を用い500℃
に加熱し、アルミナ基板1とフェースプレー1−6を接
合剤7のガラスフリッl−で融着し、電気及び光学回路
基板を得た。
In this way, the face plate and the wired board coated with the ring-shaped bonding agent were heated to 500°C using a belt furnace.
The alumina substrate 1 and the face plate 1-6 were fused using a glass frit l- of bonding agent 7 to obtain an electrical and optical circuit board.

次に第2図に示したリードピン5をピン併用配線8体に
はんだ付し、電気信号人出用端子とした。
Next, the lead pins 5 shown in FIG. 2 were soldered to the eight pin-combined wires to form electrical signal output terminals.

その後、第3図に示した発光素子1.1及び受光素子1
2を基板の発光素子設置用ガイド穴2及び受光素子設置
用ガイド穴3にセットし、フェースダンボンディング法
によって回路接続を行なった。またチップコンデンサを
第2図のチップコンデンサ設置位w9に同様の方法で固
定した。
After that, the light emitting element 1.1 and the light receiving element 1 shown in FIG.
2 was set in the guide hole 2 for installing a light emitting element and the guide hole 3 for installing a light receiving element on the substrate, and circuit connection was performed by the face-to-face bonding method. In addition, the chip capacitor was fixed in the same manner at the chip capacitor installation position w9 in FIG.

次に第4図に示した発光素子の駆動及び光信号の受発信
に必要な発信用IC]5及び受信用TC]6を第2図の
発信用電気素子搭載部13及び受信用電子搭載部14の
位置に固定し、これらの電気回路をワイヤボンディング
法で接続した。
Next, the transmitting IC [5] and the receiving TC]6 necessary for driving the light emitting element and receiving and transmitting optical signals shown in FIG. 14, and these electric circuits were connected by wire bonding.

次に第3図に示したフェースプレート挿入穴8−1の残
部にナイロン製のファイバ挿入ガイドリング10を挿入
し、伝送用ファイバガイド六8−2とした。
Next, a nylon fiber insertion guide ring 10 was inserted into the remaining part of the face plate insertion hole 8-1 shown in FIG. 3 to form a transmission fiber guide 68-2.

このようにして得た素子搭載ずみの光伝送モジュール基
板を第4図(a)(b)に示すように封止用樹脂17に
よって樹脂封止し、伝送用ファイバ18をファイバガイ
ド六8−2に挿入・接続し、双方向光伝送モジュールを
得た。
The thus obtained optical transmission module board with elements mounted thereon is sealed with a sealing resin 17 as shown in FIGS. 4(a) and 4(b), and the transmission fiber 18 is inserted into the fiber guide 68-2. A two-way optical transmission module was obtained.

以上によって得た双方向光伝送モジュールの特性、モジ
ュール組立に関する特徴は以下の通りであった。
The characteristics of the bidirectional optical transmission module obtained above and the characteristics regarding module assembly were as follows.

(1)光結合損失=8〜10dB (2)モジュールの小型化:従来の175(3)部品数
の低減:従来の1/2 (4)工程数の低減:従来の1./3 (5)不良率の低減:従来の174 11一 実施例2 実施例1と同様の方法で作った厚膜配線導体を設けたア
ルミナ基板(第2図)の導波材挿入六8−1にリング状
に固めたガラスフリットを挿入し、このリング状ガラス
フリットの内側に球レンズを挿入した。
(1) Optical coupling loss = 8 to 10 dB (2) Miniaturization of module: 175 compared to conventional (3) Reduction in number of parts: 1/2 compared to conventional (4) Reduction in number of steps: 1. /3 (5) Reduction of defective rate: Conventional 174 11-Example 2 Insertion of waveguide material into an alumina substrate (Fig. 2) provided with a thick film wiring conductor made in the same manner as in Example 1 68- A ring-shaped hardened glass frit was inserted into 1, and a ball lens was inserted inside the ring-shaped glass frit.

次にベルト炉を用い、500℃に加熱して基板と球レン
ズをガラスフリッ1〜で融着し、電気及び光学回路素子
基板を得た。
Next, using a belt furnace, the substrate and the ball lens were fused together by heating to 500° C. with glass frit 1 to obtain an electrical and optical circuit element substrate.

その後、実施例1と同様の方法で受発光素子、送受信用
IC5及びチップコンデンサを搭載し、伝送用ファイバ
を接続して双方向光伝送モジュールを得た。
Thereafter, a light emitting/receiving element, a transmitting/receiving IC 5, and a chip capacitor were mounted in the same manner as in Example 1, and a transmission fiber was connected to obtain a bidirectional optical transmission module.

このようにして得た双方向モジュールの特性、モジュー
ル組立に関する特徴は以下の通りであった。
The characteristics of the bidirectional module thus obtained and the characteristics regarding module assembly were as follows.

(1)光の結合損失:5〜7dB (2)モジュールの小型化:従来の175(3)部品数
の低減:従来の1/2 (4)工程数の低減:従来の1/3 (5)不良率の低減:従来の173 実施例3 第1図(a)(b)に示した形状のガラスセラミックス
基板を、グリーンシート積層法で作った。
(1) Optical coupling loss: 5 to 7 dB (2) Miniaturization of module: 175 compared to conventional (3) Reduction in number of parts: 1/2 compared to conventional (4) Reduction in number of steps: 1/3 compared to conventional (5 ) Reduction in defective rate: Conventional 173 Example 3 Glass-ceramic substrates having the shapes shown in FIGS. 1(a) and 1(b) were made by a green sheet lamination method.

次に基板の導波挿入穴8−1にリング状に固めたガラス
フリットを置き、そのリング状ガラスフリットの内側に
ロッドレンズを挿入した。
Next, a hardened ring-shaped glass frit was placed in the waveguide insertion hole 8-1 of the substrate, and a rod lens was inserted inside the ring-shaped glass frit.

次に実施例1と同様の方法でロッドレンズと基板をガラ
スフリットで融着すると共に基板を焼成した。
Next, in the same manner as in Example 1, the rod lens and the substrate were fused together using a glass frit, and the substrate was fired.

次にこの基板の配線側の基板表面を研磨したのち、有機
溶剤で洗浄した。
Next, the surface of this substrate on the wiring side was polished and then cleaned with an organic solvent.

この洗浄ずみ基板に薄膜法で第2図に示した薄膜配線導
体を形成した。ここで配線材はCr−N 1−Auの三
層とし、配線形状はステンレスマスク法゛で形成した。
A thin film wiring conductor shown in FIG. 2 was formed on this cleaned substrate by a thin film method. Here, the wiring material was made of three layers of Cr-N1-Au, and the wiring shape was formed by the stainless steel mask method.

このようにして得た電気及び光学回路素子基板を用い、
実施例1と同様の方法で受発光素子、送受信用IC、チ
ップコンデンサ伝送用ファイバを搭載接続し、双方向光
伝送モジュールを得た。
Using the electric and optical circuit element substrate obtained in this way,
A light emitting/receiving element, a transmitting/receiving IC, and a chip capacitor transmission fiber were mounted and connected in the same manner as in Example 1 to obtain a bidirectional optical transmission module.

この方法で双方向光伝送モジュールの特性、モジュール
組立に関する特徴は以下の通りであった。
The characteristics of the bidirectional optical transmission module and module assembly using this method were as follows.

(1)光の結合損失=3〜5dB (2)モジュールの小型化:従来の115(3)部品数
の低減:従来の1/2 (4)工程数の低減:従来の1/2 (5)不良率の低減:従来の172 〔発明の効果〕 以上、述べたように本発明の電気及び光学回路素子基板
は、以下(1)〜(3)に示す、すぐれた性能を有して
いる。
(1) Optical coupling loss = 3 to 5 dB (2) Miniaturization of module: 115 compared to conventional (3) Reduction in number of parts: 1/2 compared to conventional (4) Reduction in number of steps: 1/2 compared to conventional (5 ) Reduction in defective rate: 172 compared to conventional [Effects of the invention] As described above, the electrical and optical circuit element board of the present invention has excellent performance as shown in (1) to (3) below. .

(1)モジュール寸法の小型化、 (2)モジュール組立工数、組立時間の低減、組立部品
点数の低減によるモジュール組立ての生産性向上、モジ
ュールの低コスト化、(3)光素子、伝送用ファイバの
設置許容誤差の緩和と光の結合効率維持及び向上。
(1) Downsizing module dimensions, (2) Improving module assembly productivity by reducing module assembly man-hours, assembly time, and number of assembled parts, and lowering module costs; (3) Optical devices and transmission fibers. Relax installation tolerances and maintain and improve light coupling efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電気及び光学回路素子基板のベースと
なる基板を示す図、第2図は第1図の基板に電気配線及
び端子を設けた状態を示す図、第3図は第2図の基板に
フェースプレートを埋設した状態を示す図、第4図は第
1図の基板を用いて双方向光伝送モジュールを組立てた
状態を示す図である。 1・・・セラミックス基板、2・・・発光素子設置用穴
、3・・・受光素子設置用穴、4・・・配線導体、5・
・・電気端子リードピン、6・・・フェースプレート、
7・・・接合材、8−1・・・フェースプレート挿入穴
、8−2・・・ファイバ挿入穴、9・・・チップコンデ
ンサ設置位置、10・・・ファイバ挿入ガイドリング、
11・・・発光素子、12・・・受光素子、13・・・
発信用電気素子搭載部、14・・・受光用電気素子搭載
部、15・・・発信用IC116・・・受信用IC11
7・・・モールド、18・・・光伝送用ファイバ。
FIG. 1 is a diagram showing the base board of the electrical and optical circuit element board of the present invention, FIG. 2 is a diagram showing the state in which electrical wiring and terminals are provided on the board of FIG. 1, and FIG. FIG. 4 is a diagram showing a state in which a face plate is embedded in the substrate shown in the figure, and FIG. 4 is a diagram showing a state in which a bidirectional optical transmission module is assembled using the board shown in FIG. DESCRIPTION OF SYMBOLS 1... Ceramic substrate, 2... Hole for installing a light emitting element, 3... Hole for installing a light receiving element, 4... Wiring conductor, 5...
...Electrical terminal lead pin, 6...Face plate,
7... Bonding material, 8-1... Face plate insertion hole, 8-2... Fiber insertion hole, 9... Chip capacitor installation position, 10... Fiber insertion guide ring,
11... Light emitting element, 12... Light receiving element, 13...
Transmitting electric element mounting part, 14... Light receiving electric element mounting part, 15... Transmitting IC 116... Receiving IC 11
7... Mold, 18... Optical transmission fiber.

Claims (1)

【特許請求の範囲】 1、少なくとも二つの孔径を変化させたスルーホールが
設けられたセラミックス基板と、これらスルーホールの
直径の大きい孔内に固定された導波材と、を備え、これ
らスルーホールの直径の小さい孔内に光ファイバが挿入
され、かつ、これら光ファイバは前記導波材と光学的に
結合されている電気及び光学回路素子基板。 2、導波材がフェースプレート、ロッドレンズもしくは
球レンズである特許請求の範囲第1項記載の電気及び光
学回路素子基板。 3、少なくとも二つの孔径を変化させたスルーホールが
設けられたセラミックス基板と、これらスルーホールの
直径の大きい孔内に固定された導波材と、を備え、これ
らスルーホールの直径の小さい孔内に光ファイバが挿入
され、かつ、これら光ファイバは前記導波材と光学的に
結合されていて、かつ前記基板の少なくとも一方の面に
配線導体が設けられている電気及び光学回路素子基板。 4、導波材がフェースプレート、ロッドレンズもしくは
球レンズである特許請求の範囲第3項記載の電気及び光
学回路素子基板。 5、配線導体が、厚膜配線導体もしくは薄膜配線導体で
ある特許請求の範囲第3項記載の電気及び光学回路素子
基板。
[Claims] 1. A ceramic substrate provided with at least two through holes of varying diameters, and a waveguide material fixed in the large diameter holes of these through holes. An electrical and optical circuit element substrate, in which optical fibers are inserted into small-diameter holes, and these optical fibers are optically coupled to the waveguide material. 2. The electric and optical circuit element board according to claim 1, wherein the waveguide material is a face plate, a rod lens, or a ball lens. 3. A ceramic substrate provided with at least two through holes with varying diameters, and a waveguide material fixed in the large diameter holes of these through holes, and a waveguide material fixed in the small diameter holes of these through holes. An electrical and optical circuit element board, wherein optical fibers are inserted into the board, the optical fibers are optically coupled to the waveguide material, and a wiring conductor is provided on at least one surface of the board. 4. The electric and optical circuit element board according to claim 3, wherein the waveguide material is a face plate, a rod lens, or a ball lens. 5. The electrical and optical circuit element substrate according to claim 3, wherein the wiring conductor is a thick film wiring conductor or a thin film wiring conductor.
JP20148284A 1984-09-28 1984-09-28 Substrate for electrical and optical circuit element Granted JPS6180207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20148284A JPS6180207A (en) 1984-09-28 1984-09-28 Substrate for electrical and optical circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20148284A JPS6180207A (en) 1984-09-28 1984-09-28 Substrate for electrical and optical circuit element

Publications (2)

Publication Number Publication Date
JPS6180207A true JPS6180207A (en) 1986-04-23
JPH0566564B2 JPH0566564B2 (en) 1993-09-22

Family

ID=16441795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20148284A Granted JPS6180207A (en) 1984-09-28 1984-09-28 Substrate for electrical and optical circuit element

Country Status (1)

Country Link
JP (1) JPS6180207A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168211U (en) * 1984-10-12 1986-05-10
JPH02297511A (en) * 1989-05-12 1990-12-10 Hitachi Ltd Optical front end device
JPH0349510U (en) * 1990-09-04 1991-05-15
JPH03231706A (en) * 1990-02-08 1991-10-15 Fuji Electric Co Ltd Opto-electric converter
JPH08122588A (en) * 1994-10-27 1996-05-17 Nec Corp Semiconductor light reception module device and production of inner element in this module
JP2010160199A (en) * 2009-01-06 2010-07-22 Hitachi Cable Ltd Optical module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111123A (en) * 1982-12-03 1984-06-27 ジ−メンス・アクチエンゲゼルシヤフト Transmitting or receiving apparatus having diode retained with carrier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111123A (en) * 1982-12-03 1984-06-27 ジ−メンス・アクチエンゲゼルシヤフト Transmitting or receiving apparatus having diode retained with carrier

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168211U (en) * 1984-10-12 1986-05-10
JPH02297511A (en) * 1989-05-12 1990-12-10 Hitachi Ltd Optical front end device
JPH03231706A (en) * 1990-02-08 1991-10-15 Fuji Electric Co Ltd Opto-electric converter
JPH0349510U (en) * 1990-09-04 1991-05-15
JPH08122588A (en) * 1994-10-27 1996-05-17 Nec Corp Semiconductor light reception module device and production of inner element in this module
JP2010160199A (en) * 2009-01-06 2010-07-22 Hitachi Cable Ltd Optical module
US8179620B2 (en) 2009-01-06 2012-05-15 Hitachi Cable, Ltd. Optical module

Also Published As

Publication number Publication date
JPH0566564B2 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
JP4690963B2 (en) Manufacturing method of multi-channel optical module
US6635866B2 (en) Multi-functional fiber optic coupler
CN1043540C (en) Method of splicing optical fibre and optical waveguide
JP4060023B2 (en) Optical waveguide transceiver module
JPH08254635A (en) Optical interconnection device
CN105891979A (en) Light module
CN114967004A (en) Coupling method of optical fiber array and silicon optical chip and optical module
CN107340574A (en) Multichannel parallel light receiving assembly
EP1312946B1 (en) Method of manufacturing an optical mounting board
JPS6180207A (en) Substrate for electrical and optical circuit element
US6527457B2 (en) Optical fiber guide module and a method for making the same
JP3230506B2 (en) Light receiving module
US6956999B2 (en) Optical device
JP2002232054A (en) Mounting structure of optical module
US7195401B2 (en) Method for manufacturing optical access units, an optical access unit and an optical fiber ferrule module
JPH03184384A (en) Optical module submount and manufacture thereof
JP2892889B2 (en) Optical semiconductor module
JP3941531B2 (en) Optical receiver module
EP0182920A1 (en) Substrate mounting optical transmission module
GB2096401A (en) Improvements in or relating to electro-optical systems
JPS61245594A (en) Photoelectric hybrid integrated circuit board
EP0721122A1 (en) Apparatus and methods for interconnecting arrays of optical transmission paths
JP2007232888A (en) Optical fiber connecting structure
KR20030094466A (en) Optical Module with Multiport
KR100317397B1 (en) Architecture of a free-space optical interconnection module