JPS6177405A - Bias circuit for field effect transistor - Google Patents

Bias circuit for field effect transistor

Info

Publication number
JPS6177405A
JPS6177405A JP59197797A JP19779784A JPS6177405A JP S6177405 A JPS6177405 A JP S6177405A JP 59197797 A JP59197797 A JP 59197797A JP 19779784 A JP19779784 A JP 19779784A JP S6177405 A JPS6177405 A JP S6177405A
Authority
JP
Japan
Prior art keywords
effect transistor
field effect
potential difference
drain
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59197797A
Other languages
Japanese (ja)
Inventor
Yuuichi Kameshige
亀重 祐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59197797A priority Critical patent/JPS6177405A/en
Publication of JPS6177405A publication Critical patent/JPS6177405A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/306Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in junction-FET amplifiers

Abstract

PURPOSE:To keep the potential difference between a drain and a source and a drain current constant even if a DC parameter of an FET is in variation by using an operational amplifier. CONSTITUTION:When a DC parameter is changed and a drain current is decreased, a voltage drop across a register 5 is decreased. The potential difference between the drain and source of the FET1 is increased and a difference with a reference potential difference is caused to an operational amplifier 10. The absolute value of an output voltage of an amplifier 10 is decreased accordingly and the potential difference between the gate and source of the FET1 is decreased. As a result, the drain current is increased, the voltage drop of the resistor 5 is also increased and the potential difference between the drain and source of the FET1 restores to the potential difference equal to the reference potential difference. Through the process above, the drain current of the FET1, that is, the potential difference between the drain and source is kept constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタ用のバイアス回路に関し
、特に何等かの原因で直流パラメータに変動が生じた場
合でも、電界効果トランジスタのドレイン・ソース間の
電位差及びドレイン電流を、演算増幅器を使用して自動
的に一定に保持する事が出来るように改良を施したバイ
アス回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a bias circuit for a field effect transistor, and in particular, even when a DC parameter fluctuates for some reason, the bias circuit between the drain and source of a field effect transistor can be maintained. This invention relates to a bias circuit that has been improved so that the potential difference and drain current can be automatically held constant using an operational amplifier.

〔従来の技術〕[Conventional technology]

第2図は、ドレイン接地した電界効果トランジスタに直
流バイアスを供給するバイアス回路の従来例を示す。こ
の電界効果トランジスタ用バイアス回路は、可変抵抗器
2の中間端子と電界効果トランジスタ1のゲート電極と
を接続している。電界効果トランジスタ1のソース電極
は抵抗器3を介して負電源に接続している。また、可変
抵抗器2はその一端を接地し、他端は抵抗器3を接続し
た電源と同じ負電源に接続している。このようにして可
変抵抗器2の中間端子の位置を変える事により、ゲート
・ノース間の電位差を変えて所定のドレイン電流、ドレ
イン・ソース間の電位差を得ている。
FIG. 2 shows a conventional example of a bias circuit that supplies a DC bias to a field effect transistor whose drain is grounded. This field effect transistor bias circuit connects the intermediate terminal of the variable resistor 2 and the gate electrode of the field effect transistor 1. The source electrode of the field effect transistor 1 is connected via a resistor 3 to a negative power supply. Further, one end of the variable resistor 2 is grounded, and the other end is connected to the same negative power source as the power source to which the resistor 3 is connected. By changing the position of the intermediate terminal of the variable resistor 2 in this way, the potential difference between the gate and the north is changed to obtain a predetermined drain current and a predetermined potential difference between the drain and source.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、この構成においては、電界効果トランジスタ
lを交換した場合には、可変抵抗器2の中間端子の位置
を調整する必要が生じ、且つ可変抵抗器2の信頼度が低
い為、バイアス回路としての信頼度も低くなるという問
題がある。
By the way, in this configuration, when the field effect transistor l is replaced, it becomes necessary to adjust the position of the intermediate terminal of the variable resistor 2, and since the reliability of the variable resistor 2 is low, it is not necessary to use it as a bias circuit. There is also the problem of low reliability.

本発明の目的は、電界効果トランジスタに一定のドレイ
ン電流、ドレイン・ソース間の電位差を自動的に供給で
きるようにし、より安定した電界効果トランジスタ用バ
イアス回路を提供する事にある。
An object of the present invention is to provide a more stable bias circuit for a field effect transistor by automatically supplying a constant drain current and potential difference between the drain and source to the field effect transistor.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

前記目的を達成する為に1本発明による電界効果トラン
ジスタ用バイアス回路は、演算増幅器を使用して直流パ
ラメータの変動に起因して前記電界効果トランジスタの
ドレイン電流及びドレイン・ソース間の電位差の変化分
を検出し。
In order to achieve the above object, a bias circuit for a field effect transistor according to the present invention uses an operational amplifier to detect changes in the drain current and potential difference between the drain and source of the field effect transistor due to fluctuations in DC parameters. Detected.

それを補う方向に動作する様に構成しである。It is configured to operate in a direction that compensates for this.

上記の構成によれば、自動的にドレイン・ソース間の電
位差及びドレイン電流を一定に保持する事が出来、更に
前記演算増幅器の増幅度を大きくする事により、直流パ
ラメータの変動によるバイアス条件の変動をより小さく
抑える事が出来2本発明の目的は確実に達成出来る。
According to the above configuration, it is possible to automatically maintain the drain-source potential difference and the drain current constant, and furthermore, by increasing the amplification degree of the operational amplifier, the bias condition can be changed due to changes in DC parameters. can be suppressed to a smaller value, and the two objectives of the present invention can be reliably achieved.

〔実施例〕〔Example〕

以下1図面を参照して本発明を更に詳しく説明する。 The present invention will be explained in more detail below with reference to one drawing.

第1図は本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

この回路は、演算増幅器10の出力電極を電界効果トラ
ンジスタ1のゲート電極に接続すると共に、抵抗器4を
介して演算増幅器10の反転入力電極に接続している。
In this circuit, the output electrode of the operational amplifier 10 is connected to the gate electrode of the field effect transistor 1, and is also connected to the inverting input electrode of the operational amplifier 10 via the resistor 4.

電界効果トランジスタlの×−スミ極は抵抗器5を介し
て電源の負電極に接続している。演算増幅器100反転
反転入力電極非反転入力電極はそれぞれ、抵抗器6及び
直列接続された抵抗器7と抵抗器8を介して。
The x-sumi pole of the field effect transistor l is connected via a resistor 5 to the negative electrode of the power supply. Operational amplifier 100 inverting inverting input electrode non-inverting input electrode through resistor 6 and series connected resistor 7 and resistor 8, respectively.

電界効果トランジスタ10ノース電極と抵抗器5との接
続点及び電源の負電極に接続している。
It is connected to the connection point between the north electrode of the field effect transistor 10 and the resistor 5 and to the negative electrode of the power source.

また、抵抗器7とμ(抗器8との接続点を抵抗器9を介
して接地している。このようにして、直流パラメータの
変動に起因して電界効果トランジスタ1のドレイン電流
及びドレイン・ソース間の電位差が変化した時にはその
変化分を検出し、それを補う方向に動作する様に構成し
ている。
In addition, the connection point between the resistor 7 and the resistor 8 is grounded via the resistor 9. In this way, the drain current of the field effect transistor 1 and the drain When the potential difference between the sources changes, the change is detected and the device operates to compensate for the change.

抵抗器5は所定のトンイン電流が流れた時にドレイン・
ソース間の電位差が所定の電位差となる様な抵抗値に定
められる。抵抗器8.9は演算増幅器]0の非反転入力
電極に印加する基準の・i?J (ffl差を決めるも
ので、ドレイン・ソース間の1z位差に等しくなる様に
定められる。また、抵抗器4.6.7は演算増幅器を所
定の利得を持たせて動作させる為の抵抗で、演算増幅器
10の利得は抵抗器6に対する抵抗器4の抵抗値の比に
より決定される。
The resistor 5 is connected to the drain when a predetermined tunnel current flows.
The resistance value is determined so that the potential difference between the sources becomes a predetermined potential difference. Resistor 8.9 is an operational amplifier] ・i? of the reference applied to the non-inverting input electrode of 0? J (determines the ffl difference, and is set to be equal to the 1z difference between the drain and source. Also, resistor 4.6.7 is a resistor for operating the operational amplifier with a predetermined gain. The gain of the operational amplifier 10 is determined by the ratio of the resistance value of the resistor 4 to that of the resistor 6.

今、何らかの原因で直流パラメータが変化しドレイン電
流が減少したとする。このドレイン電流の減少により抵
抗器5の電圧降下は減少し。
Now, suppose that the DC parameters change for some reason and the drain current decreases. This reduction in drain current reduces the voltage drop across resistor 5.

電界効果トランジスタ1のドレイン・ソース間の電位差
が犬きくな)、演算増幅器10の非反転入力電極に印加
した前記の基準の電位差との間に差を生じる。これに対
応して1反転増幅器を構成している演算増幅器10の出
力電圧の絶対値は減少し、電界効果トランジスタ1のゲ
ート・ノース間の電位差は減少する。その結果、電界効
果トランジスタ1のドレイン電流は増加し。
A difference is generated between the potential difference between the drain and source of the field effect transistor 1 (not shown) and the reference potential difference applied to the non-inverting input electrode of the operational amplifier 10. Correspondingly, the absolute value of the output voltage of the operational amplifier 10 constituting the 1-inverting amplifier decreases, and the potential difference between the gate and north of the field effect transistor 1 decreases. As a result, the drain current of field effect transistor 1 increases.

抵抗器5の電圧降下も増加して、電界効果トランジスタ
1のドレイン・ソース間の電位差は前記の基準の電位差
と等しい電位差に戻る。
The voltage drop across the resistor 5 also increases, and the potential difference between the drain and source of the field effect transistor 1 returns to a potential difference equal to the reference potential difference.

以上のプロセスにより、電界効果トランジスタ1のドレ
イン電流、ひいてはドレイン・ソース間の電位差を一定
に深つ事が出来る。
Through the above process, the drain current of the field effect transistor 1, and thus the potential difference between the drain and the source, can be increased to a constant value.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に1本発明によれば電界効果トランジス
タを交換した場合にも、また電界効果トランジスタの直
流パラメータの変化にも。
As explained above, according to the present invention, the present invention can be applied even when a field effect transistor is replaced or when the DC parameters of the field effect transistor are changed.

自動的に演算増幅器の利得に比例した精度でドレイノミ
流及びドレイン・ソース間の電位差を一定に保つ事が出
来る。
It is possible to automatically keep the drain current and the potential difference between the drain and source constant with an accuracy proportional to the gain of the operational amplifier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電界効果トランジスタ用バイアス
回路の実施例を示す回路図、第2図は従来のバイアス回
路の回路図。 図中、1・・・電界効果トランジスタ。 10・・・演算増幅器。 第1図 声2図
FIG. 1 is a circuit diagram showing an embodiment of a bias circuit for a field effect transistor according to the present invention, and FIG. 2 is a circuit diagram of a conventional bias circuit. In the figure, 1... field effect transistor. 10... operational amplifier. Figure 1 Voice Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、直流的にドレインを接地して電界効果トランジスタ
1を負電源で使用する場合の直流バイアス回路において
、演算増幅器10の出力電極を電界効果トランジスタ1
のゲート電極に接続すると共に、抵抗器4を介して演算
増幅器10の反転入力電極に接続し、電界効果トランジ
スタ1のソース電極は抵抗器5を介して電源の負電極に
接続し、演算増幅器10の反転入力電極及び非反転入力
電極はそれぞれ、抵抗器6及び互いに直列接続された抵
抗器7と抵抗器8を介して電界効果トランジスタ1のソ
ース電極と抵抗器5との接続点及び電源の負電極に接続
し、更に抵抗器7と抵抗器8との接続点を抵抗器9を介
して接地した回路を含み、直流パラメータの変動に起因
して電界効果トランジスタ1のドレイン電流及びドレイ
ン・ソース間の電位差が変化した時にはその変化分を検
出してそれを補う方向に動作するように構成したことを
特徴とする電界効果トランジスタ用バイアス回路。
1. In a DC bias circuit where the field effect transistor 1 is used as a negative power supply with its drain grounded in a DC manner, the output electrode of the operational amplifier 10 is connected to the field effect transistor 1.
and the inverting input electrode of the operational amplifier 10 through a resistor 4, and the source electrode of the field effect transistor 1 is connected through a resistor 5 to the negative electrode of the power supply. The inverting input electrode and the non-inverting input electrode of are connected to the connection point between the source electrode of the field effect transistor 1 and the resistor 5 and the negative voltage of the power supply through a resistor 6 and resistors 7 and 8 connected in series with each other, respectively. The circuit includes a circuit connected to the electrode and further grounded through a resistor 9 at the connection point between the resistors 7 and 8, and the drain current of the field effect transistor 1 and between the drain and source are 1. A bias circuit for a field-effect transistor, characterized in that when the potential difference changes, the bias circuit is configured to detect the change and operate in a direction to compensate for the change.
JP59197797A 1984-09-22 1984-09-22 Bias circuit for field effect transistor Pending JPS6177405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197797A JPS6177405A (en) 1984-09-22 1984-09-22 Bias circuit for field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197797A JPS6177405A (en) 1984-09-22 1984-09-22 Bias circuit for field effect transistor

Publications (1)

Publication Number Publication Date
JPS6177405A true JPS6177405A (en) 1986-04-21

Family

ID=16380508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197797A Pending JPS6177405A (en) 1984-09-22 1984-09-22 Bias circuit for field effect transistor

Country Status (1)

Country Link
JP (1) JPS6177405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023491A1 (en) * 1993-03-26 1994-10-13 Qualcomm Incorporated Power amplifier bias control circuit and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023491A1 (en) * 1993-03-26 1994-10-13 Qualcomm Incorporated Power amplifier bias control circuit and method

Similar Documents

Publication Publication Date Title
JP2003514478A (en) amplifier
JPS6144360B2 (en)
JPH07106875A (en) Semiconductor integrated circuit
JPH11202002A (en) Current detection circuit
JP2587147B2 (en) Semiconductor sensor
KR920010237B1 (en) Amplifier
US6124705A (en) Cascode current mirror with amplifier
JPH09130162A (en) Current driver circuit with side current adjustment
JPS6177405A (en) Bias circuit for field effect transistor
US4612513A (en) Differential amplifier
JPH0934572A (en) Power circuit
JP2542375B2 (en) Operational amplifier
JP2000155139A (en) Current detecting device
US5973565A (en) DC bias feedback circuit for MESFET bias stability
JPS6133707Y2 (en)
JPH02177724A (en) Output buffer circuit
JPH02116203A (en) Temperature compensation type active bias amplifier
JPH01140212A (en) Low voltage mos reference voltage circuit
KR940001476Y1 (en) Voltage and current amplifier
JP2979607B2 (en) Servo circuit
JPH0241927Y2 (en)
JPH0644118Y2 (en) Light emitting element bias monitor circuit
JPS61288607A (en) Mos current source circuit
SU760121A1 (en) Analogue divider
JPS622707A (en) Potential correcting circuit