JPS617576A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPS617576A
JPS617576A JP59126624A JP12662484A JPS617576A JP S617576 A JPS617576 A JP S617576A JP 59126624 A JP59126624 A JP 59126624A JP 12662484 A JP12662484 A JP 12662484A JP S617576 A JPS617576 A JP S617576A
Authority
JP
Japan
Prior art keywords
sodium
tube
reservoir
welded
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59126624A
Other languages
Japanese (ja)
Inventor
Hiroshi Kagawa
博 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP59126624A priority Critical patent/JPS617576A/en
Publication of JPS617576A publication Critical patent/JPS617576A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To eliminate influence of temperature increase to an adjacent battery caused by breakage by arranging a mechanism by which supply of sodium is stopped when a solid electrolyte tube is broken, sodium directly reacts with sulfur, and temperature is increased, and connecting a battery to an adjacent battery by a connector which is directly installed in the battery. CONSTITUTION:The bottom of a sodium reservoir 11 is welded to the upper end of a metal tube 10. An anode pipe 12 for exhausting and sodium filling, which is vacuum-sealed after sodium filling, is welded to the upper part of the sodium reservoir 11. An anode terminal 13 is welded to the outer lower side of the sodium reservoir 11. A filler 17 which is resistant to molten sodium is filled in a space formed by the inside of an inner insertion tube 20 and the outside of the metal tube 10. If a solid electrode tube is broken, direct reaction of sodium with sulfur is eased by the filler 17. When temperature is increased by continued reaction, a copper or aluminum rod 14 inserted inside the metal tube 10 is melted and blocks a passage of sodium to stop the supply of sodium.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は大容量、高電圧を得るために直並列に多数接続
してなるナトリウム−硫黄電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sodium-sulfur battery which is constructed by connecting a large number of batteries in series and parallel to obtain large capacity and high voltage.

従来技術とその問題点 直並列に多数接続するためのナトリウム−硫黄電池は第
3図に示す如く、β′−アルミナからなるナトリウムイ
オン伝導性の固体電解質管1の内部に、陰極活物質3の
ナトリウムが含浸されたステンレス、鉄、アルミニウム
、ニク田ム等からなる金属繊維2と陰極集電端子8とが
挿入されている。陰極集電端子8にはa−アルミナリン
グ9がガラス接合された陰極蓋4が溶接され、陰極蓋4
の上面には陰極集電端子8に溶接されたニッケル鋼II
j5が溶接され、さらにニッケル鋼線5の先端には陰極
端子6が接続されている。陰極端子6により瞬接する電
池と電気的に接続させるとともに、ニッケル鋼!5によ
り高温時の熱的歪や機械的衝撃を吸収させている。しか
しながら大電流を流す場合にはニッケル鋼fj!5が長
ければ電圧降下が大きくなり、短かくすると熱的歪等の
吸収効果が悪くなり、固体電解質管が破損した場合大き
な熱量を放出し、隣接する電池をも破損せしめるという
欠点があった。
Prior art and its problems As shown in Figure 3, a sodium-sulfur battery for connecting a large number of batteries in series and parallel has a cathode active material 3 inside a sodium ion conductive solid electrolyte tube 1 made of β'-alumina. A metal fiber 2 made of sodium-impregnated stainless steel, iron, aluminum, porcelain, etc. and a cathode current collector terminal 8 are inserted. A cathode cover 4 to which an a-alumina ring 9 is glass-bonded is welded to the cathode current collector terminal 8.
Nickel steel II welded to the cathode current collector terminal 8 on the top surface.
j5 is welded, and furthermore, a cathode terminal 6 is connected to the tip of the nickel steel wire 5. The cathode terminal 6 is used to electrically connect the battery with instantaneous contact, and the nickel steel! 5 absorbs thermal strain and mechanical shock at high temperatures. However, when passing a large current, nickel steel fj! If 5 is long, the voltage drop will be large, and if it is short, the absorption effect of thermal strain etc. will be poor, and if the solid electrolyte tube is broken, a large amount of heat will be released and the adjacent battery will also be damaged.

発明の目的 本発明は隣接する電池間の接続体をなくすことにより電
圧降下を最小限にするとともに、破損時の影響を破損し
た電池のみにとどめることを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to minimize the voltage drop by eliminating connections between adjacent batteries, and to limit the effects of damage to only the damaged battery.

発明の構成 本発明は電池反応に寄与するナトリウムを電池上部に取
付けたナトリウムリザーバーより供給し、固体電解質管
が破損し、ナトリウムと硫黄とが直接反応を開始して温
度が上昇すると、ナトリウムの供給を停止させるととも
に、隣接電池との接続を電池に直接取り付けた接続体に
より行ない、熱的歪や機械的衝撃の吸収機構を電池本体
に設けた構成としている。
Structure of the Invention The present invention supplies sodium, which contributes to battery reactions, from a sodium reservoir attached to the top of the battery. At the same time, the battery is connected to an adjacent battery through a connecting body directly attached to the battery, and the battery body is provided with a mechanism for absorbing thermal strain and mechanical shock.

実施例 第1図は本発明の一実施例によるナトリウム−硫黄電池
の断面図である0第1図において固体電解質管1の上部
にガラス接合されたα−アルミナリング9の上面にはス
テンレス、Fe−250r−4五l、ムl被覆の’He
等からなる陰極補助蓋19が熱圧接合され、陰極神助1
119には肉厚が約0.3 m〜2tmのステンレスな
どの耐溶融ナトリウム性金属からなる内挿管2゜が溶接
され、固体電解質管1内に挿入され、固体電解質管1と
内挿管20との間隙的0゜5闘〜2Hをl成している。
Embodiment FIG. 1 is a cross-sectional view of a sodium-sulfur battery according to an embodiment of the present invention. In FIG. -250r-45l, mul coated 'He
The cathode auxiliary lid 19 consisting of
An inner tube 2° made of a molten sodium-resistant metal such as stainless steel and having a wall thickness of about 0.3 m to 2 tm is welded to 119 and inserted into the solid electrolyte tube 1, thereby connecting the solid electrolyte tube 1 and the inner tube 20. It forms a gap of 0°5 to 2H.

内挿管2oの底部にはナトリウム通路を形成する金属管
1oが溶接され、金属管10の下端において固体電解質
管1内と連通し、上端において放電に必要なナトリウム
3が蓄わ見られているナトリウムリザーバー11の内部
と連通している。
A metal tube 1o forming a sodium passage is welded to the bottom of the inner tube 2o, the lower end of the metal tube 10 communicates with the inside of the solid electrolyte tube 1, and the upper end stores sodium 3 necessary for discharge. It communicates with the inside of the reservoir 11.

ナトリウムリザーバー11の底部は金属管1゜の上端に
溶接され、ナトリウムリザーバー11の上部にはナトリ
ウム充填後真空密閉された排気兼す) +Jウム充填用
の陰極パイプ12が溶接され、外側面下部には二”/ケ
ル、ステンレス、ステンレス被覆鋼、ステンレス被覆ア
にミニラム汗ツケル被覆銅からなる陰極端i13が溶接
されている。陰極端子13の構造は第2図の横断面図の
如き構造である。またナトリウムリザーバー11は肉厚
的0.4fl〜1Rのステンレスなどの耐溶融ナトリウ
ム性金属からなり、陰極補助蓋19との間にスプリング
1ワツシヤー、断熱材等の緩衝材18が配されている。
The bottom of the sodium reservoir 11 is welded to the top end of the metal tube 1°, and the cathode pipe 12 for filling +J is welded to the top of the sodium reservoir 11, which also serves as a vacuum-sealed exhaust after filling with sodium. The cathode terminal 13 is made of stainless steel, stainless steel coated steel, and stainless steel coated copper and is welded to the stainless steel coated steel.The structure of the cathode terminal 13 is as shown in the cross-sectional view of Fig. 2. The sodium reservoir 11 is made of a molten sodium-resistant metal such as stainless steel with a wall thickness of 0.4 fl to 1 R, and a buffer material 18 such as a spring 1 washer or a heat insulating material is arranged between it and the cathode auxiliary lid 19. .

14は金属管10内のナトリウム通路内に挿入された銅
またはアルミニウム棒で、ナトリウムの流量制限及び補
助集 。
Reference numeral 14 is a copper or aluminum rod inserted into the sodium passageway in the metal tube 10 to restrict the flow rate of sodium and to assist in collecting it.

電作用を行なうとともに、上部の突起により金属管10
の上部に懸吊されている。15は陽極集電体を兼ねる電
槽で、外側面部には陽極端子16が溶接されている。1
7は内挿管20の内側と金属管10の外側との間で形成
される空間に充填された耐溶融ナトリウム性の充填物質
で、例えば金属繊維、炭酸ナトリラム粉末、塩化ナトリ
ウム粉末、バーミキュライシ粉*、炭酸カルシウム粉末
、α−アルミナ粉末、砂、コランダム等から選ばれる0
以上のような構造を有するナトリウム−硫黄電池におい
ては、ナトリウムリザーバー11は金属管10の下端部
でのみ固定されているため、機械的衝撃や熱的歪を容易
に吸収することが可能である。さらに隣接する電池と陰
極端子13どおし接続した場合でも、陰極端子の熱的歪
を吸収することが可能で、隣接する電池を直接接続する
ことができ、電圧降下も最小限にすることができる。ま
た緩衝材18を配することにより、必要時に機械的衝撃
の吸収効果を高めることができる。さらに固体電解質管
1が破損した場合、充填物質17によりナトリウムと硫
黄との直接反応が緩和される一方、さらに反応が続き、
電池温度が上昇した場合には金属管10の内部に挿入さ
れた銅またはアルミニウム棒14が溶解し、ナトリウム
通路を閉塞し、ナトリウムの供給を停止させる。このた
め直接反応は停止し、温度上昇による隣接電池への影響
を防止することができる0 以下さらに実施例について説明する◇ 内径311111S内寸長29.5 elllのβ′−
アルミナ製固体電解質管1内に外径29鱈、肉厚1■、
長さ3 Q cmのステンレス製内挿管20と、該内挿
管20と底部中央において溶接された外径6fl、肉厚
0.51111のステンレス製企属管10と、該金属管
10の上端に溶接された外径50.8鱈、肉厚0.5鱈
のステンレス製ナトリウムリザーバー11とを有し、ア
ルミニウム繊維からなる充填物質17を配し、陰極パイ
プ12より真空含浸にて約195gのナトリウム3をナ
トリウムリザーバー11内に注入、冷却し、該陰極パイ
プ12の先端を真空溶接して真空密閉した。ナトリウム
リゾ−バー11の外側面下部には第2図の如き厚さ3m
、幅30寵の銅板に厚み約25μのニッケル被覆の陰極
端子を有している。この電池を6セル並列接続するのに
要した時間は従来電池では約4.5分要したのに対し、
約2分であった〇また6セル中の1セルを破壊したが、
電槽には異常はなく、ナトリウムリザーバー内には多量
のナトリウム3が残存していた。
In addition to applying electricity, the protrusion on the upper part connects the metal tube 10.
suspended from the top. Reference numeral 15 denotes a battery case that also serves as an anode current collector, and an anode terminal 16 is welded to the outer side surface. 1
7 is a molten sodium-resistant filling material filled in the space formed between the inside of the inner tube 20 and the outside of the metal tube 10, such as metal fiber, sodium carbonate powder, sodium chloride powder, vermiculic acid powder* , calcium carbonate powder, α-alumina powder, sand, corundum, etc.
In the sodium-sulfur battery having the above structure, the sodium reservoir 11 is fixed only at the lower end of the metal tube 10, so that mechanical shock and thermal strain can be easily absorbed. Furthermore, even when the cathode terminals 13 are connected to adjacent batteries, thermal distortion of the cathode terminals can be absorbed, and adjacent batteries can be directly connected, minimizing voltage drop. can. Further, by disposing the cushioning material 18, the effect of absorbing mechanical shock can be enhanced when necessary. Furthermore, if the solid electrolyte tube 1 is damaged, while the direct reaction between sodium and sulfur is alleviated by the filling material 17, the reaction continues.
When the battery temperature rises, the copper or aluminum rod 14 inserted into the metal tube 10 melts, blocking the sodium passage and stopping the supply of sodium. For this reason, the direct reaction is stopped, and the influence on adjacent cells due to temperature rise can be prevented.Examples will be further explained below◇ β'-
Inside the alumina solid electrolyte tube 1 is an outer diameter of 29 mm, a wall thickness of 1 mm,
A stainless steel inner tube 20 with a length of 3 Q cm, a stainless steel inner tube 10 with an outer diameter of 6 fl and a wall thickness of 0.51111 welded to the inner tube 20 at the center of the bottom, and welded to the upper end of the metal tube 10. It has a stainless steel sodium reservoir 11 with an outer diameter of 50.8 mm and a wall thickness of 0.5 mm, and a filling material 17 made of aluminum fiber is arranged, and about 195 g of sodium 3 was injected into the sodium reservoir 11 and cooled, and the tip of the cathode pipe 12 was vacuum welded to vacuum-seal it. The lower part of the outer surface of the sodium resolver 11 has a thickness of 3 m as shown in Figure 2.
It has a nickel-coated cathode terminal about 25 μm thick on a copper plate 30 cm wide. The time required to connect 6 cells in parallel with this battery was approximately 4.5 minutes with conventional batteries,
It took about 2 minutes 〇Also, 1 cell out of 6 cells was destroyed,
There was no abnormality in the battery case, and a large amount of sodium 3 remained in the sodium reservoir.

次に前記実施例と同じ構造で、充填物質17として炭酸
ナトリウム粉末を配し、金属管10内に外径が4wxの
アルミニウム棒14を配し、内挿管20として外径29
tm、肉厚0.2鱈のス〜 テンレス管を用い、並列に
6セル接続し、過電圧を印加して6セル中の1セルを破
壊した。
Next, with the same structure as the previous embodiment, sodium carbonate powder is placed as the filling material 17, an aluminum rod 14 with an outer diameter of 4wx is placed inside the metal tube 10, and an inner tube 20 with an outer diameter of 29mm is placed inside the metal tube 10.
tm, 0.2 mm thick stainless steel tube, 6 cells were connected in parallel, and overvoltage was applied to destroy 1 cell out of the 6 cells.

破壊させておいて通常の充放電試験を行なったが、短絡
は生じていなかった。冷却して電池を解体したところ、
ナトリウムリザーバー11内にはナトリウムが残存し、
内挿管20に穴があき、この穴と対向する位置の金属管
10内でアルミニウム棒14が溶解していた。
When the battery was destroyed and a normal charge/discharge test was performed, no short circuit occurred. After cooling and disassembling the battery,
Sodium remains in the sodium reservoir 11,
A hole was made in the inner tube 20, and the aluminum rod 14 was melted inside the metal tube 10 at a position facing the hole.

発明の効果 実施例において詳述した如く本発明によるナトリウム−
硫黄電池は電池間の接続を接続体を用いずに行なうこと
ができ、大電流の充放電時の電圧降下を最小限にすると
ともに、破損時の温度上昇に対して隣接する電池への影
響をなくすことができ、電池自体をフレキシブルな構造
にすることにより機械的衝撃や熱的歪に対する吸収効果
を高めるものである。
Effects of the Invention As detailed in the Examples, the sodium according to the present invention
Sulfur batteries can be connected between batteries without using connectors, which minimizes voltage drop during charging and discharging of large currents, and reduces the effect on adjacent batteries of temperature rise when damaged. By making the battery itself flexible, the effect of absorbing mechanical shock and thermal strain is enhanced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のナトリウム−硫黄電池の縦断面図、第
2図は陰極端子を有するナトリウムリザーバーの横断面
図、第3図は従来のナトリウム−硫黄電池の縦断面図で
ある・ 1・・・固体電解質管   3・・・ナトリウム6.1
3・・・陰極端子    9・・・α−アルミナリング
10・・・金属管    11・・・ナトリウムリザー
バー14・・・銅またはアル1ニウム棒 17・・・充
填物質18・・・緩衝材   19・・・陰極補助蓋2
0・・・内挿管
Fig. 1 is a longitudinal cross-sectional view of the sodium-sulfur battery of the present invention, Fig. 2 is a cross-sectional view of a sodium reservoir having a cathode terminal, and Fig. 3 is a longitudinal cross-sectional view of a conventional sodium-sulfur battery. ...Solid electrolyte tube 3...Sodium 6.1
3... Cathode terminal 9... α-alumina ring 10... Metal tube 11... Sodium reservoir 14... Copper or aluminum rod 17... Filling material 18... Buffer material 19. ...Cathode auxiliary lid 2
0...Internal intubation

Claims (6)

【特許請求の範囲】[Claims] (1)固体電解質管の上部にガラス接合されたa−アル
ミナリングの上面に接合された陰極補助蓋に溶接された
内挿管と、該内挿管の底部と下端とが溶接された金属管
と、前記内挿管の上方において該金属管の上端と底部と
が溶接されたナトリウムリザーバーとを有し、ナトリウ
ムリザーバー内部と金属管内と固体電解質管の内側とが
連通するとともに、前記内挿管の外側と固体電解質管の
内側との間隙に介在するナトリウムを陰極活物質とする
ことを特徴とするナトリウム−硫黄電池。
(1) An inner tube welded to a cathode auxiliary lid bonded to the top surface of an a-alumina ring glass-bonded to the top of the solid electrolyte tube, and a metal tube to which the bottom and lower end of the inner tube are welded; A sodium reservoir is provided above the inner tube, the upper end and the bottom of which are welded together, and the inside of the sodium reservoir, the metal tube, and the inside of the solid electrolyte tube communicate with each other, and the outside of the inner tube and the solid electrolyte tube are in communication with each other. A sodium-sulfur battery characterized in that sodium interposed in a gap between the inside of an electrolyte tube and the cathode active material is used as a cathode active material.
(2)金属管及び内挿管は固体電解質管の底部付近まで
延在することを特徴とする特許請求の範囲第1項記載の
ナトリウム−硫黄電池。
(2) The sodium-sulfur battery according to claim 1, wherein the metal tube and the inner tube extend to near the bottom of the solid electrolyte tube.
(3)金属管内に銅またはアルミニウム製の棒が挿入さ
れていることを特徴とする特許請求の範囲第1項、第2
項記載のナトリウム−硫黄電池。
(3) Claims 1 and 2, characterized in that a rod made of copper or aluminum is inserted into the metal tube.
Sodium-sulfur battery as described in .
(4)金属管の外側と内挿管の内側との間隙は電池外部
に通じるとともに、該間隙に充填物質として金属繊維、
炭酸ナトリウム粉末、バーミキュライト粉末、炭酸カル
シウム粉末、a−アルミナ粉末、砂、コランダム等から
選ばれた物質が充填されていることを特徴とする特許請
求の範囲第1項〜第3項記載のナトリウム−硫黄電池。
(4) The gap between the outside of the metal tube and the inside of the inner tube communicates with the outside of the battery, and the gap is filled with metal fibers as a filling material.
Claims 1 to 3 are filled with a substance selected from sodium carbonate powder, vermiculite powder, calcium carbonate powder, a-alumina powder, sand, corundum, etc. sulfur battery.
(5)ナトリウムリザーバー外側下部側面に陰極端子を
有することを特徴とする特許請求の範囲第1項〜第4項
記載のナトリウム−硫黄電池。
(5) A sodium-sulfur battery according to any one of claims 1 to 4, characterized in that the battery has a cathode terminal on the outer lower side surface of the sodium reservoir.
(6)ナトリウムリザーバー底部と陰極補助蓋上面との
間隙に緩衝材を有することを特徴とする特許請求の範囲
第1項〜第5項記載のナトリウム−硫黄電池。
(6) The sodium-sulfur battery according to any one of claims 1 to 5, further comprising a buffer material in the gap between the bottom of the sodium reservoir and the top surface of the cathode auxiliary lid.
JP59126624A 1984-06-20 1984-06-20 Sodium-sulfur battery Pending JPS617576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59126624A JPS617576A (en) 1984-06-20 1984-06-20 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59126624A JPS617576A (en) 1984-06-20 1984-06-20 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPS617576A true JPS617576A (en) 1986-01-14

Family

ID=14939796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59126624A Pending JPS617576A (en) 1984-06-20 1984-06-20 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPS617576A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777952A (en) * 1980-11-04 1982-05-15 Hitachi Ltd Anion selection electrode
KR101353602B1 (en) * 2011-12-28 2014-01-23 주식회사 포스코 sodium sulfur battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777952A (en) * 1980-11-04 1982-05-15 Hitachi Ltd Anion selection electrode
KR101353602B1 (en) * 2011-12-28 2014-01-23 주식회사 포스코 sodium sulfur battery

Similar Documents

Publication Publication Date Title
US3915741A (en) Sodium-sulfur cell with improved separator
US3841912A (en) Sodium sulfur storage battery
JPH09161843A (en) Sodium/molten salt battery
JPS61190869A (en) Sodium-sulfur battery
US3377201A (en) Spiral battery cell
JPS617576A (en) Sodium-sulfur battery
JPS6012680A (en) Sodium-sulfur battery
JP2631409B2 (en) Sodium sulfur battery
JPS6247974A (en) Sodium-sulfur battery
CN211295297U (en) Large-capacity winding type lithium battery
JP2561764B2 (en) Sodium-sulfur battery
CN106711464B (en) Multitube sodium-sulfur battery
JPH084014B2 (en) Sodium-sulfur battery
JPS609067A (en) Sodium-sulfuric battery
JP4167032B2 (en) Sodium secondary battery
JPS6226768A (en) Sodium-sulfur battery
JPS63175356A (en) Sodium-surfur cell
JP2526285Y2 (en) Sodium-sulfur battery
JPS6366862A (en) Sodium-sulfur battery
JPH07320776A (en) Sodium-sulfur battery
JPH0256868A (en) Sodium-sulfur battery
KR20130074645A (en) Sodium-sulfur rechargeable battery
JPS6273578A (en) Sodium-sulfur battery
JPS59157972A (en) Sodium-sulfur battery aggregate
JPS63279580A (en) Sodium-sulfur secondary battery