JPS6247974A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPS6247974A
JPS6247974A JP60186624A JP18662485A JPS6247974A JP S6247974 A JPS6247974 A JP S6247974A JP 60186624 A JP60186624 A JP 60186624A JP 18662485 A JP18662485 A JP 18662485A JP S6247974 A JPS6247974 A JP S6247974A
Authority
JP
Japan
Prior art keywords
sodium
reservoir
solid electrolyte
sulfur
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60186624A
Other languages
Japanese (ja)
Inventor
Hisamitsu Hatou
久光 波東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60186624A priority Critical patent/JPS6247974A/en
Publication of JPS6247974A publication Critical patent/JPS6247974A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent breakage of solid electrolyte caused by solid expansion of sodium in the initial temperature rise by installing a reservoir between solid electrolyte and sodium, and making flow out molten sodium from a part of the bottom the reservoir. CONSTITUTION:Sulfur 10 serving as cathode active material is filled between a cylindrical tube 4, which is a cathode container made of metal, and a cylindrical solid electrolyte 5. A solid electrolyte 5 is beta-alumina or beta''-alumina. A cylindrical reservoir 6 made of stainless steel having a small opening 6A in the center of the bottom is arranged, and metallic sodium 9 serving as anode active material is filled in the reservoir 6. The expansion of sodium in the start of battery operation is performed only in the reservoir 6, and any force is not applied to the solid electrolyte 5. Sodium 9 melted the reservoir 6 flows out to a porous metal fiber layer 11 through the opening 6A, and penetrates into the electrolyte 5.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、昇温時での初期破損の防止をはかったナトリ
ウム−硫黄電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sodium-sulfur battery that is designed to prevent initial damage at elevated temperatures.

〔発明の背景〕[Background of the invention]

従来のナトリウム−硫黄電池においては、電気学会研究
会資料ESC−84−54に記載のように、単セル試験
の初回昇温時、全セル数の約7%のセルが破損したとな
っておシ、その原因については、電池製作時の固体電解
質管の熱歪によるものではないかとの考察がなされてい
る。つまシ、電池製作時の熱歪が残留した固体電解質′
W(β−アルミナやβ“−アルミナ使用し、厚さl趨〜
35II+程度)は、内側に配置されたナトリウムと、
外側に配置し次硫黄の昇温時における固体膨張により外
力を加えられ破損に至るとみられている。
In conventional sodium-sulfur batteries, approximately 7% of the total cells were damaged during the first temperature rise in a single cell test, as described in the Institute of Electrical Engineers of Japan study group material ESC-84-54. The reason for this is considered to be thermal distortion of the solid electrolyte tube during battery manufacture. Solid electrolyte with residual thermal distortion during battery manufacturing
W (using β-alumina or β“-alumina, thickness l~
35II+) has sodium placed inside,
It is believed that the solid expansion of the subsulfur, which is placed on the outside, causes external force to be applied as the temperature rises, leading to damage.

又、一般にセラミックスは、その製作過程において、母
材表面及びその内部に切欠き、クラック、ボイド等の初
期欠陥を有しており、外力が作用すると欠陥部近傍に大
きな応力が生じることは、応力集中としてよく知られて
おり、その度合は、金属材料に比べはるかに大きいこと
も知られている。
In addition, ceramics generally have initial defects such as notches, cracks, and voids on the surface and inside of the base material during the manufacturing process. It is well known as concentration, and it is also known that the degree of concentration is much greater than that of metal materials.

又、円筒状、装管状のセラミックス製品においては、外
圧に比べ内圧に対し弱いという性質を備えている。5U
記のような応力集中は、固体′心解質管の内9Jにナト
リウムを収納するタイプのナトリウム−硫黄電池の方が
それに硫黄を収納するタイプよシもより顕著となる。こ
れは、ナトリウムの方が硫黄に比べ熱膨張率が大きい為
でおる。すなわち特開昭56−63780号公報に記載
のように、固体電解質管内部にナトIJクムを真!!融
充填する方法によれば、ナトリウムは固体電解質管壁に
直接触れる為、固体電解質管に存在している欠陥の内部
に入シ込み、欠陥の内部に八り込んだナトリウムは、昇
温時の固体膨張によシ、固体電解質管に対しては、外圧
として作用し、その応力は、応力集中の為、欠陥部にお
いて特に顕著となり固体電解質管の欠陥を増張さしめた
シ、固体!1!解質看自体を破損せしめ、ナトリウムと
硫黄が直接反応し安全上も好ましくない。
Furthermore, cylindrical and tubular ceramic products have the property of being weaker against internal pressure than external pressure. 5U
The stress concentration described above is more pronounced in the type of sodium-sulfur battery that stores sodium in 9 J of the solid core solute tube than in the type that stores sulfur therein. This is because sodium has a higher coefficient of thermal expansion than sulfur. That is, as described in Japanese Patent Application Laid-Open No. 56-63780, IJ cum is placed inside the solid electrolyte tube. ! According to the fusion-filling method, sodium comes into direct contact with the solid electrolyte tube wall, so it infiltrates into the defects in the solid electrolyte tube, and the sodium that has penetrated into the defects will be absorbed when the temperature rises. Due to solid expansion, external pressure acts on the solid electrolyte tube, and due to stress concentration, the stress becomes particularly noticeable at defective parts, increasing the size of the defect in the solid electrolyte tube. 1! This will damage the decomposition chamber itself, and the sodium and sulfur will react directly, which is unfavorable from a safety standpoint.

すなわち、従来のナトリウム−硫黄電池においては、ナ
トリウムの昇温時の固体膨張に、起因する固体電解lR
管の(I!、損防止に対する配慮はなされていなかった
In other words, in conventional sodium-sulfur batteries, the solid electrolyte IR due to the solid expansion of sodium when heated
No consideration was given to preventing damage to the pipe (I!).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、初回昇温時におけるナトリウムの固体
膨張に起因する固体電解質の破損を防止してなるナトリ
ウム−硫黄電池を辺供するものである。
An object of the present invention is to provide a sodium-sulfur battery in which damage to the solid electrolyte due to solid expansion of sodium during initial temperature rise is prevented.

〔発明の概要〕[Summary of the invention]

本発明は、固定電解質とナトリウムとの間にリザーバを
設けると共に、該リザーバの底面の一部から溶融ナトリ
ウムを流出させるようにしたものである。
In the present invention, a reservoir is provided between a fixed electrolyte and sodium, and molten sodium is caused to flow out from a part of the bottom surface of the reservoir.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明のナトリウム−硫黄電池の実施例を示す
。最外周t−構成する円筒管4i−1、金属製の陽極容
器である。この円筒管4と円筒状の固体電解質5との間
には、陽極活物質となる硫黄層1Ot−充填する。固体
電解質5は、ナトリウムイオンにだけ選択的にイオン導
電性となる性質を持ち、β−アルミナ、又はβ“アルミ
ナを材料とする。硫黄層lOは、1!L池として使用時
に導電性があればよく、その導電性は溶融硫黄の状態で
機能する。
FIG. 1 shows an embodiment of the sodium-sulfur battery of the present invention. The outermost periphery t constitutes a cylindrical tube 4i-1, which is a metal anode container. Between this cylindrical tube 4 and the cylindrical solid electrolyte 5, a sulfur layer 10-10- is filled as a positive electrode active material. The solid electrolyte 5 has a property of being selectively ion conductive only to sodium ions, and is made of β-alumina or β” alumina. Its electrical conductivity works well in the molten sulfur state.

円WJ管4の最内周には、リザーバ6を設けておく。こ
のリザーバ6は、ナトリウムに対して耐蝕性であること
を要する。例えばステンレスを使用する。リザーバ6は
円筒状をなし、その円部には、吹 巧砥活物質となるナトリウム9が充填される。こりナト
リウム9は金属ナトリウムである。リザーバ6の底面の
中央部に微小な開口部6Aを有する。
A reservoir 6 is provided at the innermost circumference of the circular WJ tube 4. This reservoir 6 is required to be corrosion resistant to sodium. For example, use stainless steel. The reservoir 6 has a cylindrical shape, and its circular portion is filled with sodium 9, which serves as a blowing abrasive active material. The solid sodium 9 is metallic sodium. The reservoir 6 has a small opening 6A in the center of its bottom surface.

この開口部6人は本実施例にとって極めて重要な役割を
持つ。
These six opening members play an extremely important role in this embodiment.

リザーバ6と固体電解質5との間には、多孔質の金属繊
維11を収納する。金lA繊維11は、圧縮して収納さ
せる。
A porous metal fiber 11 is housed between the reservoir 6 and the solid electrolyte 5. The gold IA fiber 11 is compressed and stored.

硫黄層10の外周は陽極容器4に接する。陽極容器4の
底部には、金属製の陽極キャップ7を溶接によって取シ
クけた。、陽極キャンプ7の中央部には、希ガス注入管
8を設けた。
The outer periphery of the sulfur layer 10 is in contact with the anode container 4 . A metal anode cap 7 was removed from the bottom of the anode container 4 by welding. A rare gas injection pipe 8 was provided in the center of the anode camp 7.

畷                吹繊 遮蔽する機能を持ち、皿状構成より成る。≠極容器20
周辺部は、絶縁材3に接触し、電気的な絶縁がはかられ
る。絶縁材3は、アルミナリングよi)成る。絶縁材3
は、局極容器4とも接触し、電解質#5の上部とも接触
し、相互に電気的絶縁をはかる。
Nawate It has the function of shielding the blown fibers and consists of a dish-shaped structure. ≠ Pole container 20
The peripheral portion contacts the insulating material 3 and is electrically insulated. The insulating material 3 consists of an alumina ring i). Insulation material 3
is in contact with the local electrode container 4 and also with the upper part of the electrolyte #5, thereby providing electrical insulation from each other.

リザーバ6の上部には開口部6Bを有す。この開口部6
Bは、ナトリウムが溶融し、リザーバ6と固体電解質層
5との間隙に圧縮収納され几多孔質金属^べ艙内に流れ
出し、毛細管現象にて吸い上げられる際の圧力抜きの役
割を果す。
The upper part of the reservoir 6 has an opening 6B. This opening 6
B plays the role of releasing pressure when sodium is melted, compressed and stored in the gap between the reservoir 6 and the solid electrolyte layer 5, flows out into the porous metal chamber, and is sucked up by capillary action.

陀そ活容器2の中央部には、開穴部2人を有し、この開
口部2人を介して金属ナトリウム9を投入する。金属す
) IJウムヲリザーブ6内に充填した後で、投入口2
人は、蓋2Bで遮蔽する。この遮蔽は、溶接によって行
う。一連のナトリウム充填及び溶接は、不純物の混入を
防止するため、不活性ガス(例えば、Ar、N、など)
中で行うのが望ましい。
There are two openings in the center of the sowing container 2, and metal sodium 9 is introduced through these two openings. (metal) After filling the IJum reserve 6, open the inlet 2.
People are shielded with the lid 2B. This shielding is done by welding. A series of sodium filling and welding is carried out using an inert gas (e.g. Ar, N, etc.) to prevent contamination of impurities.
It is preferable to do it inside.

リザーバ6は、固体電解質層(管)5の破損時の溶融ナ
トリウム9と溶融硫黄10とが直接に接触して直接反応
する計を少なくするための役割、及び陰極集電管として
の役割とを持つ。
The reservoir 6 has two roles: to reduce the chance of direct contact and reaction between the molten sodium 9 and molten sulfur 10 when the solid electrolyte layer (tube) 5 is damaged, and a role as a cathode current collector tube. have

金属繊維11は、固体電解質層5が破損した場合の溶融
ナトリウムと溶融硫黄との急激な発熱反応を防止するた
めの溶融す) IJウム保持材としての機能を有する。
The metal fiber 11 has a function as a molten metal retaining material to prevent a rapid exothermic reaction between molten sodium and molten sulfur in the event that the solid electrolyte layer 5 is damaged.

希ガス注入管8は、陽極内を不活性ガスで満たした後、
密封される。
After filling the inside of the anode with inert gas, the rare gas injection tube 8
sealed.

動作を説明する。Explain the operation.

ナトリウム−硫黄電池は、 2N a + X S d Nag Sx      
−”(1)の反応を行う。→印方向が放電、←印が充電
を示す。固体′rt′s質層5はナトリウムイオンのみ
を通過させる。反応時の温度は、300C〜350Cで
あ夛、ナトリウム9及び硫黄Noは共にf6融状態とな
っている。
Sodium-sulfur battery is 2N a + X S d Nag Sx
-” (1) is carried out. → direction indicates discharge, ← indicates charging. The solid 'rt' material layer 5 allows only sodium ions to pass through. The temperature during the reaction is 300C to 350C. Both sodium 9 and sulfur No are in the f6 molten state.

放M!L時には陰極活物質のナトリウムは電子を遊離し
てナトリウムイオンとなシ、固体を解質5の隔壁を通過
して陽極活物質の硫黄と反応し、多硫化ナトリウム(N
azSx)を生成する。
Free M! At L, the sodium in the cathode active material liberates electrons and becomes sodium ions, and the solid passes through the partition wall of the solute 5 and reacts with the sulfur in the anode active material, forming sodium polysulfide (N
azSx).

充電時には、電池の開路電圧より大きな負電圧を印加す
ることにより、多硫化ナトリウムは、ナトリウムと硫黄
に分離される。
During charging, sodium polysulfide is separated into sodium and sulfur by applying a negative voltage greater than the open circuit voltage of the battery.

以上の動作はナトリウム−硫黄電池の一般的な動作であ
る。本実施例特有の動作を以下説明する。
The above operation is a general operation of a sodium-sulfur battery. The operation peculiar to this embodiment will be explained below.

ナトリウム−硫黄klL池を起動させるには、300C
〜350Cに加熱され、金属ナトリウム9を溶融ナトリ
ウムに、硫黄10を溶融硫黄にさせろ必要がある。この
加熱の段階でVよ、リザーバ6が存ダ 在しないとすると、固体電解質#には、陰極活物質であ
るナトリウムが浴融する鷹での固体膨張に起因する力(
いわゆるβ“力)と、固体と溶融ナトリウムが共存する
融点近傍においての溶融ナトリウムの体積膨張に起因す
る、β“アルミナへの熱応力とが作用する。この緒来、
固体電解質5の劣化の促進、破損に至るとの欠点を持つ
To start the sodium-sulfur klL pond, 300C
It is necessary to heat the metal to ~350C and cause the metallic sodium 9 to become molten sodium and the sulfur 10 to become molten sulfur. Assuming that reservoir 6 does not exist at this stage of heating, the solid electrolyte # has a force (
The so-called β" force) and the thermal stress on β" alumina caused by the volumetric expansion of molten sodium near the melting point where solid and molten sodium coexist act. This beginning,
This has the drawback of accelerating the deterioration of the solid electrolyte 5 and leading to damage.

一方、本実施例では、ナ) IJウム9は、リザーバ6
内に収納させておく。このため、温反を上昇させていく
場合、ナトリウムの膨張は、リザーノ(6内のみで行わ
れ、固体[495には何らの外力も与えない。これは、
融点における溶融ナトリウムの体積膨張についても同様
である。
On the other hand, in this embodiment, the IJum 9 is the reservoir 6
Store it inside. Therefore, when the temperature is increased, the expansion of sodium takes place only within the lisano (6), and no external force is applied to the solid [495.
The same applies to the volumetric expansion of molten sodium at its melting point.

リザーバ6内で溶融し友ナトリウム9は、小さい開口6
人を介して多孔質の金属繊維11へと流れ出し、更には
固体1月4質5へと浸透してゆく。
The molten sodium 9 in the reservoir 6 has a small opening 6
It flows out into the porous metal fiber 11 through the person, and further penetrates into the solid material 5.

′feI融ナトリウム9ij:、圧縮収納され次金属繊
維11の六面張力、即ち毛管現象により・溝方向、上側
方向へと吸い上げられ、固体電解質5へと移送する。
'feI molten sodium 9ij: The molten sodium 9ij is compressed and stored, and then sucked up in the groove direction and upward by the hexagonal tension of the metal fibers 11, that is, capillary action, and transferred to the solid electrolyte 5.

尚、金属繊維11にナトリウムを吸い上げる力を与える
には、例えば、線径4〜8μmの金属繊維、圧縮前のポ
ロシティg g Xのものを、ポロフッ49フ〜95%
程度に圧縮してやればよいっ又、リザーバ6においては
、@解’i;itsのセラミックス材料に比べ強度のば
らつきの小さい金属を使用するので、ナトリウムの与え
る応力をしのぐ形状を決める7)は、容易である。この
ように、本実施例によnば、昇は時におけるす) IJ
ウムの膨張に起因するl“−アルミナへの悪影響を完全
に排除出来る。
In order to give the metal fiber 11 the power to absorb sodium, for example, a metal fiber with a wire diameter of 4 to 8 μm and a porosity of g g
In addition, for the reservoir 6, we use a metal with less variation in strength compared to the ceramic material in @solution'i;its, so it is easy to decide on a shape that can overcome the stress exerted by the sodium. It is. In this way, according to this example, the rise is in time) IJ
The negative influence on l"-alumina caused by the expansion of alumina can be completely eliminated.

尚、電池とり、て使用する場合には、陽極、陰極に端子
を設置し、充′ル用の電源と、放電用の負荷とを接続し
、切換スイッチによυ放電と充電とを切換えるようにす
る。
In addition, when using the battery as a stand-alone battery, install terminals on the anode and cathode, connect the power source for charging and the load for discharging, and use the selector switch to switch between discharging and charging. Make it.

本実施例によれば、′α電池作時等の初期高温作業時、
α)、陽陰極絶縁の為のα−アルミナリングと固体電解
質管を接合するとき、(2)、陽陰極容器と、該接合さ
れ次、固体゛社解質管付α−アルミナリングを接合する
ときにおいて発生する熱歪により脆弱化した固体電解質
管が、昇温時、ナトリウムの固体膨張による外力を受け
ることがなくなシ、昇温時の破損を防止出来る。
According to this embodiment, during initial high-temperature work such as when operating a 'α battery,
α) When joining the α-alumina ring and solid electrolyte tube for anode and cathode insulation, (2) When joining the anode-cathode container and the α-alumina ring attached to the solid electrolyte tube. The solid electrolyte tube, which has become brittle due to thermal strain that sometimes occurs, is no longer subjected to external force due to the solid expansion of sodium when the temperature rises, and damage during the temperature rise can be prevented.

又、固体電解・買管に注目すると、固体電解質管の初期
欠陥部にナトリウムが固体の状態で存在しない為、破損
を防止出来る。
Also, when looking at solid electrolyte tubes, damage can be prevented because sodium does not exist in a solid state in the initial defective part of the solid electrolyte tube.

すなわち、本実施例は、ナトリウムの昇温時における固
体膨張による固体な解質管への悪影響を排除しようとす
るものである。
That is, this embodiment is intended to eliminate the adverse effect on the solid solute tube due to solid expansion when sodium is heated.

尚、陽唖活物質となる硫黄は、一般に多孔質金属電導材
に含侵させて陽極活物質層を形成し、使用時に溶慇させ
ることとなる。又、硫黄の代りに多硫化ナトリウムでも
よい。
Note that sulfur, which serves as a positive electrode active material, is generally impregnated into a porous metal conductive material to form a positive electrode active material layer, and is dissolved during use. Also, sodium polysulfide may be used instead of sulfur.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、固体1Jt解質への応力を防止できる
ようになつ九九め、固体電解質の劣化が少なくなり、電
池の長寿命化、電池の性能同上に寄与できた。
According to the present invention, stress on the solid 1 Jt solute can be prevented, and deterioration of the solid electrolyte can be reduced, contributing to longer battery life and improved battery performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例図である。 2・・・隘極谷器、3・・・絶縁体、4・・・陽極容器
、5・・・固体電解質、6・・・リザーバ、9・・・金
属す) IJウム。
FIG. 1 shows an embodiment of the present invention. 2... Pole valley device, 3... Insulator, 4... Anode container, 5... Solid electrolyte, 6... Reservoir, 9... Metal) IJum.

Claims (1)

【特許請求の範囲】 1、陰極活物質である金属ナトリウム層と、陽極活物質
である硫黄層と、該2つの層の間に設けた固体電解質層
と、該固体電解質層と金属ナトリウム層との間に設けた
ナトリウム耐蝕性を有するリザーバと、該リザーバの一
部に設けた溶融ナトリウム流出開口部と、より成るナト
リウム−硫黄電池。 2、陰極活物質である金属ナトリウム層と、該ナトリウ
ムを内部に充填させてなるナトリウム耐蝕性を有する袋
管状のリザーバと、該リザーバの外側に圧縮収納された
多孔質金属繊維と、該金属繊維の外側に設けた固体電解
質層と、該固体電解質層の外側に設けられ、多孔質電気
伝導材に含侵された硫黄を持つ陽極活物質層とより成る
と共に、上記リザーバの底部に溶融ナトリウム流出開口
部を設けてなるナトリウム−硫黄電池。
[Claims] 1. A sodium metal layer that is a cathode active material, a sulfur layer that is an anode active material, a solid electrolyte layer provided between the two layers, and the solid electrolyte layer and the metal sodium layer. A sodium-sulfur battery comprising a sodium corrosion-resistant reservoir provided between the reservoir and a molten sodium outflow opening provided in a portion of the reservoir. 2. A metal sodium layer which is a cathode active material, a bag tube-shaped reservoir having sodium corrosion resistance filled with the sodium inside, a porous metal fiber compressed and stored on the outside of the reservoir, and the metal fiber. A solid electrolyte layer is provided on the outside of the reservoir, and an anode active material layer is provided on the outside of the solid electrolyte layer and has sulfur impregnated into a porous electrically conductive material. A sodium-sulfur battery with an opening.
JP60186624A 1985-08-27 1985-08-27 Sodium-sulfur battery Pending JPS6247974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60186624A JPS6247974A (en) 1985-08-27 1985-08-27 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60186624A JPS6247974A (en) 1985-08-27 1985-08-27 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPS6247974A true JPS6247974A (en) 1987-03-02

Family

ID=16191834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60186624A Pending JPS6247974A (en) 1985-08-27 1985-08-27 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPS6247974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215579A (en) * 1988-07-01 1990-01-19 Hitachi Ltd Na-s battery, operating and using method thereof and manufacture thereof
WO1990007799A1 (en) * 1987-12-03 1990-07-12 Chloride Silent Power Limited Improved alkali metal cell
US5197995A (en) * 1987-12-03 1993-03-30 Chloride Silent Power Ltd. Method of making an alkali metal cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007799A1 (en) * 1987-12-03 1990-07-12 Chloride Silent Power Limited Improved alkali metal cell
GB2230641A (en) * 1987-12-03 1990-10-24 Chloride Silent Power Ltd Improved alkali metal cell
GB2230641B (en) * 1987-12-03 1991-10-23 Chloride Silent Power Ltd Improved alkali metal cell
US5164272A (en) * 1987-12-03 1992-11-17 Chloride Silent Power Limited Alkali metal cell
US5197995A (en) * 1987-12-03 1993-03-30 Chloride Silent Power Ltd. Method of making an alkali metal cell
JPH0215579A (en) * 1988-07-01 1990-01-19 Hitachi Ltd Na-s battery, operating and using method thereof and manufacture thereof

Similar Documents

Publication Publication Date Title
US3841912A (en) Sodium sulfur storage battery
US4230778A (en) Sodium-sulfur battery with glass electrolyte
CN209843832U (en) Liquid metal battery
JPS6247974A (en) Sodium-sulfur battery
US4087591A (en) Pyrotechnically activated lithium-chlorine cell having a lithium vapor barrier
KR101322637B1 (en) Sodium-sulfur rechargeable battery and method for manufacturing the same
JPS6012680A (en) Sodium-sulfur battery
US3972730A (en) Pyrotechnically activated lithium-chlorine cell
JP2646087B2 (en) Sodium-sulfur secondary battery
JPH02165574A (en) Sodium-sulfur battery and its connection
CN106711464B (en) Multitube sodium-sulfur battery
JPS6220259A (en) Sodium-sulfur battery
JPH08171931A (en) Sodium-sulfur battery
JPH084014B2 (en) Sodium-sulfur battery
JPH02103869A (en) Sodium-sulphur battery
JPS617576A (en) Sodium-sulfur battery
JPH05217601A (en) Sodium-sulphur battery
JPH02144858A (en) Sodium-sulfur battery
JPH07320776A (en) Sodium-sulfur battery
JPS609067A (en) Sodium-sulfuric battery
JPH0557714B2 (en)
JPH05121094A (en) Sealed secondary battery
JPS6226768A (en) Sodium-sulfur battery
JPH02257576A (en) Sodium-sulfur cell
JPH0541214A (en) Enclosed type secondary battery