JPS609067A - Sodium-sulfuric battery - Google Patents

Sodium-sulfuric battery

Info

Publication number
JPS609067A
JPS609067A JP58116624A JP11662483A JPS609067A JP S609067 A JPS609067 A JP S609067A JP 58116624 A JP58116624 A JP 58116624A JP 11662483 A JP11662483 A JP 11662483A JP S609067 A JPS609067 A JP S609067A
Authority
JP
Japan
Prior art keywords
sodium
reservoir
sulfur battery
inert gas
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58116624A
Other languages
Japanese (ja)
Inventor
Hiroshi Kagawa
博 香川
Kazuma Matsui
一真 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP58116624A priority Critical patent/JPS609067A/en
Publication of JPS609067A publication Critical patent/JPS609067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To heighten the safety of a battery, by disposing a sodium reservoir on the top of a solid electrolytic tube, while installing a fully hermetically sealed metallic vessel filled up with a substance to be turned into inert gas or high temperature gas, in the lower part of the said reservoir. CONSTITUTION:A metallic vessel 15 consisting of a low-melting point metal or the like is installed inside a solid electrolytic tube 1 so as to be broken down with a direct reaction of heat between a negative pole active material 11 and a positive pole active material 6, while inside the metallic vessel 15, materials of inert gases such as nitrogen, argon, etc., and sodium azide being gasified into the inert gas at high temperature are filled up and fully sealed up. When a crack happens in the solid electrolytic tube 1, if fused sulfur and sodium directly react, the metallic vessel 15 is broken down the heat produced whereby the inert gas inside is forced out. With pressure of this discharged gas, a sodium interconnecting passage 19 is reversely pushed up from downward by the fused sodium in consequence, and therefore feed of the fused sodium from a sodium reservoir 16 comes to a stop so that continuous direct reaction never happens there.

Description

【発明の詳細な説明】 本発明はナトリ゛ウムー硫黄電池の陰極室構造に関し、
電池の安全性を’6hめることを目的としたものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode chamber structure of a sodium sulfur battery.
The purpose is to improve battery safety by 6 hours.

従来のす) IJウムー硫黄電池の構造を第1図1によ
り説明すれば、β−アルミナ、β′−アルミナなどから
なるナトリウムイオン伝導性の固体電解質管1の上端に
陰極補助灼6を設けた電気絶縁性部材としてのα−アル
ミナリング2がガラス接合され、下面に陽極蓋4をアル
ミニウムリングを介して高温・高圧下で熱圧接合されて
いる。陽極蓋4には、耐溶融硫黄性金属からなる@極焦
電体を兼ねる電池客器5が溶接され、陽極活物質6とし
て硫黄を含浸し成型されたグラファイト又はカーボン等
の繊維からなる陽極電導材7が配され、固体電解質管1
の底部にはクッション材8を兼ねるグラファイト又はカ
ーボンからなるフェルトを配設している。電池容器5の
底部は、真壁中又は不活性ガス中で底蓋9を溶接し、@
極室を密閉されている。一方、陰極室については、ナト
リウム連通路10が上蓋に溶接され、陰極活物質11と
してのナトリウムが充填されて上部に不活性ガス室を有
するナトリウム容器12が固体電解質管1内に挿入され
、陰極端子13が溶接された陰tfili 14を真空
中で陰極補助蓋6と溶接することで真空密閉されている
。上記構成の電池を約300 N550°Cの作動温度
に昇温すると、ナトリウム容器12内のナトリウム11
が溶融し、容器12内上部空間のガス圧によってナトリ
ウム連通路10内を通って上方より固体電解質管1と容
器12との間隙に供給され充満する。このような状態に
おいて、固体電解質管1又はa−アルミナリング2との
接合部に熱的徒事又は機械的衝撃、あるいは電流分布の
不均一性などの理由によりクラックが発生すると、陽極
電導材7中の溶融硫黄6と溶融ナトリウム11が接触し
、岸発的な直接反応がおこり、その際の生成熱(例えば
数kca、1〜数百kcal )により容器12をも破
壊し、更に容器12内の多量の溶融ナトリウムが溶融硫
黄と直接反応して電池を完全に破壊したり、隣接した電
池をも熱的影響でもって破壊する問題点を有していた。
The structure of a conventional IJ Umu sulfur battery is explained with reference to FIG. 1. A cathode auxiliary cauterization 6 is provided at the upper end of a sodium ion conductive solid electrolyte tube 1 made of β-alumina, β'-alumina, etc. An α-alumina ring 2 serving as an electrically insulating member is glass-bonded, and an anode cover 4 is thermo-pressure bonded to the bottom surface of the anode lid 4 via an aluminum ring under high temperature and pressure. A battery device 5 made of a molten sulfur-resistant metal and serving as a hyperpyroelectric material is welded to the anode lid 4, and an anode active material 6 made of fibers such as graphite or carbon impregnated with sulfur and molded is used as an anode conductor. material 7 is arranged, solid electrolyte tube 1
A felt made of graphite or carbon, which also serves as a cushioning material 8, is disposed at the bottom of the cushion. A bottom cover 9 is welded to the bottom of the battery container 5 in a solid wall or in an inert gas.
The polar chamber is sealed. On the other hand, regarding the cathode chamber, a sodium communication passage 10 is welded to the upper lid, a sodium container 12 filled with sodium as the cathode active material 11 and having an inert gas chamber at the top is inserted into the solid electrolyte tube 1, and a sodium container 12 is inserted into the solid electrolyte tube 1. The negative electrode 14 to which the terminal 13 is welded is vacuum-sealed by welding the negative electrode auxiliary lid 6 to the negative electrode auxiliary cover 6 in a vacuum. When the battery having the above configuration is heated to an operating temperature of about 300 N550°C, the sodium 11 in the sodium container 12
is melted and is supplied from above through the sodium communication path 10 by the gas pressure in the upper space inside the container 12 to fill the gap between the solid electrolyte tube 1 and the container 12. In such a state, if a crack occurs at the joint with the solid electrolyte tube 1 or the a-alumina ring 2 due to thermal interference, mechanical impact, or non-uniformity of current distribution, the anode conductive material 7 The molten sulfur 6 and molten sodium 11 in the container come into contact and a direct reaction occurs, and the heat generated at that time (for example, several kcal, 1 to several hundreds of kcal) destroys the container 12 and further damages the inside of the container 12. The large amount of molten sodium directly reacts with molten sulfur, causing complete destruction of the battery, and also the destruction of adjacent batteries due to thermal effects.

本発明は上記の問題点を解消したものであり、以下実施
例により詳細に説明する。第2図に示す実施例により説
明すれば、1は固体電解質管、2はα−アルミナリング
、6′はアルミニウム被覆鋼材からなる陰極蓋で、α−
アルミナリング2に熱圧接合されている。4は陽極蓋、
5は電池容器、6は陽極活物質、7は陽極電導材、8は
クッション材、9は底蓋、11は陰極活物質、15は@
極活物質11と@極活物質6との直接反応熱で容易に破
壊されるよう低融点金属又は肉薄の金属からなる金属容
器、16はステンレスなどの耐溶融ナトリウム性金属か
らなるナトリウムリザーバー、19は金属容器15内に
ナトリウムリザーバー16の底蓋17 (尚、この場合
、金属容器15の上蓋をも兼ねている)及び金属容器1
5の底蓋18に開放端がそれぞれ溶接されたナトリウム
連通路、21はナトリウムリザーバー16の上蓋20に
溶接されたナトリウム充埃用兼排気用兼ナトリウム通路
を静ねる陰極集電パイプ、金属容器15内には、窒素ガ
ス、アルゴンガス又はヘリウムガスなどの不活性ガス、
隔渇でガス化して不活性ガスとなるアジ化ナトリウムな
どの物質が充填されて、完全密閉されている。固体電解
質管1内に以上の陰極構成体を配設した後、ナトリウム
を陰極集電パイプ21より真空含浸により定量充填し陰
極集電パイプ21上端を密閉してもよく、ナトリウムを
充填したナトリウムリザーバー16を備える金属容器1
5からなる陰極構成体を固体電解質管1内に配した後、
真空中で陰極蓋31と底蓋17を溶接し、密閉してもよ
い。上記の如く構成された電池について、電池作動温度
約350℃に加熱すると、ナトリウムリザーバー16内
の溶融ナトリウムがナトリウム連通路19を通り、固体
電解質管1と金属容器15との間隙に供給され充満(尚
、ナトリウムを陰極側組立後充填する場合は、初めから
ナトリウムが間暉域に充満している)する。放電すると
、固体電解′jii、管1を通り陽極側にナトリウムが
移動し、ナトリウム消gR量に応じてナトリウムリザー
バー16内よりナトリウム連通路19を通って常に前記
間凍域へ欠乏箇所が発生しないよう供給が続けられる。
The present invention solves the above-mentioned problems, and will be explained in detail with reference to Examples below. To explain the embodiment shown in FIG. 2, 1 is a solid electrolyte tube, 2 is an α-alumina ring, 6' is a cathode cover made of aluminum coated steel,
It is thermo-pressure bonded to the alumina ring 2. 4 is the anode lid;
5 is a battery container, 6 is an anode active material, 7 is an anode conductive material, 8 is a cushion material, 9 is a bottom cover, 11 is a cathode active material, 15 is @
A metal container made of a low melting point metal or a thin metal so as to be easily destroyed by the heat of direct reaction between the polar active material 11 and the @polar active material 6, 16 a sodium reservoir made of a molten sodium resistant metal such as stainless steel, 19 The bottom cover 17 of the sodium reservoir 16 (in this case, it also serves as the top cover of the metal container 15) and the metal container 1 are placed in the metal container 15.
5, a sodium communication passage whose open end is welded to the bottom cover 18 of the sodium reservoir 16; 21, a cathode current collecting pipe for calming the sodium dust charging/exhausting sodium passage welded to the top cover 20 of the sodium reservoir 16; and metal container 15; Inside is an inert gas such as nitrogen gas, argon gas or helium gas,
It is filled with a substance such as sodium azide, which gasifies into an inert gas upon cooling, and is completely sealed. After disposing the above cathode structure in the solid electrolyte tube 1, sodium may be quantitatively filled through the cathode current collection pipe 21 by vacuum impregnation, and the upper end of the cathode current collection pipe 21 may be sealed, thereby forming a sodium reservoir filled with sodium. Metal container 1 comprising 16
After arranging the cathode structure consisting of 5 in the solid electrolyte tube 1,
The cathode cover 31 and the bottom cover 17 may be welded and sealed in a vacuum. When the battery configured as described above is heated to a battery operating temperature of approximately 350°C, molten sodium in the sodium reservoir 16 passes through the sodium communication path 19 and is supplied to the gap between the solid electrolyte tube 1 and the metal container 15, filling it ( Note that if sodium is filled after the cathode side is assembled, the interstitial region is filled with sodium from the beginning). When discharging, sodium moves to the anode side through the solid electrolyte 'jii and the tube 1, and according to the amount of sodium extinguished R, from within the sodium reservoir 16 through the sodium communication path 19, there is always no depletion point in the interfreezing area. supply will continue.

尚、ナトリウムリザーバー16より陰極側への供給は、
ナ) IJウムの重力効果でもよく、又、ナトリウムリ
ザーバー16の上部空間に不活性ガスをわずかに封入し
ておいてのガス圧効果でもよい。充電時においては、逆
に陽極室側からナトリウムがもどされ、ナトリウム連通
路19を通ってナトリウムリザーバー16内にもどされ
る。
In addition, the supply from the sodium reservoir 16 to the cathode side is as follows:
n) The gravitational effect of IJum may be used, or the gas pressure effect obtained by filling a small amount of inert gas in the upper space of the sodium reservoir 16 may be used. During charging, on the contrary, sodium is returned from the anode chamber side and returned into the sodium reservoir 16 through the sodium communication path 19.

次に上記の構成からなる電池について、安全性効果をみ
れば、固体電解質管1にクラックが発生した場合、溶融
硫黄と溶融ナトリウムが直接反応すると生成した熱によ
り低融点又は肉薄の金属容器15が破壊され内部の不活
性ガスが放出される。この放出されたガス圧によりナト
リウム連通路19を逆に下方から溶融ナトリウムを押し
上げることとなりナトリウムリザーバー16からの溶融
ナトリウム供給が停止し、継続した直接反応はおこらな
かった。
Next, regarding the safety effect of the battery configured as described above, if a crack occurs in the solid electrolyte tube 1, the heat generated when molten sulfur and molten sodium react directly causes the metal container 15 with a low melting point or thin wall to break down. It is destroyed and the inert gas inside is released. The released gas pressure reversely pushed up the molten sodium from below through the sodium communication path 19, stopping the supply of molten sodium from the sodium reservoir 16, and no continued direct reaction occurred.

上記の安全性を向上させるための金属容器15について
、材質と肉厚を種々に変えて電池の破損状況を調査した
結果が下表である。
The table below shows the results of investigating the damage status of batteries with various materials and wall thicknesses for the metal container 15 for improving safety.

表 すなわち低融点又は肉薄の金属であると容易に金属容器
15が破壊され内部のガスが放出され、以後のナトリウ
ム供給が停止する。
In other words, if the metal is a metal with a low melting point or a thin wall, the metal container 15 will be easily destroyed, the gas inside will be released, and the subsequent supply of sodium will be stopped.

また、ナトリウム連通路19は、金属容器15の内部を
通りナトリウムリザーバー16内と固体電解質管1と金
属容器15との間隙域を連通させることにより、ナトリ
ウムリザーバー16の底蓋17と金属容器15の上蓋を
兼用することができると共に、ナトリウムリザーバー1
6から間隙域へのナトリウム供給通路を長くすることが
でき、口径を変えることなどにより流速を抑制できるこ
とから、破壊時、わずかなガス圧でもってもナトリウム
供給を停止できる。
In addition, the sodium communication path 19 passes through the inside of the metal container 15 and communicates the inside of the sodium reservoir 16 with the gap area between the solid electrolyte tube 1 and the metal container 15, thereby connecting the bottom cover 17 of the sodium reservoir 16 and the metal container 15. It can also be used as a top lid and also has a sodium reservoir.
Since the sodium supply passage from 6 to the gap region can be lengthened and the flow velocity can be suppressed by changing the diameter, sodium supply can be stopped even with a slight gas pressure at the time of destruction.

尚、本発明において、金部容器及びナトリウムリザーバ
ー内のガス量、ガス圧又はガス化物質量、ナトリウム連
通路及び陰極集電パイプの材質、口径、長さ、ナトリウ
ムリザーバーの材質、肉厚、大きさ、金属容器の形状等
については、特に限定するものではなく、適宜選択しう
るちのである。
In the present invention, the amount of gas, gas pressure or amount of gasified substance in the metal container and the sodium reservoir, the material, diameter and length of the sodium communication path and cathode current collecting pipe, the material, wall thickness and size of the sodium reservoir The shape of the metal container is not particularly limited and can be selected as appropriate.

本発明は上記した如く、固体電解質管内に不活性ガス等
を充填した金属容器を備え、クラック発生による陽極活
物質と陰極活物質との接触を、金属容器の破壊で不活性
ガスによりナト1)ラムをナトリウムリザーバー内に押
しもどして抑制し、電池の安全性を向上させたものであ
り、そのエム!市価値は大である0
As described above, the present invention includes a metal container filled with an inert gas or the like in a solid electrolyte tube, and prevents contact between the anode active material and the cathode active material due to the occurrence of cracks by using the inert gas when the metal container is broken. It suppresses the ram by pushing it back into the sodium reservoir, improving battery safety. City value is large 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のナトリウム−硫黄電池の縦断面図、第2
図は本発明による一実施例のナト1ノウムー硫黄電池の
縦断面図である。 1 ・・固体電解質管、10.19・・・す)IJウム
連通路、12・・・す) IJウム容器、15・・・金
属容器、16・・・ナトリウムリザーバー、 21・・・陰極集電パイプ。 出願人 湯浅電池株式会社 第1図 第2図
Figure 1 is a longitudinal cross-sectional view of a conventional sodium-sulfur battery;
The figure is a longitudinal sectional view of an embodiment of a sulfur battery according to the present invention. 1...Solid electrolyte tube, 10.19...S) IJum communication path, 12...S) IJum container, 15...Metal container, 16...Sodium reservoir, 21...Cathode collection Electric pipe. Applicant Yuasa Battery Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)ナトリウムイオン伝導性固体電解質せ内を陰極室と
するナトリウム−硫黄電池において、固体電解質せ上部
にナトリウムリザーバーを配し、ナトリウムリザーバー
下部に不活性ガス又は高温にてガス化する物質を充填し
た完全密閉の金属容器を配するナトリウム−硫黄電池。 2)ナトリウムリザーバーより金属容器の内部を連通ず
るす) IJウム連通路を設けた特許請求の範囲第1項
記載のナトリウム−硫黄電池。 6)ナトリウムリザーバーの上蓋にナトリウム充填用兼
排気用兼す)IJウム通路を兼ねる陰極集電パイプを溶
接した特許請求の範囲第1項記載のナトリウム−硫黄電
池。 4)ト極集電バイブ内にナトリウム連通路を挿入した特
許請求の範囲第6項記載のナトリウム−硫黄電池。 5)金8容器が低り、点の金属又は肉薄の金属からなる
特許請求の範囲第1項記載のナトリウム−硫黄電池。 6)金属容器が、肉厚約211M以下のアルミニウム、
約肌4闘以下のステンレスからなる特許請求の範囲第5
項記載のす) IJウムー硫黄電池。
[Claims] 1) In a sodium-sulfur battery with a sodium ion-conducting solid electrolyte as a cathode chamber, a sodium reservoir is arranged above the solid electrolyte, and an inert gas or a high-temperature gas is placed below the sodium reservoir. A sodium-sulfur battery contains a completely hermetically sealed metal container filled with a substance that oxidizes. 2) The sodium-sulfur battery according to claim 1, which is provided with an IJium communication path (2) communicating the inside of the metal container from the sodium reservoir. 6) The sodium-sulfur battery according to claim 1, wherein a cathode current collecting pipe, which also serves as a sodium filling and exhaust passage, is welded to the upper lid of the sodium reservoir. 4) The sodium-sulfur battery according to claim 6, wherein a sodium communication path is inserted in the top electrode current collecting vibe. 5) The sodium-sulfur battery according to claim 1, wherein the gold 8 container is made of a thin metal or a thin metal. 6) The metal container is aluminum with a wall thickness of approximately 211M or less,
Claim 5 consisting of stainless steel with a thickness of about 4 mm or less
) IJ Umu sulfur battery.
JP58116624A 1983-06-27 1983-06-27 Sodium-sulfuric battery Pending JPS609067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58116624A JPS609067A (en) 1983-06-27 1983-06-27 Sodium-sulfuric battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58116624A JPS609067A (en) 1983-06-27 1983-06-27 Sodium-sulfuric battery

Publications (1)

Publication Number Publication Date
JPS609067A true JPS609067A (en) 1985-01-18

Family

ID=14691795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58116624A Pending JPS609067A (en) 1983-06-27 1983-06-27 Sodium-sulfuric battery

Country Status (1)

Country Link
JP (1) JPS609067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194864A (en) * 1989-12-22 1991-08-26 Ngk Insulators Ltd Sodium-sulfur battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194864A (en) * 1989-12-22 1991-08-26 Ngk Insulators Ltd Sodium-sulfur battery

Similar Documents

Publication Publication Date Title
US3841912A (en) Sodium sulfur storage battery
JPS61190869A (en) Sodium-sulfur battery
JPS5951482A (en) Sodium-sulfur battery
US4087591A (en) Pyrotechnically activated lithium-chlorine cell having a lithium vapor barrier
JPS609067A (en) Sodium-sulfuric battery
JPS6012680A (en) Sodium-sulfur battery
US3844842A (en) Insulating seal for molten salt battery
JPS5973863A (en) Sodium-sulfur battery
JPS6220259A (en) Sodium-sulfur battery
JPS6039774A (en) Sodium-sulfur battery
JPS6247974A (en) Sodium-sulfur battery
JPS6012681A (en) Sodium-sulfur battery
US3972730A (en) Pyrotechnically activated lithium-chlorine cell
JPS59230264A (en) Sodium-sulphur battery
JPH0665073B2 (en) Sodium-sulfur battery
JPH0554908A (en) Sodium-sulfur battery
JPS5935373A (en) Sodium-sulfur battery
JP2646087B2 (en) Sodium-sulfur secondary battery
JPS617576A (en) Sodium-sulfur battery
JPS6116601Y2 (en)
JP2000040522A (en) Sodium-sulfur battery
JPH02112147A (en) Heat pressure method for connecting insulating ring of sodium-sulfur cell to anode container and cathode container
JPS6044972A (en) Sodium-sulfur battery
JPH02165574A (en) Sodium-sulfur battery and its connection
JPS59228371A (en) Sodium-sulfur battery