JPS5935373A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPS5935373A
JPS5935373A JP57145112A JP14511282A JPS5935373A JP S5935373 A JPS5935373 A JP S5935373A JP 57145112 A JP57145112 A JP 57145112A JP 14511282 A JP14511282 A JP 14511282A JP S5935373 A JPS5935373 A JP S5935373A
Authority
JP
Japan
Prior art keywords
battery
case
sodium
solid electrolyte
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57145112A
Other languages
Japanese (ja)
Inventor
Hiroshi Kagawa
博 香川
Kotaro Tanaka
耕太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP57145112A priority Critical patent/JPS5935373A/en
Publication of JPS5935373A publication Critical patent/JPS5935373A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To simplify manufacture of a sodium-sulfur battery and enhance its safety by installing inside a solid electrolyte tube a case having an Na path extending up to near the bottom lid, and installing metallic fiber sintered bodies arranged in specified form in the space formed between the case and the electrolyte tube. CONSTITUTION:A case 10 which is made of a melting resistant Na metal and has an Na path penetrating the center of an upper lid 11 and extending up to near the bottom lid, is provided inside the Na-ion conducting bottomed solid electrolyte tube 1 of an Na-S battery the negative chamber of which consists of the internal space of the tube 1. Next, metallic fiber sintered bodies 13 which are continuous in the horizontal direction and spaced at equal intervals in the vertical direction, are installed in the space formed between the case 10 and the tube 1. After that, a gasified matter is packed in the case 10, and a sulfur-holding formed positive conductive member 5 is inserted in a battery case 3. In this battery, even when a crack develops in the sintered body 13 and its upper adjacent sintered body 13 is consumed by directly reacting with sulfur in the worst case thereby securing safety.

Description

【発明の詳細な説明】 本発明はす) IJウムー硫黄電池に関し、特に固体電
解質管が破損した場合のす) +)ラムと硫黄の直接反
応量を低減させ、電池の安全性を向上させることを目的
とするものであり、併わせで電池製造の簡略化を計るも
のである。
[Detailed Description of the Invention] The present invention relates to) IJ Umu sulfur batteries, particularly when solid electrolyte tubes are damaged; +) To improve battery safety by reducing the amount of direct reaction between ram and sulfur The purpose is to simplify battery manufacturing.

ナトリウム−硫黄電池は陰極活物質にナトリウム、陽極
活物質に硫黄を用い、これらの活物質をナトリウムイオ
ン伝導性固体電解質管2例えばβ−アルミナ、β′−ア
ルミナ等で分離し。
A sodium-sulfur battery uses sodium as a cathode active material and sulfur as an anode active material, and these active materials are separated by a sodium ion conductive solid electrolyte tube 2 such as β-alumina, β'-alumina, etc.

約600〜650°Cの高温で作動させる高温型二次電
池である。第1図に従来の電池構造を示す。
It is a high-temperature secondary battery that operates at a high temperature of approximately 600 to 650°C. Figure 1 shows a conventional battery structure.

1はβ′−アルミナからなるナトリウムイオン伝導性有
底固体電解質管、2は固体電解質管1をガラス半田接合
したα−アルミナリング、6はα−アルミナリング2の
下面にA1層を介して熱圧接合された耐溶融硫黄・多硫
化すI・リウム性金属からなる陽極集電体を兼ねる電池
容器である。4は陽極活物質としての溶融硫黄・多硫化
ナトリウムである。5は@概括物質4を含浸したグラフ
ァイト、カーボン等の繊維からなる陽極電導材である。
1 is a sodium ion conductive bottomed solid electrolyte tube made of β'-alumina, 2 is an α-alumina ring formed by glass soldering the solid electrolyte tube 1, and 6 is a heat source connected to the bottom surface of the α-alumina ring 2 through the A1 layer. This is a battery container that also serves as an anode current collector made of pressure-bonded molten sulfur, polysulfide I, and lithium metals. 4 is molten sulfur/sodium polysulfide as an anode active material. 5 is an anode conductive material made of fibers such as graphite or carbon impregnated with the general substance 4.

6はα−アルミナリング2の上面にA1層を介して熱圧
接合された耐溶融ナトリウム性金属からなる陰極蓋であ
る。7は陰極蓋6と溶接されたす) IJJウム填兼排
気用の陰極集電端子ですトリウムを充填後、上端部はシ
ールされる。8は陰極活物質としての溶融ナトリウムで
ある。9は陰極活物質8を含浸した耐溶融す) IJウ
ム性金金属繊維らなる陰極保持側である。かような構成
でなる従来のナトリウム−硫黄電池の陰極室についてさ
らに詳述する。固体電解質管1の管内に気孔率が一定と
なる重量の金属繊維9例えば5US316Lの繊維径8
μを仮の端子を配した状態で開放端より少量づつ挿入し
つつ押し込み、全量充填時に金属繊維上端が固体電解質
管1の上端部近傍又は陰極室上端となるように充填した
後、仮の端子を引き抜き、陰極蓋6が溶接された陰極集
電端子7を挿入した。その後、陰極蓋6とα−アルミナ
リング2がi層を介して熱圧接合された。
Reference numeral 6 denotes a cathode lid made of a molten sodium-resistant metal and bonded to the upper surface of the α-alumina ring 2 through a layer A1. 7 is welded to the cathode cover 6) This is the cathode current collector terminal for IJJ umium filling and exhaust. After filling with thorium, the upper end is sealed. 8 is molten sodium as a cathode active material. 9 is a cathode holding side made of melt-resistant gold metal fiber impregnated with cathode active material 8; The cathode chamber of a conventional sodium-sulfur battery having such a configuration will be described in further detail. Inside the solid electrolyte tube 1, there is a metal fiber 9 having a weight that makes the porosity constant, for example, fiber diameter 8 of 5US316L.
With the temporary terminal arranged, insert μ into the open end little by little and push it in so that the top end of the metal fiber is near the top end of the solid electrolyte tube 1 or the top end of the cathode chamber when fully filled, and then insert the temporary terminal. was pulled out, and the cathode current collector terminal 7 to which the cathode cover 6 was welded was inserted. Thereafter, the cathode lid 6 and the α-alumina ring 2 were bonded together by thermopressure via the i-layer.

このように製造された陰極室は、第1として固体電解質
管1内の金属繊維9充填密度が各箇所で不均一であり溶
融す) IJJウム持能力及び灯心効果が異なるなど電
池性能が一定しないという欠点があった。第2の欠点と
しては、固体電解質管1が何らかの原因9例えば機械的
衝撃。
In the cathode chamber manufactured in this way, firstly, the packing density of the metal fibers 9 in the solid electrolyte tube 1 is uneven at each location and melts.) The battery performance is not constant due to differences in IJJ capacity and wick effect. There was a drawback. A second drawback is that the solid electrolyte tube 1 may be exposed to certain causes 9 such as mechanical shock.

熱的衝撃等でクラックが発生し破壊された場合。When cracks occur and are destroyed due to thermal shock, etc.

クラック箇所を通して溶融ナトリウム8と溶融硫黄4が
直接化学反応をおこす。この化学反応量の程度が電池破
損規模の大小となり、破損規模が小の場合は電池容器6
が変化しない又はわずかに変形するだけで、金属繊維9
内には多量のす) IJJウムが残存しているが、破損
規模が大の場合は電池容器に穴があき、活物質が漏出し
発火すると共に、金属繊維9内のナトリウム8が灯芯作
用により連続的に供給され、金属繊維9の最外表面域で
発火し続けているなど、安全性の上で信頼性に問題があ
った。
Molten sodium 8 and molten sulfur 4 undergo a direct chemical reaction through the crack location. The degree of this chemical reaction determines the scale of battery damage, and if the damage is small, the battery container 6
The metal fiber 9 does not change or is only slightly deformed.
Although a large amount of IJJum remains inside the battery, if the damage is large enough, a hole will form in the battery container, the active material will leak out and catch fire, and the sodium 8 in the metal fibers 9 will be destroyed by the action of the lamp wick. There were safety and reliability problems, such as continuous supply and ignition at the outermost surface area of the metal fibers 9.

本発明は従来の欠点を解消すると共に電池製造の簡略化
を計るものである。第2図に本発明の一実施例を示し、
第1図と同じ数字は同じ構成要素を示す。7′は陰極蓋
乙に溶接された陰極活物質8充填及び排気を兼ねる陰極
集電端子で。
The present invention overcomes the drawbacks of the prior art and simplifies battery manufacturing. FIG. 2 shows an embodiment of the present invention,
The same numbers as in FIG. 1 indicate the same components. 7' is a cathode current collector terminal which also serves as the filling and evacuation of the cathode active material 8, which is welded to the cathode cover A.

陰極蓋6よりわずか下方にまで延在しており。It extends slightly below the cathode cover 6.

陰極活物質8を充填後、上端部はシールされる。After filling the cathode active material 8, the upper end is sealed.

10は耐溶融ナトリウム性金属9例えばステンレスから
なる容器である。11は容器1oの上蓋で、12は上蓋
11の中心に溶接され容器1゜の底蓋近傍まで延在する
ナトリウム連通路である。16は金属繊維例えばステン
レス、鉄ナトで加圧焼結した帯状の金属繊維焼結体で、
容器10の外表面にリング状でかつ電池の高さ方向には
一定間隔をもって固定されている。また。
10 is a container made of a molten sodium-resistant metal 9, such as stainless steel. Reference numeral 11 is the upper lid of the container 1o, and 12 is a sodium communication passage welded to the center of the upper lid 11 and extending to the vicinity of the bottom lid of the container 1°. 16 is a band-shaped metal fiber sintered body pressure-sintered with metal fibers such as stainless steel or iron nuts;
They are fixed to the outer surface of the container 10 in a ring shape and at regular intervals in the height direction of the battery. Also.

ナトリウム連通路12の上部開放端は、陰極集電端子7
′の下部開放端の中に挿入又は近傍に位置するように配
置される。さらに詳細に説明すると、ナトリウム連通路
12を上蓋11に溶接した後、上蓋11を容器1oに溶
接する。
The upper open end of the sodium communication path 12 is connected to the cathode current collector terminal 7.
' is positioned so as to be inserted into or located near the lower open end of the '. More specifically, after the sodium communication passage 12 is welded to the upper lid 11, the upper lid 11 is welded to the container 1o.

次に容器1oの外表面に繊維径約8μ〜25μの金属繊
維を気孔率94.5%〜98%になるように加圧焼結し
た固体電解質管と容器1oの間隙に相当するが又はそれ
以上の厚みを有する金属繊維焼結帯状(リング状)体1
6を等間隔に電池の高さ方向にスポット溶接等の手段に
より固定する。次に焼結体16配股容器1oをa−アル
ミナリング2にガラス半田接合された固体電解質管1内
に挿入する。挿入後、α−アルミナリング2の上面に陰
極集電端子7′を溶接した陰極蓋6を、アルミニウム箔
リングを介して配置すると共に、下面には同様のアルミ
ニウムリングを介して陽極蓋を配置する。次に熱圧接合
治具(図示せず)内にそれらを配置し、空気中で約60
0°C以上に加熱した状態でα−アルミナリングの上面
及び下面に位置する陰極蓋及び陽極蓋に垂直方向の荷重
約400 kqlcr&以上を加え、最大約15分保持
する。次にこのようにして得られた第2図に示す構成体
(但し、@極側はこの状態では配設されていない)をア
ルゴン雰囲気下にて約150°Cまで昇温し、保温した
状態で陰極集電端子7′より排気した後、真空含浸法に
より同温度の溶融す) IJJウム定量充填した後、真
空を解除し、冷却後陰極集電端子7′の上部開口部を真
空シールする。
Next, on the outer surface of the container 1o, metal fibers with a fiber diameter of about 8 μm to 25 μm are pressure-sintered to have a porosity of 94.5% to 98%. Metal fiber sintered band-shaped (ring-shaped) body 1 having a thickness of
6 are fixed at equal intervals in the height direction of the battery by means such as spot welding. Next, the sintered body 16 and the container 1o are inserted into the solid electrolyte tube 1 which is joined to the a-alumina ring 2 by glass soldering. After insertion, a cathode lid 6 with a cathode current collector terminal 7' welded to the top surface of the α-alumina ring 2 is placed via an aluminum foil ring, and an anode lid is placed on the bottom surface via a similar aluminum ring. . Then place them in a thermopressure bonding jig (not shown) and
A vertical load of approximately 400 kqlcr& is applied to the cathode lid and anode lid located on the upper and lower surfaces of the α-alumina ring while heated to 0° C. or higher, and maintained for a maximum of approximately 15 minutes. Next, the structure shown in FIG. 2 obtained in this way (however, the @ pole side is not arranged in this state) was heated to about 150°C in an argon atmosphere, and kept warm. After evacuating from the cathode current collector terminal 7', it is melted at the same temperature by vacuum impregnation method.) After filling a fixed amount of IJJum, the vacuum is released, and after cooling, the upper opening of the cathode current collector terminal 7' is vacuum sealed. .

なお、容器10内にガス化物質が挿填されている。次に
電池容器6内に硫黄含浸成型陽極電導材を挿入し、中心
部に上記す) IJウム充填構成体を配置して陽極側を
真空シールする。
Note that a gasified substance is inserted into the container 10. Next, the sulfur-impregnated molded anode conductive material is inserted into the battery container 6, the above-mentioned IJum filling structure is placed in the center, and the anode side is vacuum-sealed.

このようにして得られた本発明の電池特性について以下
に説明する。従来の第1の欠点については、金属繊維が
加圧焼結された成型体であるため金属繊維内での気孔率
の不均一性はナトリウムのウィック効果からは無視され
る程度であり、かつ金属繊維配設空間域が極めて小さい
ためす) IJウム供給性能が安定している。第6図に
従来のす) IJウム供給性能を分極電圧値変化により
示す。すなわち、従来(1)は通電(陰極室内よりす)
 IJウムが減少する放電方向に通電する)時間経過と
共に分極電圧値は上昇するのに対し9本発明(2)では
ほとんど所要時間内には分極電圧値変化は認められない
。また、この分極電圧値変化は、固体電解質管1のす)
 IJウムと接している領域とも関係があり、変化が大
きいとナトリウムと濡れていない領域が発生している可
能性がある。これは固体電解質管の耐電圧とも関連があ
り、固体電解質管の寿命をも左右するものである。この
ことからも本発明は電池性能を向上させると共に電池寿
命をも増すこともできた。
The battery characteristics of the present invention thus obtained will be explained below. Regarding the first drawback of the conventional method, since the metal fiber is a molded body formed by pressure sintering, the non-uniformity of porosity within the metal fiber can be ignored due to the wicking effect of sodium. (Because the fiber arrangement space is extremely small) IJum supply performance is stable. Figure 6 shows the conventional IJium supply performance as a function of changes in polarization voltage. That is, conventionally (1) is energized (from inside the cathode chamber).
While the polarization voltage value increases with the passage of time (current is applied in the discharge direction where IJum decreases), in the present invention (2), almost no change in the polarization voltage value is observed within the required time. In addition, this polarization voltage value change is caused by the solid electrolyte tube 1)
There is also a relationship with the area in contact with IJium, and if the change is large, there is a possibility that areas not wet with sodium have occurred. This is related to the withstand voltage of the solid electrolyte tube, and also affects the lifespan of the solid electrolyte tube. From this, the present invention was able to improve battery performance and also extend battery life.

さらに従来の第2の欠点については固体電解質管1にク
ランクが発生し、破損した場合、そのクランク発生箇所
が陰極室側の金属繊維焼結体に一致する位置であったと
すると、金属繊維内のナトリウムは硫黄との直接反応に
消費されると共に、最悪の場合その金属繊維焼結体と上
段の金属縁−維焼結体との間の空間域のす) IJウム
が消費された。しかしながらそれ以外の領域のナトリウ
ムは全く直接反応に寄与することがなく、電池破損規模
も極めて小さいもので、電池容器3がわずかに変色する
程度で、従来のように電池容器に穴があき活物質が漏出
し発火することはなかった。このように直接反応量を小
さくできたのは、金属繊維焼結体を電池の高さ方向に等
間隔でかつ不連続的に配設し、かつ金属繊維が固体電解
質管内面及び容器外面に密接させることで、急激なすi
・リウム消費速度に対し金属繊維のす) +)ラム保持
カが、金属繊維焼結体間の空間で逆にす) IJウム供
給を停止させる働きをもったものである。この金属繊維
間の空間域は、ナトリウムの急激な減少を最小限にとど
める抑制帯として効果をもつもので、極めて安全性を高
めた。
Furthermore, regarding the second drawback of the conventional method, if a crank occurs in the solid electrolyte tube 1 and breaks, assuming that the crank occurs at a position that corresponds to the metal fiber sintered body on the cathode chamber side, Sodium was consumed in the direct reaction with sulfur, and in the worst case, sodium was consumed in the space between the metal fiber sintered body and the upper metal edge-fiber sintered body. However, sodium in other areas does not directly contribute to the reaction at all, and the scale of battery damage is extremely small, with only slight discoloration of the battery container 3, and unlike conventional cases, there are holes in the battery container and the active material There was no leakage or ignition. The amount of direct reaction could be reduced in this way by arranging the metal fiber sintered bodies discontinuously and at equal intervals in the height direction of the battery, and by placing the metal fibers in close contact with the inner surface of the solid electrolyte tube and the outer surface of the container. By letting it happen, it suddenly becomes
・The ram holding force is reversed in the space between the metal fiber sintered bodies, and has the function of stopping the IJ umium supply. This space between the metal fibers acts as a restraint zone that minimizes the rapid decrease in sodium content, greatly increasing safety.

実施例 約0.2闘厚の5tJS3D4相からなる外径29φ。Example Outer diameter 29φ made of 5t JS3D 4-phase with approximately 0.2 fighting thickness.

高さ300朋の容器10の上、1111に外径6φ、内
径1φ、長さ295緒のステンレス管からなるナトリウ
ム連通路を溶接し、該容器1oの外面に巾10朋、厚さ
約1am、気孔率94.5%からなる繊維径12μの鉄
繊維焼結体を同心円状にスポット溶接し、さらに高さ方
向に約10間の間隔をおいて同様な焼結体をそれぞれ配
設した。
A sodium communication path made of a stainless steel pipe with an outer diameter of 6φ, an inner diameter of 1φ, and a length of 295 mm is welded to the top of the container 10 with a height of 300 mm, and a sodium passageway with a width of 10 mm and a thickness of about 1 am is welded to the outer surface of the container 1o. Iron fiber sintered bodies having a porosity of 94.5% and a fiber diameter of 12 μm were spot-welded concentrically, and similar sintered bodies were placed at intervals of about 10 mm in the height direction.

この容器10を内径61φのβ′−アルミナ管1の中に
挿入した後、陰極蓋及び陽極蓋をそれぞれa−アルミナ
リング2に接合した。次にアルゴン雰囲気中で、約17
87のナトリウムを真空含浸により陰極室内に充填し、
冷却後硫黄含浸成型陽極電導材を配置し、陽極及び陰極
を真空シールした。このようにして得られた電池を35
0°Cにて充放電試験した結果、何ら陰極側がらの電池
性能に与える影響は認められなかった。次に電圧印加に
ょ′る電池破壊試験を行なった。充電々圧が約25V以
上になった時点で電池電圧変動を示すと共に電池温度が
最高約600 ’Cまで上昇した。電池解体調査の結果
、固体電解質管の底部近傍でクランク発生が認められ、
該クラック近傍のナトリウムは皆無となり、陽極側で紫
色の活物質が偏析していた。しがしながら。
After this container 10 was inserted into a β'-alumina tube 1 having an inner diameter of 61φ, a cathode lid and an anode lid were joined to the a-alumina ring 2, respectively. Next, in an argon atmosphere, about 17
87 sodium was filled into the cathode chamber by vacuum impregnation,
After cooling, a sulfur-impregnated molded anode conductive material was placed, and the anode and cathode were vacuum-sealed. The battery obtained in this way was
As a result of a charge/discharge test at 0°C, no influence of the cathode side on battery performance was observed. Next, a battery destruction test was conducted by applying voltage. When the charging voltage reached about 25 V or higher, the battery voltage showed fluctuations and the battery temperature rose to a maximum of about 600'C. As a result of the battery disassembly investigation, a crank was observed near the bottom of the solid electrolyte tube.
There was no sodium near the crack, and the purple active material was segregated on the anode side. While doing so.

クラック近傍以外のナトリウムは残存しており。Sodium remains in areas other than the vicinity of the crack.

特に、クラックの前後の高さにある金属繊維内にはナト
リウムが残存していた。
In particular, sodium remained in the metal fibers at the height before and after the crack.

以上、説明した如く9本発明は電池性能を向上させると
共に電池の安全性をも高めるなど信頼性を向上させるこ
とができた。
As described above, the present invention was able to improve battery performance and reliability, such as improving battery safety.

なお9本発明においては電池形状、金属繊維材質、形状
、金属繊維間の間隔寸法及び容器材質・形状等について
は特に限定するものではない。
Note that in the present invention, there are no particular limitations on the battery shape, metal fiber material, shape, spacing between metal fibers, container material and shape, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のす) IJウムー硫黄電池の縦断面図、
第2図は本発明のす) IJウムー硫黄電池の縦断面図
、第6図は分極電圧特性変化図である。 1・・・固体電解質管、  9・・金属繊維。 16・・・金属繊維焼結体、10・・・容器。 出願人 湯浅電池株式会社 第1図 1   l   j   令   ・ 第2図
Figure 1 is a vertical cross-sectional view of a conventional IJ Umu sulfur battery.
FIG. 2 is a longitudinal cross-sectional view of an IJ Umu sulfur battery according to the present invention, and FIG. 6 is a diagram showing changes in polarization voltage characteristics. 1...Solid electrolyte tube, 9...Metal fiber. 16... Metal fiber sintered body, 10... Container. Applicant Yuasa Battery Co., Ltd. Figure 1 1 l j Ordinance / Figure 2

Claims (1)

【特許請求の範囲】 1)ナトリウムイオン伝導性有底固体電解質管内を陰極
室とするナトリウム−硫黄電池において、固体電解質管
内に上部蓋の中心を貫通し底蓋近傍まで延在する耐溶融
す) IJウム性金金属管備えた容器と、固体電解質管
と該容器の間隙に水平方向には連続的に、垂直方向には
等間隔に配設された金属繊維焼結体を備えることを特徴
とするナトリウム−硫黄電池。 2)前記金属繊維焼結体が該容器の外表面に少なくとも
一部溶接固定されていることを特徴とする特許請求の範
囲第1項一記載のす) IJウムー硫黄電池。
[Scope of Claims] 1) In a sodium-sulfur battery whose cathode chamber is inside a sodium ion-conducting solid electrolyte tube with a bottom, a melt-resistant battery that penetrates the center of the top lid and extends to the vicinity of the bottom lid in the solid electrolyte tube) It is characterized by comprising a container equipped with an IJ aluminum gold metal tube, and metal fiber sintered bodies disposed continuously in the horizontal direction and at regular intervals in the vertical direction in the gap between the solid electrolyte tube and the container. sodium-sulfur battery. 2) The IJ Umu sulfur battery according to claim 1, wherein the metal fiber sintered body is at least partially welded and fixed to the outer surface of the container.
JP57145112A 1982-08-20 1982-08-20 Sodium-sulfur battery Pending JPS5935373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57145112A JPS5935373A (en) 1982-08-20 1982-08-20 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57145112A JPS5935373A (en) 1982-08-20 1982-08-20 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPS5935373A true JPS5935373A (en) 1984-02-27

Family

ID=15377659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57145112A Pending JPS5935373A (en) 1982-08-20 1982-08-20 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPS5935373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294671A (en) * 1987-05-27 1988-12-01 Tokyo Electric Power Co Inc:The Sodium-sulfur cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294671A (en) * 1987-05-27 1988-12-01 Tokyo Electric Power Co Inc:The Sodium-sulfur cell

Similar Documents

Publication Publication Date Title
US3930888A (en) Molten metal anode
GB2083686A (en) Electrochemical storage cell
US4657830A (en) Sodium-sulfur storage battery
US4510217A (en) Sodium-sulfur storage battery
US4419418A (en) Individual rechargeable electric cell
US3891460A (en) Thermal battery and molten metal anode therefore
JPH0345868B2 (en)
JPS5935373A (en) Sodium-sulfur battery
JP3193319B2 (en) Sodium-sulfur battery
JPS6012680A (en) Sodium-sulfur battery
KR101322637B1 (en) Sodium-sulfur rechargeable battery and method for manufacturing the same
JPS6116601Y2 (en)
JPS5973863A (en) Sodium-sulfur battery
JPH0554908A (en) Sodium-sulfur battery
KR100294469B1 (en) Turned-over type sodium/sulfur battery or sodium/nickel chloride battery
JP2646087B2 (en) Sodium-sulfur secondary battery
JPS609067A (en) Sodium-sulfuric battery
JPS639105Y2 (en)
KR20150076382A (en) Sodium sulfur battery
JPH02165574A (en) Sodium-sulfur battery and its connection
JPS6366862A (en) Sodium-sulfur battery
JPS59163773A (en) Sodium-sulfur battery
JPH02144858A (en) Sodium-sulfur battery
JPH11329488A (en) Sodium-sulfur battery
JPS617576A (en) Sodium-sulfur battery