JPH0665073B2 - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH0665073B2
JPH0665073B2 JP63264993A JP26499388A JPH0665073B2 JP H0665073 B2 JPH0665073 B2 JP H0665073B2 JP 63264993 A JP63264993 A JP 63264993A JP 26499388 A JP26499388 A JP 26499388A JP H0665073 B2 JPH0665073 B2 JP H0665073B2
Authority
JP
Japan
Prior art keywords
sodium
container
solid electrolyte
electrolyte tube
safety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63264993A
Other languages
Japanese (ja)
Other versions
JPH02112168A (en
Inventor
裕介 新居
宏次 杉本
正念 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63264993A priority Critical patent/JPH0665073B2/en
Publication of JPH02112168A publication Critical patent/JPH02112168A/en
Publication of JPH0665073B2 publication Critical patent/JPH0665073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は固体電解質管の破損時における安全性を向上
することができるナトリウム−硫黄電池に関するもので
ある。
TECHNICAL FIELD The present invention relates to a sodium-sulfur battery capable of improving safety when a solid electrolyte tube is broken.

[従来の技術] 従来のナトリウム−硫黄電池には第5図に示すように、
陽極活物質である溶融硫黄Sを含浸したカーボンマット
などの陽極用導電材Mを収納する円筒状の陽極容器1
と、該陽極容器1の上端部に対し、α−アルミナ製の絶
縁リング2を介して連結された陰極金具3と、前記絶縁
リング2の内周部に固着され、かつ、陰極活物質である
溶融金属ナトリウムNaを貯留し、ナトリウムイオンN
を選択的に透過させる機能を有した下方へ延びる多
結晶β″−アルミナよりなる有底円筒状の固体電解質管
4とを備えたものがある。また、前記固体電解質管4に
より電池内部は陽極室R1と陰極室R2に区画形成さ
れ、陰極室R2内部にはナトリウムを貯留するナトリウ
ム容器5が収納され、その底部5aに設けた小孔5bか
らナトリウムが出入りするようになっている。さらに、
前記ナトリウム容器5と固体電解質管4との間にはステ
ンレスウイックよりなる有底円筒状をなすナトリウム保
持体11が収容されている。
[Prior Art] As shown in FIG.
Cylindrical anode container 1 containing a conductive material M for anode such as carbon mat impregnated with molten sulfur S which is an anode active material 1
And a cathode metal fitting 3 connected to the upper end of the anode container 1 via an insulating ring 2 made of α-alumina, and fixed to the inner peripheral portion of the insulating ring 2 and is a cathode active material. Stores molten metal sodium Na, sodium ion N
There is also provided a bottomed cylindrical solid electrolyte tube 4 made of polycrystalline β ″ -alumina having a function of selectively transmitting a +, and the inside of the battery by the solid electrolyte tube 4. Is divided into an anode chamber R1 and a cathode chamber R2, a sodium container 5 for storing sodium is housed inside the cathode chamber R2, and sodium is allowed to flow in and out through a small hole 5b provided in the bottom portion 5a. further,
Between the sodium container 5 and the solid electrolyte tube 4, a bottomed cylindrical sodium holder 11 made of a stainless steel wick is housed.

そして、放電時にはナトリウム容器5の小孔5bから出
たナトリウムはナトリウム保持体11に一旦含浸された
後、陰極室R2からナトリウムイオンNaが固体電解
質管4を透過して陽極室R1内の硫黄Sと次のように反
応し、多硫化ナトリウムを生成する。
Then, at the time of discharge, sodium discharged from the small holes 5b of the sodium container 5 is once impregnated into the sodium holder 11, and then sodium ions Na + from the cathode chamber R2 permeate the solid electrolyte tube 4 and sulfur in the anode chamber R1. It reacts with S as follows to form sodium polysulfide.

2Na+XS→NaSx また、充電時には放電時とは逆の反応が起こり、ナトリ
ウムNa及び硫黄Sが生成される。
2Na + XS → Na 2 Sx During charging, the opposite reaction to that during discharging occurs, and sodium Na and sulfur S are produced.

前記固体電解質管4が例えば劣化や熱応力を受けてクラ
ックが発生して破損した場合、陰極室R2内の金属ナト
リウムが陽極室R1内側の硫黄と多量かつ急激に反応し
て異常高熱を発生し、電池全体が破壊され、この結果ナ
トリウムが外部に流出して危険であるという問題があっ
た。これを解決するため、上記従来例では陰極室R2内
にナトリウム容器5とナトリウム保持体11を設けたの
である。
When the solid electrolyte tube 4 is damaged due to deterioration or thermal stress and cracks, for example, metallic sodium in the cathode chamber R2 reacts with sulfur in the anode chamber R1 in a large amount and rapidly to generate abnormally high heat. However, there was a problem that the entire battery was destroyed and, as a result, sodium leaked out and was dangerous. In order to solve this, in the above conventional example, the sodium container 5 and the sodium holder 11 are provided in the cathode chamber R2.

[発明が解決しようとする課題] ところが、前記従来の電池の安全対策は、ナトリウム容
器5の小孔5bと固体電解質管4との距離が近く、固体
電解質管4が前記小孔5b付近で破損したときに、ナト
リウム容器5からのナトリウム流出圧力が高いため、活
物質の反応量が多く、安全性が不十分であった。
[Problems to be Solved by the Invention] However, in the conventional safety measures for batteries, the small hole 5b of the sodium container 5 and the solid electrolyte tube 4 are close to each other, and the solid electrolyte tube 4 is damaged near the small hole 5b. At that time, the sodium outflow pressure from the sodium container 5 was high, so that the reaction amount of the active material was large and the safety was insufficient.

また、固体電解質管4とナトリウム容器5の間隙はナト
リウム保持体11を収容する関係で、この間隙全体に存
在するナトリウムの量が多くなり、固体電解質管4が破
損したときの活物質の反応量が多く、この点からも安全
性が不十分であった。
Further, since the gap between the solid electrolyte tube 4 and the sodium container 5 accommodates the sodium holder 11, the amount of sodium existing in the entire gap is large, and the reaction amount of the active material when the solid electrolyte tube 4 is damaged. However, safety was insufficient from this point as well.

さらに、固体電解質管4が破損するとナトリウム保持体
11には機械的強度がないのでナトリウム容器5も共に
損傷し易く、損傷した場合容器5内のナトリウムが多量
に硫黄と反応するため電池が破壊されるという問題があ
った。
Furthermore, when the solid electrolyte tube 4 is damaged, the sodium holder 11 has no mechanical strength, and the sodium container 5 is easily damaged together. If damaged, a large amount of sodium in the container 5 reacts with sulfur and the battery is destroyed. There was a problem that

さらに、ステンレスウイックよりなるナトリウム保持体
11を使用していたので、ナトリウム容器5の小孔5b
から出たナトリウムの移動を円滑に行うことができず、
電池の放電特性が低下するという問題もあった。
Further, since the sodium holder 11 made of stainless wick is used, the small hole 5b of the sodium container 5 is used.
It was not possible to move the sodium from the
There is also a problem that the discharge characteristics of the battery deteriorate.

この発明の目的はナトリウム容器のナトリウム小孔と固
体電解質管との距離を長くして固体電解質管表面でのナ
トリウム圧力を低減させ、かつ有底安全管によって固体
電解質管に接するナトリウム量を減少し、かつナトリウ
ム容器の損傷を防止して安全性を確保することができ、
さらにナトリウムの移動を円滑に行い安定した充放電特
性を得ることができるナトリウム−硫黄電池を提供する
ことにある。
An object of the present invention is to reduce the sodium pressure on the surface of the solid electrolyte tube by increasing the distance between the sodium small holes of the sodium container and the solid electrolyte tube, and to reduce the amount of sodium in contact with the solid electrolyte tube by the bottomed safety tube. In addition, it is possible to prevent damage to the sodium container and ensure safety,
Another object of the present invention is to provide a sodium-sulfur battery that can smoothly move sodium and obtain stable charge / discharge characteristics.

[課題を解決するための手段] この発明は上記目的を達成するため、陽極室と陰極室を
区画する有底袋管状の固体電解質管の陰極室側内部に、
金属ナトリウムを収容するナトリウム容器を収容し、該
ナトリウム容器の底部に小孔を透設し、かつナトリウム
容器内部の上部加圧室に該金属ナトリウムを加圧する不
活性ガスを充填し、さらに、前記固体電解質管とナトリ
ウム容器との間に有底袋管状の安全管を収容し、該安全
管の内周面とナトリウム容器の外周面との間及び安全管
の外周面と固体電解質管の内周面との間に、電池の充電
・放電時に前記小孔から出入りする金属ナトリウムを上
下方向に案内する内側間隙及び外側間隙を設けるという
手段をとっている。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides, inside the cathode chamber side of a bottomed bag-shaped solid electrolyte tube for partitioning the anode chamber and the cathode chamber,
A sodium container containing metal sodium is housed, a small hole is formed through the bottom of the sodium container, and an upper pressure chamber inside the sodium container is filled with an inert gas for pressurizing the metal sodium. A bottomed bag-shaped safety tube is housed between the solid electrolyte tube and the sodium container, and the space between the inner peripheral surface of the safety tube and the outer peripheral surface of the sodium container and the outer peripheral surface of the safety tube and the inner peripheral surface of the solid electrolyte tube. Means are provided between the surface and the surface so as to provide an inner gap and an outer gap for vertically guiding the metallic sodium flowing in and out of the small holes when the battery is charged and discharged.

この発明において前記内側間隙を0.1〜1mm、外側間
隙を0.1〜0.5mmに設定するとよい。
In the present invention, the inner gap may be set to 0.1 to 1 mm and the outer gap may be set to 0.1 to 0.5 mm.

また、この発明において前記陰極室内に前記ナトリウム
容器を安全管の底部側へ押圧する付勢部材を配置すると
よい。
Further, in the present invention, a biasing member for pressing the sodium container toward the bottom side of the safety pipe may be arranged in the cathode chamber.

[作用] この発明はナトリウム容器と固体電解質管の間に安全管
が存在し、その内外両側に内側間隙及び外側間隙が設け
られているので、ナトリウム容器の小孔から固体電解質
管までの距離が長くなってナトリウムの圧力が低下する
ので、固体電解質管が破損してもナトリウムと硫黄の反
応が抑制され、安全性が向上する。
[Operation] In the present invention, since the safety pipe exists between the sodium container and the solid electrolyte pipe, and the inner gap and the outer gap are provided on both inner and outer sides thereof, the distance from the small hole of the sodium container to the solid electrolyte pipe is Since the pressure of sodium decreases as the length increases, the reaction between sodium and sulfur is suppressed even if the solid electrolyte tube is damaged, and safety is improved.

また、固体電解質管が破損したら外側間隙内部の少量の
ナトリウムと硫黄の反応は生じるが、その後はナトリウ
ムが安全管の上端縁を乗り越えなければならず、従っ
て、活物質相互の反応が抑制され、しかもナトリウム容
器は安全管により保護されているので、ナトリウム容器
の破損が防止され、この点からも安全性が向上する。
Also, if the solid electrolyte tube is broken, a reaction between a small amount of sodium and sulfur inside the outer gap occurs, but thereafter, sodium must climb over the upper edge of the safety tube, thus suppressing the reaction between the active materials, Moreover, since the sodium container is protected by the safety pipe, damage to the sodium container is prevented, and the safety is improved from this point as well.

さらに、ナトリウム容器の小孔から出たナトリウムは内
側間隙を上方へ移動した後、安全管の上端縁から外側間
隙に移動するため、ステンレスウイックを使用した場合
と比較して、ナトリウムの流れが一様かつ円滑となり、
このため固体電解質管の内周面へのナトリウムの供給が
均一になり、放電特性が安定する。
Furthermore, the sodium flowing out of the small holes of the sodium container moves upward in the inner gap and then moves from the upper edge of the safety pipe to the outer gap, so that the sodium flow is less than that in the case of using the stainless steel wick. And become smooth,
Therefore, the sodium is uniformly supplied to the inner peripheral surface of the solid electrolyte tube, and the discharge characteristics are stabilized.

前記内側間隙を0.1〜1mm、外側間隙を0.1〜0.
5mmに設定した場合には、両間隙内のナトリウム量が少
ないので、ナトリウムと硫黄の反応が抑制し易くなる。
The inner gap is 0.1 to 1 mm, and the outer gap is 0.1 to 0.
When it is set to 5 mm, the amount of sodium in both gaps is small, so that the reaction between sodium and sulfur is easily suppressed.

前記陰極室内に前記ナトリウム容器を安全管の底部側へ
押圧する付勢部材を配置した場合には、大半のナトリウ
ムが容器から流出して全体が軽量となってもその浮き上
がりを防止して容器の底部と安全管の底部との間隙を一
定に保持し、安定したナトリウムの供給が行われる。
When a biasing member that presses the sodium container toward the bottom side of the safety tube is arranged in the cathode chamber, even if most of the sodium flows out of the container and the whole becomes lightweight, it prevents the floating of the container. The gap between the bottom and the bottom of the safety pipe is kept constant, and a stable supply of sodium is performed.

[実施例] 以下、この発明を具体化した一実施例を第1図及び第2
図に基づいて説明する。
Embodiment An embodiment embodying the present invention will be described below with reference to FIGS. 1 and 2.
It will be described with reference to the drawings.

この実施例のナトリウム−硫黄電池は、有底円筒状をな
す陽極容器1の上端面に対し、α−アルミナ製の絶縁リ
ング2の下面を熱圧接合し、該絶縁リング2の上面には
陰極金具3を熱圧接合している。また、前記絶縁リング
2の内周面には、β″−アルミナ製の固体電解質管4の
上端外周面が接合固定されている。
In the sodium-sulfur battery of this example, the lower surface of an insulating ring 2 made of α-alumina is thermocompressively bonded to the upper end surface of an anode container 1 having a bottomed cylindrical shape, and the upper surface of the insulating ring 2 has a cathode. The metal fitting 3 is thermocompression bonded. Further, the upper outer peripheral surface of the solid electrolyte tube 4 made of β ″ -alumina is joined and fixed to the inner peripheral surface of the insulating ring 2.

前記陽極容器1と固体電解質管4との間に形成された陽
極室R1内には陽極活物質としての溶融硫黄Sを含浸さ
せたカーボンマットなどの陽極用導電材Mが収納されて
いる。また、固体電解質管4内側に形成された陰極室R
2内には陰極活物質としての金属ナトリウムNaの貯蔵
用の有蓋・有底円筒状をなすナトリウム容器5が収納さ
れている。このナトリウム容器5の底面5aにはナトリ
ウムが流出入する小孔5bが透設されている。また、前
記ナトリウム容器5の上部閉空間の加圧室R3には、例
えば窒素ガス、アルゴンガスなどの不活性ガスが所定の
圧力で封入され、ナトリウムが常時小孔5bから外部へ
流出する方向へ加圧している。さらに、前記ナトリウム
容器5内のナトリウムの液面は充電完了時に第1図の実
線で示す位置に、放電完了時には第1図に鎖線で示すよ
うにナトリウムがナトリウム容器内5内から完全に流出
してしまわない位置で停止するようにしている。充電行
程においてはナトリウムが容器5の内部へ円滑に流入さ
れる。
In the anode chamber R1 formed between the anode container 1 and the solid electrolyte tube 4, a conductive material M for anode such as carbon mat impregnated with molten sulfur S as an anode active material is housed. In addition, the cathode chamber R formed inside the solid electrolyte tube 4
Inside 2, a sodium container 5 having a cylindrical shape with a lid and a bottom for storing metallic sodium Na as a cathode active material is housed. The bottom surface 5a of the sodium container 5 is provided with a small hole 5b through which sodium flows in and out. Further, an inert gas such as nitrogen gas or argon gas is sealed at a predetermined pressure in the pressurizing chamber R3 in the upper closed space of the sodium container 5 so that sodium always flows out from the small hole 5b to the outside. Pressurized. Further, the liquid level of sodium in the sodium container 5 is completely discharged from the inside of the sodium container 5 at the position shown by the solid line in FIG. 1 when the charging is completed, and when the discharge is completed, as shown by the chain line in FIG. I try to stop at a position where it does not end up. During the charging process, sodium smoothly flows into the container 5.

前記ナトリウム容器5は次に述べる安全管6が何等かの
原因で損傷した場合、ナトリウムが多量に貯留されてい
る該容器5が溶融破口すると危険であるため、溶融温度
が1400℃以上のステンレススチール(SUS30
4)により形成している。
If the safety pipe 6 described below is damaged due to some cause, it is dangerous for the sodium container 5 to melt and rupture the container 5 in which a large amount of sodium is stored. Steel (SUS30
It is formed by 4).

また、前記小孔5bの径は2mm以下に設定されている
が、これは実験的にナトリウムの流量が適正に抑制され
るからである。
Further, the diameter of the small holes 5b is set to 2 mm or less, because this is because the flow rate of sodium is appropriately suppressed experimentally.

さらに、前記固体電解質管4の内周面とナトリウム容器
5の外周面との間には、有底袋管状をなす安全管6が配
置されている、そして、前記のナトリウム容器5の外周
面と安全管6の内周面との間には内側間隙G1が、ま
た、安全管6の外周面と固体電解質管4の内周面との間
には前記内側間隙G1と上端部において連通する外側間
隙G2が形成され、この安全管6は耐ナトリウム性に優
れた金属、例えばアルミニウム、アルミニウム合金、あ
るいはステンレススチールで形成されている。
Further, a safety tube 6 having a bottomed tubular shape is arranged between the inner peripheral surface of the solid electrolyte tube 4 and the outer peripheral surface of the sodium container 5, and the outer peripheral surface of the sodium container 5 is An inner gap G1 is formed between the inner peripheral surface of the safety pipe 6 and an outer gap communicating with the inner gap G1 at the upper end between the outer peripheral surface of the safety pipe 6 and the inner peripheral surface of the solid electrolyte pipe 4. A gap G2 is formed, and the safety pipe 6 is made of a metal having excellent sodium resistance, for example, aluminum, aluminum alloy, or stainless steel.

前記の如くであるから、放電時に前記容器5の小孔5b
から流出したナトリウムは内側間隙G1を上方に移動し
た後、安全管6の上端縁を乗り越えて外側間隙G2を下
方に移動し、固体電解質管4をナトリウムイオンとなっ
て透過して陽極室R1へ移動する。また、充電時にナト
リウムは前記と逆に移動し、ナトリウム容器5内に収納
される。
Since it is as described above, the small hole 5b of the container 5 at the time of discharge
The sodium flowing out from the inside moves upward in the inner gap G1, then moves over the upper end edge of the safety pipe 6 and moves downward in the outer gap G2, permeates the solid electrolyte pipe 4 as sodium ions and permeates into the anode chamber R1. Moving. Further, during charging, sodium moves in the opposite direction to the above and is stored in the sodium container 5.

前記内側間隙G1は0.1〜1mm、望ましくは0.15
mm、外側間隙G2は0.1〜0.5mm、望ましくは0.
3mmに設定されている。前記両間隙G1,G2は安全性
の点からできる限り小さくしてナトリウム量を少なくす
る方がよいが、技術的制約から0.1mm未満は困難であ
り、かつ狭すぎると圧力損失が高くなり過ぎてナトリウ
ムの固体電解質管4の表面への供給が不安定となる。内
側間隙G1及び外側間隙G2は、電池の形状、あるいは
運転条件(ナトリウムの移動速度:放電電流)も考慮す
る必要があるが、安全面との兼ね合いから前記範囲内で
設定するのが望ましい。
The inner gap G1 is 0.1 to 1 mm, preferably 0.15
mm, the outer gap G2 is 0.1 to 0.5 mm, preferably 0.
It is set to 3 mm. From the viewpoint of safety, it is better to make both the gaps G1 and G2 as small as possible so as to reduce the amount of sodium, but it is difficult to be less than 0.1 mm due to technical restrictions, and if it is too narrow, the pressure loss becomes too high. The supply of sodium to the surface of the solid electrolyte tube 4 becomes unstable. The inner gap G1 and the outer gap G2 must be set within the above range in consideration of safety, although it is necessary to consider the shape of the battery or the operating conditions (sodium moving speed: discharge current).

前記ナトリウム容器5の底面5aと、安全管6の底部上
面との間には、前記小孔5bから流出したナトリウムの
移動流量(圧力)を制御する流量制御板7が介装されて
いる。この流量制御板7として例えばアルミニウムある
いはステンレススチール製の円板状の金網を使用しても
良く、また、ステンレスウイックやフェルトなどを使用
してもよい。
A flow rate control plate 7 is interposed between the bottom surface 5a of the sodium container 5 and the bottom surface of the safety pipe 6 to control the flow rate (pressure) of sodium flowing out from the small hole 5b. As the flow rate control plate 7, for example, a disc-shaped wire net made of aluminum or stainless steel may be used, or a stainless wick or felt may be used.

電池が放電するに従って、ナトリウムカートリッジ5内
のナトリウムが流出して容器5が軽くなり、浮き上がる
と、容器5の底面5aと安全管6の底部6a上面とのギ
ャップが大きくなり、安全性に問題が生じる。このた
め、前記ナトリウム容器5と陰極金具3との間には、ス
プリングワッシャーなどの付勢部材8が介装され、該容
器5を流量制御板7側へ付勢して前記ギャップを常に一
定に保持している。
As the battery discharges, the sodium in the sodium cartridge 5 flows out, the container 5 becomes lighter, and when it floats up, the gap between the bottom surface 5a of the container 5 and the upper surface of the bottom portion 6a of the safety pipe 6 becomes large, which causes a safety problem. Occurs. Therefore, an urging member 8 such as a spring washer is interposed between the sodium container 5 and the cathode fitting 3, and the container 5 is urged toward the flow rate control plate 7 to keep the gap constant. keeping.

次に、前記のように構成したナトリウム−硫黄電池につ
いて、その作用を説明する。
Next, the operation of the sodium-sulfur battery configured as described above will be described.

今、ナトリウム−硫黄電池の充電完了状態においては、
大半のナトリウムが第1図に実線で示すようにナトリウ
ム容器5内に貯留され、陽極用導電材M内には溶融硫黄
が存在している。
Now, when the sodium-sulfur battery is fully charged,
Most of the sodium is stored in the sodium container 5 as shown by the solid line in FIG. 1, and molten sulfur is present in the anode conductive material M.

この状態で放電を開始すると加圧室R3内の圧力により
容器内のナトリウムが小孔5bを通って内側間隙G1内
へ移動する。その後、安全管6の上端縁から外側間隙G
2内へ導かれ、さらに、ナトリウムはナトリウムイオン
となって固体電解質管4を透過し、陽極用導電材M内の
硫黄と反応し多硫化ナトリウムを生成する。
When the discharge is started in this state, the pressure in the pressurizing chamber R3 causes the sodium in the container to move into the inner gap G1 through the small holes 5b. After that, from the upper edge of the safety pipe 6 to the outer gap G
2 is introduced into the solid electrolyte tube 4, and sodium is converted into sodium ions and permeates the solid electrolyte tube 4, and reacts with sulfur in the anode conductive material M to generate sodium polysulfide.

さて、この発明の実施例ではナトリウム容器5と固体電
解質管4の間に安全管6が存在し、その内外両側に内側
間隙G1及び外側間隙G2が設けられているので、ナト
リウム容器5の小孔5bから固体電解質管4までの距離
が長くなってナトリウムの圧力が低くなるので、固体電
解質管4が破損しても、ナトリウムと硫黄の急激かつ多
量の反応が抑制され、安全性が向上する。
In the embodiment of the present invention, the safety pipe 6 is present between the sodium container 5 and the solid electrolyte pipe 4, and the inner gap G1 and the outer gap G2 are provided on both inner and outer sides thereof. Since the distance from 5b to the solid electrolyte tube 4 becomes long and the pressure of sodium becomes low, even if the solid electrolyte tube 4 is damaged, the rapid and large amount of reaction between sodium and sulfur is suppressed, and the safety is improved.

また、固体電解質管4が破損しても外側間隙G2内部の
ナトリウムと硫黄の反応は生じるが、その後ナトリウム
が安全管6の上端縁を乗り越え無ければならず、従っ
て、活物質相互の反応が抑制され、しかもナトリウム容
器5は安全管6により保護されているので、ナトリウム
容器5の破損が防止され、この点からも安全性が向上す
る。
Further, even if the solid electrolyte tube 4 is damaged, a reaction between sodium and sulfur inside the outer gap G2 occurs, but thereafter, sodium has to climb over the upper edge of the safety tube 6, and thus the reaction between the active materials is suppressed. Moreover, since the sodium container 5 is protected by the safety pipe 6, the sodium container 5 is prevented from being damaged, and the safety is improved also from this point.

さらに、ナトリウム容器5の小孔5bから出たナトリウ
ムは内側間隙G1を上方へ移動した後、安全管6の上端
縁から外側間隙G2に移動するため、ステンレスウイッ
クを使用した場合と比較して、ナトリウムの流れが均一
かつ円滑となり、このため固体電解質管4の内周面への
ナトリウムの供給が均一になり、放電特性が安定する。
Further, since sodium that has come out of the small holes 5b of the sodium container 5 moves upward in the inner gap G1 and then moves from the upper end edge of the safety pipe 6 to the outer gap G2, compared with the case where a stainless steel wick is used, The flow of sodium becomes uniform and smooth, so that the supply of sodium to the inner peripheral surface of the solid electrolyte tube 4 becomes uniform and the discharge characteristics become stable.

なお、この発明は次のように具体化することもできる。The present invention can be embodied as follows.

第3図に示すように、安全管6の底部6a上面に対し、
ナトリウム容器5の底部5aを係止する係止突起6bを
設けて、該底部5aの下面と底部6aの上面との間に所
定の間隙が形成されるようにしたり、第4図に示すよう
に、前記安全管6の底部6aに対し、金属ナトリウムの
移動を許容する溝6cを設けたり、その他図示しない
が、ナトリウム容器5の底部5aの下面に溝を形成した
りすること。
As shown in FIG. 3, with respect to the upper surface of the bottom portion 6a of the safety pipe 6,
A locking projection 6b for locking the bottom 5a of the sodium container 5 is provided so that a predetermined gap is formed between the lower surface of the bottom 5a and the upper surface of the bottom 6a, or as shown in FIG. The bottom portion 6a of the safety pipe 6 is provided with a groove 6c that allows movement of metallic sodium, and although not shown, a groove is formed on the lower surface of the bottom portion 5a of the sodium container 5.

[発明の効果] 以上詳述したように、この請求項1記載の発明は、ナト
リウム容器のナトリウム小孔と固体電解質管との距離を
長くして固体電解質管表面でのナトリウム圧力を低減さ
せ、かつ有底安全管によって固体電解質管に接するナト
リウム量を減少し、かつナトリウム容器の損傷を防止し
て安全性を確保することができ、さらにナトリウムの移
動を円滑に行い安定した充放電特性を得ることができる
効果がある。
[Effects of the Invention] As described in detail above, the invention according to claim 1 reduces the sodium pressure on the surface of the solid electrolyte tube by increasing the distance between the sodium small holes of the sodium container and the solid electrolyte tube, Moreover, the amount of sodium in contact with the solid electrolyte tube can be reduced by the bottomed safety tube, and the sodium container can be prevented from being damaged to ensure safety, and the sodium can be smoothly moved to obtain stable charge / discharge characteristics. There is an effect that can be.

また、請求項2記載の発明は、両間隙内のナトリウム量
を少なくして、安全性をさらに向上することができる。
Further, the invention according to claim 2 can further improve the safety by reducing the amount of sodium in both gaps.

さらに、請求項3記載の発明は、大半のナトリウムが容
器から流出して全体が軽量となってもその浮き上がりを
防止して容器の底面と安全管の底部との間隙を一定に保
持し、安定したナトリウムの供給を行ない放電特性をさ
らに向上することができる効果がある。
Further, according to the invention of claim 3, even if most of the sodium flows out of the container and becomes lighter in weight, the sodium is prevented from rising and the gap between the bottom of the container and the bottom of the safety pipe is kept constant, thereby ensuring stability. There is an effect that the discharge characteristics can be further improved by supplying the generated sodium.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明を具体化したナトリウム−硫黄電池の
一実施例を示す中央部縦断面図、第2図は第1図のA−
A線断面図、第3図及び第4図は本発明の別例を示す部
分斜視図、第5図は従来例を示す中央部縦断面図であ
る。 1……陽極容器、2……絶縁リング、3……陰極金具、
4……固体電解質管、5……ナトリウム容器、6……安
全管、7……流量制御板、8……付勢部材、M……陽極
用導電材、R1……陽極室、R2……陰極室、R3……
加圧室
FIG. 1 is a vertical cross-sectional view of a central portion showing an embodiment of a sodium-sulfur battery embodying the present invention, and FIG. 2 is A- of FIG.
A sectional view taken along the line A, FIGS. 3 and 4 are partial perspective views showing another example of the present invention, and FIG. 5 is a central longitudinal sectional view showing a conventional example. 1 ... Anode container, 2 ... Insulation ring, 3 ... Cathode metal fittings,
4 ... Solid electrolyte tube, 5 ... Sodium container, 6 ... Safety tube, 7 ... Flow control plate, 8 ... Energizing member, M ... Anode conductive material, R1 ... Anode chamber, R2 ... Cathode chamber, R3 ...
Pressurization chamber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】陽極室(R1)と陰極室(R2)を区画す
る有底袋管状の固体電解質管(4)の陰極室(R2)側
内部に、金属ナトリウムを収容するナトリウム容器
(5)を収容し、該ナトリウム容器(5)の底部(5
a)に小孔(5b)を透設し、かつナトリウム容器内部
の上部加圧室(R3)に該金属ナトリウムを加圧する不
活性ガスを充填し、さらに、前記固体電解質管(4)と
ナトリウム容器(5)との間に有底袋管状の安全管
(6)を収容し、該安全管(6)の内周面とナトリウム
容器(5)の外周面との間及び安全管(6)の外周面と
固体電解質管(4)の内周面との間に、電池の充電・放
電時に前記小孔(5b)から出入りする金属ナトリウム
を上下方向に案内する内側間隙(G1)及び外側間隙
(G2)を設けたことを特徴とするナトリウム−硫黄電
池。
1. A sodium container (5) for containing metallic sodium inside a cathode chamber (R2) side of a bottomed bag-shaped solid electrolyte tube (4) for partitioning an anode chamber (R1) and a cathode chamber (R2). The bottom (5) of the sodium container (5)
a) is provided with a small hole (5b), and an upper pressurizing chamber (R3) inside the sodium container is filled with an inert gas for pressurizing the metallic sodium, and the solid electrolyte tube (4) and sodium are further added. A bottomed bag-shaped safety pipe (6) is housed between the safety pipe (6) and the container (5), and between the inner peripheral surface of the safety pipe (6) and the outer peripheral surface of the sodium container (5) and the safety pipe (6). Between the outer peripheral surface of the solid electrolyte tube and the inner peripheral surface of the solid electrolyte tube (4), an inner gap (G1) and an outer gap that vertically guide the metallic sodium flowing in and out of the small hole (5b) during charging and discharging of the battery. A sodium-sulfur battery provided with (G2).
【請求項2】前記内側間隙(G1)は0.1〜1mm、外
側間隙(G2)は0.1〜0.5mmに設定されいる請求
項1記載のナトリウム−硫黄電池。
2. The sodium-sulfur battery according to claim 1, wherein the inner gap (G1) is set to 0.1 to 1 mm and the outer gap (G2) is set to 0.1 to 0.5 mm.
【請求項3】前記陰極室(R2)内に前記ナトリウム容
器(5)を安全管(6)の底部側へ押圧する付勢部材
(8)を配置した請求項1記載のナトリウム−硫黄電
池。
3. The sodium-sulfur battery according to claim 1, wherein a biasing member (8) for pressing the sodium container (5) toward the bottom side of the safety pipe (6) is arranged in the cathode chamber (R2).
JP63264993A 1988-10-20 1988-10-20 Sodium-sulfur battery Expired - Lifetime JPH0665073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63264993A JPH0665073B2 (en) 1988-10-20 1988-10-20 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63264993A JPH0665073B2 (en) 1988-10-20 1988-10-20 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH02112168A JPH02112168A (en) 1990-04-24
JPH0665073B2 true JPH0665073B2 (en) 1994-08-22

Family

ID=17411079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63264993A Expired - Lifetime JPH0665073B2 (en) 1988-10-20 1988-10-20 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH0665073B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708998B2 (en) * 1992-03-31 1998-02-04 日本碍子株式会社 Sodium-sulfur battery
JP2771432B2 (en) * 1992-11-18 1998-07-02 日本碍子株式会社 Sodium-sulfur battery and method of manufacturing the same
WO2011148631A1 (en) 2010-05-25 2011-12-01 Ohkawa Hiroshi Solid-electrolyte secondary battery
KR101445208B1 (en) 2010-05-31 2014-09-29 히로시 오카와 Solid electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951482A (en) * 1982-09-17 1984-03-24 Yuasa Battery Co Ltd Sodium-sulfur battery

Also Published As

Publication number Publication date
JPH02112168A (en) 1990-04-24

Similar Documents

Publication Publication Date Title
US4510217A (en) Sodium-sulfur storage battery
KR102028847B1 (en) Sodium-sulfur battery
JPH06310171A (en) Sodium/molten salt cell
JPH0665073B2 (en) Sodium-sulfur battery
US4348467A (en) Electrochemical cells containing liquid sodium as the anodic material
US4011367A (en) Sodium-sulphur electric cells
US4076903A (en) Alkali metal-sulphur cells
JP3193319B2 (en) Sodium-sulfur battery
JPH0782877B2 (en) Sodium-sulfur battery
JPS6012680A (en) Sodium-sulfur battery
JP4417681B2 (en) Sodium-sulfur battery
JP2667776B2 (en) Sodium-sulfur battery
JPH0554908A (en) Sodium-sulfur battery
JPH05266919A (en) Sodium-sulfuer battery
JPS59228371A (en) Sodium-sulfur battery
JPS6044972A (en) Sodium-sulfur battery
JPS5973863A (en) Sodium-sulfur battery
JPH0240866A (en) Sodium-sulfur battery
JPH05283101A (en) Sodium-sulfur battery
JPH05266922A (en) Sodium-sulfur battery
JPH02234363A (en) Sodium-sulfur battery
JPS609067A (en) Sodium-sulfuric battery
JPH06208855A (en) Sodium-sulfur battery
JP2815312B2 (en) Gas filling method in sodium-sulfur battery
JPH0256868A (en) Sodium-sulfur battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 15