JPH0782877B2 - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH0782877B2
JPH0782877B2 JP63279944A JP27994488A JPH0782877B2 JP H0782877 B2 JPH0782877 B2 JP H0782877B2 JP 63279944 A JP63279944 A JP 63279944A JP 27994488 A JP27994488 A JP 27994488A JP H0782877 B2 JPH0782877 B2 JP H0782877B2
Authority
JP
Japan
Prior art keywords
sodium
container
gap
solid electrolyte
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63279944A
Other languages
Japanese (ja)
Other versions
JPH02126571A (en
Inventor
淳 渥美
裕介 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63279944A priority Critical patent/JPH0782877B2/en
Publication of JPH02126571A publication Critical patent/JPH02126571A/en
Publication of JPH0782877B2 publication Critical patent/JPH0782877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は固体電解質管の破損時における安全性を向上
することができるナトリウム−硫黄電池に関するもので
ある。
TECHNICAL FIELD The present invention relates to a sodium-sulfur battery capable of improving safety when a solid electrolyte tube is broken.

[従来の技術] 従来のナトリウム−硫黄電池として第6図に示すよう
に、陽極活物質である溶融硫黄Sを含浸したカーボンマ
ットなどの陽極用導電材Mを収納する円筒状の陽極容器
1と、該陽極容器1の上端部に対し、α−アルミナ製の
絶縁リング2を介して連結された陰極金具3と、前記絶
縁リング2の内周部に固着され、かつ、陰極活物質であ
る溶融金属ナトリウムNaを貯留し、ナトリウムイオンNa
+を選択的に透過させる機能を有した下方へ延びる多結
晶β″−アルミナよりなる有底円筒状の固体電解質管4
とを備えたものがある。また、前記固体電解質管4によ
り電池内部は陽極室R1と陰極室R2に区画形成され、陰極
室R2内部にはナトリウムを貯留するナトリウム容器5が
収納され、その底部5aに設けた小孔5bからナトリウムが
出入りするようになっている。
[Prior Art] As a conventional sodium-sulfur battery, as shown in FIG. 6, a cylindrical anode container 1 for accommodating a conductive material M for an anode such as carbon mat impregnated with molten sulfur S as an anode active material. A cathode metal fitting 3 connected to an upper end portion of the anode container 1 via an insulating ring 2 made of α-alumina, and a molten metal which is fixed to an inner peripheral portion of the insulating ring 2 and which is a cathode active material. Stores metallic sodium Na, sodium ion Na
A cylindrical solid electrolyte tube 4 having a bottom and made of polycrystalline β ″ -alumina extending downward and having a function of selectively transmitting +
Some have and. Further, the solid electrolyte tube 4 divides the inside of the battery into an anode chamber R1 and a cathode chamber R2, and a sodium container 5 for storing sodium is housed inside the cathode chamber R2, and a small hole 5b provided in a bottom portion 5a thereof Sodium comes in and goes out.

そして、放電時にはナトリウム容器5の小孔5bから出た
ナトリウムはナトリウム保持体11は一旦含浸された後、
陰極室R2からナトリウムイオンNa+が固体電解質管4を
透過して陽極室R1内の硫黄Sと次のように反応し、多硫
化ナトリウムを生成する。
Then, at the time of discharge, sodium that has come out of the small holes 5b of the sodium container 5 is once impregnated into the sodium holder 11,
Sodium ions Na + from the cathode chamber R2 pass through the solid electrolyte tube 4 and react with the sulfur S in the anode chamber R1 as follows to produce sodium polysulfide.

2Na+XS→Na2SX また、充電時には放電時とは逆の反応が起こり、ナトリ
ウムNa及び硫黄Sが生成される。
2Na + XS → Na 2 SX When charging, the reaction opposite to that during discharging occurs, and sodium Na and sulfur S are produced.

前記固体電解質管4が例えば劣化や熱応力を受けてクラ
ックが発生して破損した場合、陰極室R2内の金属ナトリ
ウムが陽極室R1内側の硫黄と多量かつ急激に反応して異
常高熱を発生し、電池容器が破壊され、この結果、ナト
リウムおよび硫黄が外部に流出して危険であるという問
題があった。これを解決するため、上記従来例では陰極
室R2内にナトリウム容器5を設けるとともに、固体電解
質管4と容器5の間に小間隙を設けてナトリウムの反応
量を少なくしたのである。
When the solid electrolyte tube 4 is damaged due to deterioration or thermal stress, for example, cracks are generated, metallic sodium in the cathode chamber R2 reacts with sulfur in the anode chamber R1 in a large amount and rapidly to generate abnormally high heat. The battery container is destroyed, and as a result, sodium and sulfur flow out to the outside, which is dangerous. In order to solve this, in the above conventional example, the sodium container 5 is provided in the cathode chamber R2, and a small gap is provided between the solid electrolyte tube 4 and the container 5 to reduce the reaction amount of sodium.

[発明が解決しようとする課題] ところが、前記従来の電池の安全対策は、ナトリウム容
器5の小孔5bと固体電解質管4との距離が近く、固体電
解質管4が前記小孔5b付近で破損したときに、ナトリウ
ム容器5からのナトリウム流出圧力が高いため、活物質
の反応量が多く、安全性が不十分であった。また、前記
固体電解質管4と容器5の小間隙から陽極用導電材M側
へのナトリウムの移動を阻止することができないので、
陽極容器1内で硫黄とナトリウムの反応が連続して起こ
り、陽極室内の温度が上昇して陽極容器1を損傷すると
いうおそれがあった。
[Problems to be Solved by the Invention] However, the safety measure of the conventional battery is that the small hole 5b of the sodium container 5 and the solid electrolyte tube 4 are close to each other and the solid electrolyte tube 4 is damaged near the small hole 5b. At that time, the sodium outflow pressure from the sodium container 5 was high, so that the reaction amount of the active material was large and the safety was insufficient. Further, it is impossible to prevent the movement of sodium from the small gap between the solid electrolyte tube 4 and the container 5 to the side of the anode conductive material M,
There is a possibility that the reaction between sulfur and sodium occurs continuously in the anode container 1 to raise the temperature in the anode chamber and damage the anode container 1.

この発明の目的は、固体電解質管が破損した場合、陰極
室側から陽極室内へのナトリウムの流入を防止して安全
性を確保することができるナトリウム−硫黄電池を提供
することにある。
An object of the present invention is to provide a sodium-sulfur battery that can ensure the safety by preventing the inflow of sodium from the cathode chamber side into the anode chamber when the solid electrolyte tube is damaged.

[課題を解決するための手段] この発明は上記目的を達成するため、陽極室と陰極室を
区画する有底袋管状の固体電解質管の陰極室側内部に、
金属ナトリウムを収容するナトリウム容器を収容し、該
ナトリウム容器の底部に小孔を透設し、かつナトリウム
容器内部の上部加圧室に該金属ナトリウムを加圧する不
活性ガスを充填し、さらに、前記固体電解質管とナトリ
ウム容器との間に有底管状隔壁を収容し、該有底管状隔
壁の内周面とナトリウム容器の外周面との間及び有底管
状隔壁の外周面と固体電解質管の内周面と間に、電池の
充電・放電時に前記小孔から出入りする金属ナトリウム
を上下方向に案内する内側間隙及び外側間隙を設け、さ
らに充電時及び放電時に前記陽極室内の圧力を前記外側
間隙内の圧力よりも常時高くするという手段をとってい
る。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides, inside the cathode chamber side of a bottomed bag-shaped solid electrolyte tube for partitioning the anode chamber and the cathode chamber,
A sodium container containing metal sodium is housed, a small hole is formed through the bottom of the sodium container, and an upper pressure chamber inside the sodium container is filled with an inert gas for pressurizing the metal sodium. A bottomed tubular partition wall is housed between the solid electrolyte tube and the sodium container, and between the inner peripheral surface of the bottomed tubular partition wall and the outer peripheral surface of the sodium container and between the outer peripheral surface of the bottomed tubular partition wall and the solid electrolyte tube. An inner gap and an outer gap are provided between the outer surface and the peripheral surface for vertically guiding the metallic sodium flowing in and out of the small holes during charging / discharging of the battery, and the pressure in the anode chamber during charging and discharging is controlled within the outer gap. The pressure is always higher than the pressure of.

前記内側間隙を0.1〜1mm、外側間隙を0.1〜0.5mmに設定
するとよい。前記内側間隙の底部に小孔と対応して流量
制限板を収容し、前記陰極室内に前記ナトリウム容器を
有底管状隔壁の底部側へ押圧する付勢部材を配置すると
よい。
The inner gap may be set to 0.1 to 1 mm and the outer gap may be set to 0.1 to 0.5 mm. A flow rate limiting plate may be accommodated at the bottom of the inner gap corresponding to the small hole, and a biasing member for pushing the sodium container toward the bottom of the bottomed tubular partition may be arranged in the cathode chamber.

[作 用] この発明では放電時にナトリウム容器の小孔から流出し
たナトリウムは内側間隙を上方に移動した後、有底管状
隔壁の上端縁を乗り越えて外側間隙を下方に移動し、固
体電解質管をナトリウムイオンとなって透過して陽極室
へ移動する。また、充電時にナトリウムは前記と逆に移
動し、ナトリウム容器内に流入する。
[Operation] In this invention, sodium flowing out from the small holes of the sodium container at the time of discharge moves upward in the inner gap, then passes over the upper edge of the bottomed tubular partition wall, and moves downward in the outer gap to move the solid electrolyte tube. Sodium ions permeate and move to the anode chamber. Further, during charging, sodium moves in the opposite direction to the above and flows into the sodium container.

この発明は充電中あるいは放電中のいずれの状態におい
ても、陽極室の圧力が固体電解質管と有底管状隔壁との
外側間隙内の圧力よりも常時高いので、固体電解質管の
破口時に陽極室から前記外側間隙に該固体電解質管の破
口部から溶融硫黄が圧力差により流入する。この硫黄は
前記外側間隙内のナトリウムと反応して高融点の多硫化
ナトリウムを生じ、この多硫化ナトリウムが前記外側間
隙内で固化して固体電解質管の破口部を塞ぐため、ナト
リウムと硫黄が分断され、それ以上の溶融硫黄の外側間
隙への流入が止まり、溶融硫黄とナトリウムの反応が防
止されて、安全性が向上する。
Since the pressure in the anode chamber is always higher than the pressure in the outer gap between the solid electrolyte tube and the bottomed tubular partition wall during charging or discharging, the anode chamber is broken when the solid electrolyte tube is ruptured. The molten sulfur flows into the outer gap from the breakage portion of the solid electrolyte tube due to the pressure difference. This sulfur reacts with sodium in the outer gap to generate high-melting-point sodium polysulfide, and the sodium polysulfide solidifies in the outer gap to block the breakage portion of the solid electrolyte tube, so that sodium and sulfur are separated. It is divided, and further inflow of molten sulfur into the outer gap is stopped, so that the reaction between molten sulfur and sodium is prevented and safety is improved.

特に、この発明ではナトリウム容器の底部に小孔を設
け、該小孔から出たナトリウムを内側間隙を上昇させて
有底管状隔壁の上端縁を乗り越えて外側間隙に導くよう
にしたので、小孔から固体電解質管内側面までの距離が
長くなり、前述したナトリウムと硫黄の反応箇所を小孔
から遠ざけることができ、安全性を向上することができ
る。即ち、固体電解質管の破損場所にかかわらず、例え
ばナトリウム容器の底部に設けた小孔と直線距離にして
非常に短い固体電解質管の底部が破損したとしても有底
管状隔壁を用いるため完全性が保持される。このため、
本発明の有底管状隔壁を使用して内外の間隙を設け、そ
の隔壁の上端縁で前記両間隙を連通する構造は効果的で
ある。
Particularly, in the present invention, a small hole is provided at the bottom of the sodium container, and the sodium discharged from the small hole is raised in the inner gap so as to get over the upper edge of the bottomed tubular partition wall and be guided to the outer gap. To the inner side surface of the solid electrolyte tube, the reaction site of sodium and sulfur described above can be kept away from the small holes, and safety can be improved. That is, regardless of where the solid electrolyte tube is damaged, for example, even if the bottom of the solid electrolyte tube, which has a very short linear distance from the small hole provided in the bottom of the sodium container, is damaged, the integrity is maintained because the bottomed tubular partition wall is used. Retained. For this reason,
It is effective that the bottomed tubular partition of the present invention is used to provide an inner and outer gap, and the upper edge of the partition communicates the two gaps.

又、前記外側間隙を0.1〜0.5mmに設定した場合には、反
応生成物は直ちに固化して破口部を塞ぐため、早期に溶
融硫黄の流入か止まり、溶融硫黄とナトリウムの反応が
防止され、さらに安全性が向上する。
Further, when the outer gap is set to 0.1 to 0.5 mm, the reaction product immediately solidifies and closes the rupture portion, so that the inflow of molten sulfur is stopped early and the reaction between molten sulfur and sodium is prevented. , Further improve safety.

さらに、前記内側間隙の底部に小孔と対応して流量制御
板を収容し、前記陰極室内に前記ナトリウム容器を有底
管状隔壁の底部側へ押圧する付勢部材を配置した場合に
は、小孔から内側間隙への又その逆方向へのナトリウム
の流量が安定化し、電池の放電・充電が安定して行われ
る。
Further, when a flow rate control plate is accommodated at the bottom of the inner gap corresponding to the small hole and a biasing member for pressing the sodium container to the bottom side of the bottomed tubular partition is arranged in the cathode chamber, The flow rate of sodium from the holes to the inner gap and vice versa is stabilized, and the battery is stably discharged and charged.

[実施例] 以下、この発明を具体化した一実施例を第1図及び第2
図に基づいて説明する。
Embodiment An embodiment embodying the present invention will be described below with reference to FIGS. 1 and 2.
It will be described with reference to the drawings.

この実施例のナトリウム−硫黄電池は、有底円筒状をな
す陽極容器1の上端面に対し、α−アルミナ製の絶縁リ
ング2の下面を熱圧接合し、該絶縁リング2の上面には
陰極金具3を熱圧接合している。また、前記絶縁リング
2の内周面にはβ″−アルミナ製の固体電解質管4の上
端外周面が接合固定されている。
In the sodium-sulfur battery of this example, the lower surface of an insulating ring 2 made of α-alumina is thermocompressively bonded to the upper end surface of an anode container 1 having a bottomed cylindrical shape, and the upper surface of the insulating ring 2 has a cathode. The metal fitting 3 is thermocompression bonded. Further, the upper end outer peripheral surface of the solid electrolyte tube 4 made of β ″ -alumina is joined and fixed to the inner peripheral surface of the insulating ring 2.

前記陽極容器1と固体電解質管4との間に形成された陽
極室R1内には陽極活物質としての溶融硫黄Sを含浸させ
たカーボンマットなどの陽極用導電材Mが収納されてい
る。また、固体電解質管4内側に形成された陰極室R2内
には陰極活物質としての金属ナトリウムNaの貯蔵用の有
蓋・有底円筒状をなすナトリウム容器5が収納されてい
る。このナトリウム容器5の底面5aにはナトリウムが流
出入する小孔5bが透設されている。
An anode conductive material M such as carbon mat impregnated with molten sulfur S as an anode active material is housed in an anode chamber R1 formed between the anode container 1 and the solid electrolyte tube 4. Further, in the cathode chamber R2 formed inside the solid electrolyte tube 4, a sodium container 5 having a cylindrical shape with a lid and a bottom for storing metallic sodium Na as a cathode active material is housed. The bottom surface 5a of the sodium container 5 is provided with a small hole 5b through which sodium flows in and out.

また、前記ナトリウム容器5の上部閉空間の加圧室R3に
は、例えば窒素ガス、アルゴンガスなどのナトリウムに
対して不活性なガスが所定の圧力で封入され、ナトリウ
ムが常時小孔5bから外部へ流出する方向へ加圧してい
る。
Further, in the pressurizing chamber R3 in the upper closed space of the sodium container 5, a gas inert to sodium, such as nitrogen gas or argon gas, is sealed at a predetermined pressure, and sodium is constantly discharged from the small hole 5b to the outside. It is pressurized in the direction of the outflow.

さらに、前記固体電解質管4の内周面とナトリウム容器
5の外周面との間には、有底袋管状をなすアルミニウム
合金あるいは溶融温度が1400℃以上のステンレススチー
ル(SUS304)製の有底管状隔壁6が配置されている、そ
して、放電時に前記ナトリウム容器5の小孔5bから流出
したナトリウムが該容器5の外周面と管状隔壁6の内周
面との内側間隙G1を上方へ移動した後、管状隔壁6の上
端縁を乗り越え、さらに、管状隔壁6の外周面と固体電
解質管4の内周面との外側間隙G2を下方へ移動し、固体
電解質管4をナトリウムイオンとなって透過し陽極室R1
へ移動するようにしている。
Further, between the inner peripheral surface of the solid electrolyte tube 4 and the outer peripheral surface of the sodium container 5, a bottomed tubular aluminum alloy or a bottomed tubular stainless steel (SUS304) having a melting temperature of 1400 ° C. or higher is used. After the partition wall 6 is arranged, and the sodium flowing out from the small hole 5b of the sodium container 5 at the time of discharge moves upward in the inner gap G1 between the outer peripheral surface of the container 5 and the inner peripheral surface of the tubular partition wall 6. , Overcoming the upper edge of the tubular partition wall 6, and further moving downward in the outer gap G2 between the outer peripheral surface of the tubular partition wall 6 and the inner peripheral surface of the solid electrolyte tube 4, and permeating the solid electrolyte tube 4 as sodium ions. Anode chamber R1
I am trying to move to.

前記内側間隙G1は0.1〜1mm、望ましくは0.15mm、外側間
隙G2は0.1〜0.5mm、望ましくは0.3mmに設定されてい
る。前記両間隙G1,G2は安全性の点からできる限り小さ
くしてナトリウム量を少なくする方がよいが、技術的制
約から0.1mm未満は困難であり、かつ狭すぎると圧力損
失が高くなり過ぎてナトリウムの固体電解質管4表面へ
の供給が不安定となる。内側間隙G1及び外側間隙G2は、
電池の形状、あるいは運転条件(ナトリウムの移動速
度:放電電流)も考慮する必要があるが、安全面との兼
ね合いから前記範囲内で設定するのが望ましい。
The inner gap G1 is set to 0.1 to 1 mm, preferably 0.15 mm, and the outer gap G2 is set to 0.1 to 0.5 mm, preferably 0.3 mm. From the safety point of view, it is better to make both the gaps G1 and G2 as small as possible to reduce the amount of sodium, but it is difficult to be less than 0.1 mm due to technical restrictions, and if it is too narrow, the pressure loss becomes too high. The supply of sodium to the surface of the solid electrolyte tube 4 becomes unstable. The inner gap G1 and the outer gap G2 are
Although it is necessary to consider the shape of the battery or the operating conditions (moving speed of sodium: discharge current), it is desirable to set it within the above range in consideration of safety.

前記ナトリウム容器5の底面5aと、管状隔壁6の底部上
面との間には、前記小孔5bから流出したナトリウムの移
動流量(圧力)を制御する例えばアルミニウムあるいは
ステンレススチール製の円板状の金網よりなる流量制御
板7が介装されている。
Between the bottom surface 5a of the sodium container 5 and the top surface of the bottom of the tubular partition wall 6, a disc-shaped wire mesh made of, for example, aluminum or stainless steel is used to control the moving flow rate (pressure) of sodium flowing out from the small holes 5b. A flow rate control plate 7 made up of

前記ナトリウム容器5と陰極金具3との間には、スプリ
ングワッシャーなどの付勢部材8が介装され、該ナトリ
ウム容器5を流量制御板7側へ付勢して前記ギャップを
常に一定に保持している。
An urging member 8 such as a spring washer is interposed between the sodium container 5 and the cathode fitting 3, and urges the sodium container 5 toward the flow control plate 7 to keep the gap constant. ing.

次に、この発明の要部について説明する。Next, the main part of the present invention will be described.

この発明では陽極室R1内の圧力P1を前記外側間隙G2内の
圧力P2よりも常時高くなるように設定している。前記圧
力P1,P2の設定及び調整は以下のようにして行われる。
In the present invention, the pressure P1 in the anode chamber R1 is set to be always higher than the pressure P2 in the outer gap G2. The setting and adjustment of the pressures P1 and P2 are performed as follows.

まず、陽極室R1内の圧力P1について述べると、陽極室R1
内は溶融硫黄の電池動作温度における飽和蒸気圧が139m
bar(第3図鎖線参照)であるから、これに陽極室R1内
に窒素ガスなど硫黄、多硫化ナトリウムに不活性なガス
を封入して478mbar加圧し、充電完了状態で617mbar(第
3図実線参照)になり、放電完了状態で前記飽和蒸気圧
がほぼ零となるが、放電による陽極室内R1の減少によっ
て全体としては1075mbarになるようにしている。
First, the pressure P1 in the anode chamber R1 will be described.
The saturated vapor pressure of molten sulfur at the battery operating temperature is 139 m.
Since it is a bar (see the chain line in Fig. 3), an inert gas such as nitrogen gas such as nitrogen gas is filled in the anode chamber R1 and pressurized to 478 mbar, and 617 mbar (chart line in Fig. 3) when charging is completed. However, when the discharge is completed, the saturated vapor pressure becomes almost zero, but due to the decrease in the anode chamber R1 due to the discharge, the saturation vapor pressure becomes 1075 mbar as a whole.

前記陽極室R1内の圧力P1の調整は、陽極室R1内へ窒素、
アルゴン、ヘリウムガスなどの不活性ガスを封入する
際、不活性ガス圧力を調整することにより行っても良
く、また、アジ化ナトリウム(NaN3)などの高温にて分
解し不活性ガスを発生する物質を所定量投入して昇圧し
てもよい。
The pressure P1 in the anode chamber R1 is adjusted by nitrogen into the anode chamber R1,
When filling an inert gas such as argon or helium gas, it may be performed by adjusting the pressure of the inert gas, or decomposes at a high temperature such as sodium azide (NaN 3 ) to generate an inert gas. A predetermined amount of substance may be added to increase the pressure.

一方、陰極室R2内の外側間隙G2の圧力P2は、ナトリウム
容器5内のナトリウムを外部へ流出させるため、前記容
器5の加圧室R3の不活性ガス圧力P3を適宜に設定するこ
とにより、制御可能であり、第4図に示すように、外側
間隙G2内の圧力P2が完全充電完了状態において617mbar
となるように、放電完了状態において93.0mbarとなるよ
うにしている。ただしここでいう完全充電とは陽極の活
物質が100%硫黄となることを言う。そして、第5図に
示すように、陽極室R1内の圧力P1がいかなる場合も外側
間隙G2の圧力P2よりも高くなるようにしている。
On the other hand, the pressure P2 of the outer gap G2 in the cathode chamber R2 causes the sodium in the sodium container 5 to flow out. Therefore, by appropriately setting the inert gas pressure P3 in the pressurizing chamber R3 of the container 5, It is controllable, and as shown in FIG. 4, the pressure P2 in the outer gap G2 is 617 mbar when fully charged.
Therefore, 93.0 mbar is set in the discharge completed state. However, the full charge here means that the active material of the anode becomes 100% sulfur. Then, as shown in FIG. 5, the pressure P1 in the anode chamber R1 is made higher than the pressure P2 in the outer gap G2 in any case.

次に、前記のように構成したナトリウム−硫黄電池につ
いて、その作用を説明する。
Next, the operation of the sodium-sulfur battery configured as described above will be described.

今、ナトリウム−硫黄電池の完全充電完了状態において
は、大半のナトリウムが第1図に実線Hで示すようにナ
トリウム容器5内に貯留され、陽極用導電材M内には溶
融硫黄が存在している。
Now, when the sodium-sulfur battery is completely charged, most of the sodium is stored in the sodium container 5 as shown by the solid line H in FIG. 1, and molten sulfur is present in the anode conductive material M. There is.

この状態で放電を開始すると、加圧室R3内の圧力P3によ
り容器内のナトリウムが小孔5bを通って内側間隙G1内へ
移動する。その後、管状隔壁6の上端縁から外側間隙G2
内へ導かれ、さらに、ナトリウムはナトリウムイオンと
なって固体電解質管4を透過し、陽極用導電材M内の硫
黄と反応し多硫化ナトリウムを生成する。
When discharge is started in this state, sodium in the container moves into the inner gap G1 through the small hole 5b due to the pressure P3 in the pressurizing chamber R3. Then, from the upper edge of the tubular partition 6 to the outer gap G2
Then, sodium is converted into sodium ions and permeates the solid electrolyte tube 4, and reacts with sulfur in the anode conductive material M to generate sodium polysulfide.

さて、前記実施例では充電中あるいは放電中のいずれの
状態においても、陽極室R1の圧力P1が固体電解質管4と
ナトリウム容器5との間隙G2内の圧力P2よりも常時高い
ので、固体電解質管4の破口時に陽極室R1から前記間隙
G2に該固体電解質管4の破口部から溶融硫黄が圧力差Δ
pにより流入するが、この硫黄は前記間隙G2内のナトリ
ウムと反応して多硫化ナトリウムを生じ、この多硫化ナ
トリウムが前記間隙G2内で生成して前記固体電解質管4
の破口部を塞ぐため、それ以上の溶融硫黄の流出が止ま
り、以後溶融硫黄とナトリウムの反応が防止され、安全
性が向上する。
In the above embodiment, the pressure P1 in the anode chamber R1 is always higher than the pressure P2 in the gap G2 between the solid electrolyte tube 4 and the sodium container 5 regardless of whether the solid electrolyte tube is charged or discharged. The gap from the anode chamber R1 at the time of rupture
The molten sulfur has a pressure difference Δ from G2 to the broken portion of the solid electrolyte tube 4.
Although it flows in by p, this sulfur reacts with sodium in the gap G2 to generate sodium polysulfide, and this sodium polysulfide is generated in the gap G2 to generate the solid electrolyte tube 4
Since the ruptured portion of is blocked, the further outflow of molten sulfur is stopped, the reaction between molten sulfur and sodium is prevented thereafter, and the safety is improved.

特に、前記実施例では固体電解質管4とナトリウム容器
5との間に有底管状隔壁6を収容し、外側間隙G2を0.1
〜0.5mmに設定したので、固体電解質管4の破口時の多
硫化ナトリウムの生成量が少なくなり、反応熱も低くな
って安全性が向上する。
In particular, in the above embodiment, the bottomed tubular partition wall 6 is housed between the solid electrolyte tube 4 and the sodium container 5, and the outer gap G2 is set to 0.1.
Since it is set to ˜0.5 mm, the amount of sodium polysulfide produced when the solid electrolyte tube 4 is ruptured is small, the reaction heat is low, and the safety is improved.

なお、各圧力の設定値はP1が常にP2より高ければ上記実
施例中の圧力に限定しないが、外側の間隙G2への安定し
たナトリウムの供給のためには、圧力P2を50mbar以上と
することが好ましい。
The setting value of each pressure is not limited to the pressure in the above example as long as P1 is always higher than P2, but in order to stably supply sodium to the outer gap G2, the pressure P2 should be 50 mbar or more. Is preferred.

[発明の効果] 以上詳述したようにこの発明ではナトリウム容器の底部
に小孔を形成し、有底管状隔壁の内外に内側間隙及び外
側間隙を設け、両間隙を有底管状隔壁の上端縁において
連通し、さらに陽極室の圧力が常に陰極室の圧力より高
くなるように設定した。このため、外側間隙内でナトリ
ウムと硫黄が反応して生成される多硫化ナトリウムは固
化して破口部を塞ぐため、それ以上の溶融硫黄の流入を
阻止して安全性を確保することができる。又、固体電解
質管の破損場所にかかわらず、例えばナトリウム容器の
底部に設けた小孔と直線距離にして非常に短い固体電解
質管の底部が破損したとしても安全性を保持することが
できる。
[Effects of the Invention] As described in detail above, in the present invention, a small hole is formed in the bottom of a sodium container, an inner gap and an outer gap are provided inside and outside a bottomed tubular partition, and both gaps are provided at the upper edge of the bottomed tubular partition. And the pressure in the anode chamber was always higher than the pressure in the cathode chamber. Therefore, sodium polysulfide produced by the reaction between sodium and sulfur in the outer gap solidifies and blocks the rupture portion, so that further inflow of molten sulfur can be blocked and safety can be ensured. . Further, regardless of the location of breakage of the solid electrolyte tube, even if the bottom of the solid electrolyte tube, which is very short in linear distance from the small hole provided in the bottom of the sodium container, is broken, safety can be maintained.

又、前記外側間隙を0.1〜0.5mmに設定した場合には、生
成される多硫化ナトリウムの量が少なくなり、反応生成
物は直ちに固化して破口部を塞ぐため、早期に溶融硫黄
の流入が止まり、溶融硫黄とナトリウムの反応が防止さ
れ、さらに安全性が向上する。
Further, when the outer gap is set to 0.1 to 0.5 mm, the amount of sodium polysulfide produced is reduced, and the reaction product solidifies immediately to block the rupture portion, so that the inflow of molten sulfur occurs early. Stops, the reaction between molten sulfur and sodium is prevented, and safety is further improved.

さら、前記内側間隙の底部に小孔と対応して流量制御板
を収容し、前記陰極室内に前記ナトリウム容器を有底管
状隔壁の底部側へ押圧する付勢部材を配置した発明で
は、小孔から内側間隙への又その逆方向へのナトリウム
の流量が安定化し、電池の放電・充電を安定して行うこ
とができる。
Further, in the invention in which the flow control plate is accommodated at the bottom of the inner gap corresponding to the small hole, and the biasing member for pressing the sodium container to the bottom side of the bottomed tubular partition is arranged in the cathode chamber, the small hole is provided. The flow rate of sodium from the inside to the inside gap and vice versa is stabilized, and the battery can be stably discharged and charged.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明を具体化したナトリウム−硫黄電池の
一実施例を示す中央部縦断面図、第2図は第1図のA−
A線断面図、第3図、第4図及び第5図は電池作動中に
おける陽極室圧力、間隙G2内圧力及び陽極室圧力と間隙
G2内圧力の圧力差を示すグラフ、第6図は従来例を示す
中央部縦断面図である。 1……陽極容器、2……絶縁リング、3……陰極金具、
4……固体電解質管、5……ナトリウム容器、6……有
底管状隔壁、M……陽極用導電材、R1……陽極室、R2…
…陰極室、R3……加圧室、P1……陽極圧力、P2……固体
電解質管とナトリウム容器との間隙内の圧力、G1……内
側間隙、G2……外側間隙。
FIG. 1 is a vertical cross-sectional view of a central portion showing an embodiment of a sodium-sulfur battery embodying the present invention, and FIG. 2 is A- of FIG.
Sectional views taken along line A, 3, 4, and 5 show the anode chamber pressure, the gap G2 internal pressure, and the anode chamber pressure and gap during battery operation.
FIG. 6 is a graph showing the pressure difference of the G2 internal pressure, and FIG. 1 ... Anode container, 2 ... Insulation ring, 3 ... Cathode metal fittings,
4 ... Solid electrolyte tube, 5 ... Sodium container, 6 ... Tubular partition with bottom, M ... Anode conductive material, R1 ... Anode chamber, R2 ...
… Cathode chamber, R3 …… Pressurization chamber, P1 …… Anode pressure, P2 …… Pressure in the gap between solid electrolyte tube and sodium container, G1 …… Inner gap, G2 …… Outer gap.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】陽極室(R1)と陰極室(R2)を区画する有
底袋管状の固体電解質管(4)の陰極室(R2)側内部
に、金属ナトリウムを収容するナトリウム容器(5)を
収容し、該ナトリウム容器(5)の底部(5a)に小孔
(5b)を透設し、かつナトリウム容器内部の上部加圧室
(R3)に該金属ナトリウムを加圧する不活性ガスを充填
し、さらに、前記固体電解質管(4)とナトリウム容器
(5)との間に有底管状隔壁(6)を収容し、該有底管
状隔壁(6)の内周面とナトリウム容器(5)の外周面
との間及び有底管状隔壁(6)の外周面と固体電解質管
(4)の内周面との間に、電池の充電・放電時に前記小
孔(5b)から出入りする金属ナトリウムを上下方向に案
内する内側間隙(G1)及び外側間隙(G2)を設け、さら
に充電時及び放電時に前記陽極室(R1)内の圧力(P1)
が前記外側隙間(G2)内の圧力(P2)よりも常時高くし
たナトリウム−硫黄電池。
1. A sodium container (5) containing metallic sodium inside a cathode chamber (R2) side of a bottomed bag-shaped solid electrolyte tube (4) for partitioning an anode chamber (R1) and a cathode chamber (R2). A small hole (5b) through the bottom (5a) of the sodium container (5), and the upper pressure chamber (R3) inside the sodium container is filled with an inert gas for pressurizing the metallic sodium. Further, a bottomed tubular partition wall (6) is housed between the solid electrolyte tube (4) and the sodium container (5), and the inner peripheral surface of the bottomed tubular partition wall (6) and the sodium container (5). Between the outer peripheral surface of the battery and the outer peripheral surface of the bottomed tubular partition wall (6) and the inner peripheral surface of the solid electrolyte tube (4) through the small holes (5b) during charging and discharging of the battery. There is an inner gap (G1) and an outer gap (G2) that guides the The pressure in the chamber (R1) (P1)
Is always higher than the pressure (P2) in the outer gap (G2).
【請求項2】前記内側間隙(G1)は0.1〜1mm、外側間隙
(G2)は0.1〜0.5mmに設定されている請求項1記載のナ
トリウム−硫黄電池。
2. The sodium-sulfur battery according to claim 1, wherein the inner gap (G1) is set to 0.1 to 1 mm and the outer gap (G2) is set to 0.1 to 0.5 mm.
【請求項3】前記内側間隙(G1)底部に小孔(5b)と対
応して流量制御板(7)を収容し、前記陰極室(R2)内
に前記ナトリウム容器(5)を有底管状隔壁(6)の底
部側へ押圧する付勢部材(8)を配置した請求項1記載
のナトリウム−硫黄電池。
3. A flow control plate (7) is accommodated in the bottom of the inner gap (G1) corresponding to the small hole (5b), and the sodium container (5) is closed-ended tubular in the cathode chamber (R2). The sodium-sulfur battery according to claim 1, further comprising a biasing member (8) arranged to press the partition wall (6) toward the bottom thereof.
JP63279944A 1988-11-04 1988-11-04 Sodium-sulfur battery Expired - Lifetime JPH0782877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63279944A JPH0782877B2 (en) 1988-11-04 1988-11-04 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63279944A JPH0782877B2 (en) 1988-11-04 1988-11-04 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH02126571A JPH02126571A (en) 1990-05-15
JPH0782877B2 true JPH0782877B2 (en) 1995-09-06

Family

ID=17618098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63279944A Expired - Lifetime JPH0782877B2 (en) 1988-11-04 1988-11-04 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH0782877B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2771432B2 (en) * 1992-11-18 1998-07-02 日本碍子株式会社 Sodium-sulfur battery and method of manufacturing the same
EP3182480A1 (en) 2015-12-14 2017-06-21 Basf Se Device for storing electrical energy and method for assembling same, commissioning same and the operation thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012680A (en) * 1983-07-01 1985-01-23 Yuasa Battery Co Ltd Sodium-sulfur battery
JPS62226588A (en) * 1986-03-28 1987-10-05 Hitachi Ltd Sodium-sulfur battery

Also Published As

Publication number Publication date
JPH02126571A (en) 1990-05-15

Similar Documents

Publication Publication Date Title
US4510217A (en) Sodium-sulfur storage battery
KR102028847B1 (en) Sodium-sulfur battery
JPH0782877B2 (en) Sodium-sulfur battery
JPS6362070B2 (en)
JPH0665073B2 (en) Sodium-sulfur battery
JP3193319B2 (en) Sodium-sulfur battery
US4204035A (en) Sodium insert container for a sodium-sulfur cell and its method of use
WO2020153125A1 (en) Sodium-sulfur battery
JPS6012680A (en) Sodium-sulfur battery
WO2021260962A1 (en) Sodium sulfur battery
JP2667776B2 (en) Sodium-sulfur battery
US4189530A (en) Sodium insert container for a sodium-sulfur cell and method
JPH02234363A (en) Sodium-sulfur battery
JPH0582161A (en) Sodium sulfur battery
JP2815312B2 (en) Gas filling method in sodium-sulfur battery
JP4417681B2 (en) Sodium-sulfur battery
JPH0554908A (en) Sodium-sulfur battery
JP2644256B2 (en) Sodium-sulfur battery
JPH02199777A (en) Sodium-sulfur battery
JPS5973863A (en) Sodium-sulfur battery
JPH1064580A (en) Sodium-sulfur battery
JP2003007289A (en) Sodium negative electrode for sodium sulfur battery and manufacturing method therefor
JPH0824147A (en) Vacuum sealing structure of metallic vacuum double container
JPH05266919A (en) Sodium-sulfuer battery
JPS59228371A (en) Sodium-sulfur battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 14