JPH02199777A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH02199777A
JPH02199777A JP1020388A JP2038889A JPH02199777A JP H02199777 A JPH02199777 A JP H02199777A JP 1020388 A JP1020388 A JP 1020388A JP 2038889 A JP2038889 A JP 2038889A JP H02199777 A JPH02199777 A JP H02199777A
Authority
JP
Japan
Prior art keywords
sodium
inert gas
vessel
battery
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1020388A
Other languages
Japanese (ja)
Other versions
JPH0760700B2 (en
Inventor
Masamune Itou
伊藤 正念
Masanobu Mori
政信 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1020388A priority Critical patent/JPH0760700B2/en
Publication of JPH02199777A publication Critical patent/JPH02199777A/en
Publication of JPH0760700B2 publication Critical patent/JPH0760700B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To simplify the assembling process by forming a sodium receiving chamber and an inert gas receiving chamber by partitioning in a sodium vessel, and providing a hole communicating the both chambers at the time of heating in a part of a partition wall. CONSTITUTION:An inert gas vessel 11 is assembled and contained in the inside of a sodium vessel 5 and partitioned into a receiving chamber 12 of sodium Na and a receiving chamber 13 of an inert gas G. As the inert gas vessel 11 is exposed to vacuum state in the sodium vessel 5, its internal gas is sealed until it is combined into a battery. A deforming member 14 consisting of shape memory alloy is disposed in its inner part, and a perforating needle i5 facing the partition wall 11a of the inert gas vessel 11 is provided at the top end thereof. Thus, when the temperature of the battery is raised to the operating temperature after this sodium vessel 5 is installed to the cathode part of the battery, the perforating needle 15 is stuck to the partition wall 11a by the deformation of the deforming member 14 to form a communicating hole 16 in the partition wall 11a, and the receiving chamber 13 of an inert gas G is communicated with the receiving chamber 12 of sodium Na. Hence, the assembling process is simplified.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ナトリウム−硫黄電池に関するものであり
、特に、陰極活物質としてのナトリウムを収容するため
のナトリウム容器の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a sodium-sulfur battery, and particularly to an improvement in a sodium container for containing sodium as a cathode active material.

[従来の技術] 従来、ナトリウム−硫黄電池としては、例えば第5図に
示すような構成のものが知られている。
[Prior Art] Conventionally, a sodium-sulfur battery having a structure as shown in FIG. 5, for example, is known.

すなわち、陽極容器1は有底円筒状に形成され、その上
端面にはα−アルミナ製の絶縁リング2が熱圧接合され
ている。絶縁リング2の上面には陰極金具3が熱圧接合
されると共に、絶縁リング2の内周面にはβ1−アルミ
ナ製の固体電解質管4が接合固定されている。
That is, the anode container 1 is formed into a cylindrical shape with a bottom, and an insulating ring 2 made of α-alumina is bonded by thermopressure to the upper end surface of the anode container 1. A cathode fitting 3 is heat-pressure bonded to the upper surface of the insulating ring 2, and a solid electrolyte tube 4 made of β1-alumina is bonded and fixed to the inner peripheral surface of the insulating ring 2.

前記陽極容器1と固体電解質管4との間に形成された陽
極室R1内には、陽極活物質としての溶融硫黄Sを含浸
させたカーボンマ・ット等の陽極用導電材Mが収納され
ている。また、固体電解質管4の内側に形成された陰極
室R2内には、陰極活性物質としての金属ナトリウムN
aの貯蔵用の有蓋有底円筒状をなすナトリウム容器5が
収納されている。
In the anode chamber R1 formed between the anode container 1 and the solid electrolyte tube 4, a conductive material M for the anode such as a carbon mat impregnated with molten sulfur S as an anode active material is stored. There is. In addition, in the cathode chamber R2 formed inside the solid electrolyte tube 4, metallic sodium N as a cathode active material is contained.
A sodium container 5 having a cylindrical shape with a lid and a bottom is housed for storage of a.

前記ナトリウム容器5の底面5aにはナトリウムNaが
流出する小孔5bが透設されている。また、前記ナトリ
ウム容器5の上部閉空間の圧力室R3には、例えば窒素
ガス、アルゴンガス等のナトリウムに対して不活性なガ
スGが所定の圧力で封入され、このガス圧によりナトリ
ウムNaが常時小孔5bから外部へ流出する方向に加圧
されている。
A small hole 5b through which sodium Na flows out is provided in the bottom surface 5a of the sodium container 5. In addition, a pressure chamber R3 in the upper closed space of the sodium container 5 is filled with a gas G that is inert to sodium, such as nitrogen gas or argon gas, at a predetermined pressure, and this gas pressure keeps sodium Na constantly flowing. It is pressurized in the direction of flowing out from the small hole 5b.

そして、放電時には一前記ナトリウム容器5の小孔5b
から流出されるナトリウムNaが、ナトリウムイオンと
なって固体電解質管4を透過し、陽極用導電材M内の硫
黄Sと次のように反応して多硫化ナトリウムを生成する
When discharging, the small hole 5b of the sodium container 5 is
Sodium Na flowing out becomes sodium ions, passes through the solid electrolyte tube 4, and reacts with sulfur S in the anode conductive material M as follows to generate sodium polysulfide.

2Na+XS−+Na2Sx また、充電時には、前記放電時と逆の反応が生じて、ナ
トリウムNa及び硫黄Sがそれぞれ生成される。
2Na+XS-+Na2Sx Further, during charging, a reaction opposite to that during discharging occurs, and sodium Na and sulfur S are respectively generated.

ところで、前記のような従来構成のナトリウム−硫黄電
池の製造に際しては、第6図に示すように、ナトリウム
容器5内に、ナトリウムNaを充填した後に窒化ナトリ
ウムNaN5(例えば特公昭54−12417号公報参
照)を充填し、この状態で容器5の端縁部を真空溶接等
により密封していた。その後、第7図に示すように、こ
のナトリウム容器5を固体電解質管4内に管状隔壁6を
介して収納すると共に、固定電解質管4の上端に絶縁リ
ング2および陰極金具3を接合固定して陰極構成体を組
み立てていた。
By the way, when manufacturing a sodium-sulfur battery having the conventional structure as described above, as shown in FIG. ), and in this state, the edge of the container 5 was sealed by vacuum welding or the like. Thereafter, as shown in FIG. 7, this sodium container 5 is housed in the solid electrolyte tube 4 via the tubular partition 6, and the insulating ring 2 and cathode fitting 3 are bonded and fixed to the upper end of the fixed electrolyte tube 4. I was assembling the cathode structure.

[発明が解決しようとする課ff] ところが、この従来構成では、ナトリウム容器5の製作
時において、数mgの窒化ナトリウムN a N sを
定量するのに時間がかかる上、水分をきらうため取扱い
は極力低水分雰囲気で行なう必要があり作業性、効率が
悪かった。また、窒化ナトリウムは危険性が極めて高く
取扱いにも十分注意する必要がある。
[Problem to be solved by the invention ff] However, with this conventional configuration, when manufacturing the sodium container 5, it takes time to quantify several mg of sodium nitride NaNs, and it is difficult to handle because moisture is avoided. It was necessary to carry out the process in an atmosphere with as little moisture as possible, resulting in poor workability and efficiency. In addition, sodium nitride is extremely dangerous and must be handled with great care.

この発明は、このような従来の技術に存在する問題点に
着目してなされたものであって、その目的とするところ
は、電池の組立て工程の簡素化を図ることができるナト
リウム−硫黄電池を提供することにある。
The present invention was made by focusing on the problems existing in the conventional technology, and its purpose is to develop a sodium-sulfur battery that can simplify the battery assembly process. It is about providing.

[課題を解決するための手段] 上記の目的を達成するために、この発明のナトリウム−
硫黄電池においては、電池組立時に陰極活物質としての
ナトリウムを収容するためのナトリウム容器内に、ナト
リウムの収容室と不活性ガスの収容室とを区画形成し、
その区画壁の一部には加熱時に画室を連通させるための
連通孔を設けたものである。
[Means for Solving the Problem] In order to achieve the above object, the sodium-
In a sulfur battery, a sodium storage chamber and an inert gas storage chamber are partitioned into a sodium container for storing sodium as a cathode active material during battery assembly;
A communication hole is provided in a part of the partition wall for communicating the compartments during heating.

[作 用] 上記のように構成されたナトリウム−硫黄電池によれば
、窒化ナトリウムを使用しないため、安全性が増すとと
もに、水分等の混入が少ないため電池特性の安定化を図
ることができる。!tな、窒化ナトリウムの定量充填が
ないため電池の組立てを容易かつ短時間に行うことがで
きる。
[Function] According to the sodium-sulfur battery configured as described above, since sodium nitride is not used, safety is increased, and the battery characteristics can be stabilized because there is less contamination with water and the like. ! Since there is no need for quantitative filling of sodium nitride, the battery can be assembled easily and in a short time.

[実施例] 以下、この発明を具体化したナトリウム−硫黄電池の第
1実施例を、第1図および第2図に基づいて詳細に説明
する。
[Example] Hereinafter, a first example of a sodium-sulfur battery embodying the present invention will be described in detail based on FIGS. 1 and 2.

第1図に示すように、ナトリウム容器5の内部には不活
性ガス容器11が組付は収容され、この不活性ガス容器
11によりナトリウム容器5内が、ナトリウムNaの収
容室12と、不活性ガスGの収容室13とに区画されて
いる。そして、不活性ガス容器11内の収容室13には
、ナトリウム容器5内への不活性ガス容器11の組付け
に先立って、窒素やアルゴン等の不活性ガスGが予め封
入され、ナトリウムNaとともにナトリウムNaの酸化
を防止するためにナトリウム容器5のr!IA縁部が真
空溶接等により密封されている。
As shown in FIG. 1, an inert gas container 11 is assembled and housed inside the sodium container 5, and the inside of the sodium container 5 is divided into a storage chamber 12 for sodium Na and an inert gas container 11. It is divided into a storage chamber 13 for gas G. The storage chamber 13 in the inert gas container 11 is filled with an inert gas G such as nitrogen or argon in advance before the inert gas container 11 is assembled into the sodium container 5. r! of the sodium container 5 to prevent oxidation of sodium Na. The IA edge is sealed by vacuum welding or the like.

第2図に示すように、前記不活性ガス容器11はナトリ
ウム容器5内で真空状態にさらされるため、電池に組込
まれるまでは内部ガスは密封されている。その内部には
、形状記憶合金よりなる変形部材14が配設され、その
先端には不活性ガス容器11の区画壁11aに対向する
穿孔用針15が設けられている。そして、このナトリウ
ム容器5を電池の陰衡部に組付けた後、その電池を運転
温度まで昇温する際、不活性ガス容器11内の温度が1
00℃以上になったとき、変形部材14の変形により穿
孔用針15が区画壁11aに刺さって、区画壁11aに
連通孔16が形成され、この連通孔16を介して不活性
ガスGの収容室13がナトリウムNaの収容室12に連
通される。
As shown in FIG. 2, since the inert gas container 11 is exposed to a vacuum state within the sodium container 5, the internal gas is sealed until it is assembled into a battery. A deformable member 14 made of a shape memory alloy is disposed inside the deformable member 14, and a piercing needle 15 is provided at the tip thereof facing the partition wall 11a of the inert gas container 11. After the sodium container 5 is assembled into the negative balance section of the battery, when the battery is heated to the operating temperature, the temperature inside the inert gas container 11 is 1.
When the temperature exceeds 00°C, the deformation of the deformable member 14 causes the piercing needle 15 to pierce the partition wall 11a, forming a communication hole 16 in the partition wall 11a, through which the inert gas G is accommodated. The chamber 13 communicates with the sodium Na storage chamber 12.

さて、この実施例によれば、第6図および第7図に示す
従来構成とは異なり、不活性ガスGを発生させるための
窒化ナトリウムN a N sを使用していないので、
窒化ナトリウムN a N sの定量を行なう必要がな
く作業性、効率も良い、また、取扱い上の危険もなく、
湿気に対する問題点もない。
Now, according to this embodiment, unlike the conventional configuration shown in FIGS. 6 and 7, sodium nitride NaNs for generating the inert gas G is not used.
There is no need to quantify sodium nitride NaNs, and the workability and efficiency are good, and there is no danger in handling.
There are no problems with humidity.

このように電池の組立てを容易かつ短時間に行うことが
できて、組立て工程の簡素化を図るとともに電池製造コ
ストを下げることができる。
In this way, the battery can be assembled easily and in a short time, simplifying the assembly process and reducing battery manufacturing costs.

[別の実施例] 次に、この発明の別の実施例を第3図および第4図に基
づいて説明する。
[Another Embodiment] Next, another embodiment of the present invention will be described based on FIGS. 3 and 4.

まず、第3図の第2実施例においては、不活性ガス容器
11の区画壁11aに連通孔16が予め形成され、この
連通孔16が半田等の低融点金属よりなる密閉材17に
より密閉されている。そして、電池が組付は状態で運転
温度まで昇温される際、不活性ガス容器11内の温度が
100℃以上になったとき、密閉材17が溶融して連通
孔16が開放され、この連通孔16を介して不活性ガス
Gの収容室13がナトリウムNaの収容室12に連通さ
れる。
First, in the second embodiment shown in FIG. 3, a communication hole 16 is formed in advance in the partition wall 11a of the inert gas container 11, and the communication hole 16 is sealed with a sealing material 17 made of a low melting point metal such as solder. ing. When the temperature inside the inert gas container 11 reaches 100°C or higher when the battery is heated to the operating temperature while the battery is assembled, the sealing material 17 is melted and the communication hole 16 is opened. The inert gas G storage chamber 13 is communicated with the sodium Na storage chamber 12 through the communication hole 16 .

また、第4図の第3実施例においては、ナトリウム容器
5内に金属板または金網よりなる区画体18を嵌着する
ことにより、ナトリウム容器5内がナトリウムNaの収
容室12と不活性ガスGの収容室13とに区画されてい
る。また、金属板よりなる区画体18とナトリウム容器
5の内周面との隙間、あるいは金網よりなる区画体18
の網目が、両駅容室12.13を連通させるための連通
孔となっている。なお、一般にナトリウムを充填する温
度120〜150℃程度では収容室12に充填されたナ
トリウムは温性が悪いため連通孔が塞がれた状態すなわ
ち、金属板とナトリウム容器の内周面のすき間や金網等
の連通孔からナトリウムが不活性ガスの収容室13へ流
出することはなく不活性ガス収容室内には所定量のガス
が収納確保される。そして電池が運転温度に昇温されな
場合には、ナトリウムNaが溶解し、連通孔が開放され
不活性ガスがナトリウムの収容室12へ流入する。
In addition, in the third embodiment shown in FIG. 4, by fitting the compartment body 18 made of a metal plate or wire mesh into the sodium container 5, the interior of the sodium container 5 is divided into a storage chamber 12 for sodium Na and an inert gas G. It is divided into a storage chamber 13 and a storage chamber 13. In addition, the gap between the partition body 18 made of a metal plate and the inner circumferential surface of the sodium container 5, or the partition body 18 made of a wire mesh.
The mesh serves as a communication hole for communicating the two station compartments 12 and 13. Generally, at a temperature of about 120 to 150°C for filling sodium, the sodium filled in the storage chamber 12 has poor thermal properties, so the communication hole is blocked, that is, there is a gap between the metal plate and the inner circumferential surface of the sodium container. Sodium does not flow out into the inert gas storage chamber 13 through the communication hole of the wire mesh, etc., and a predetermined amount of gas is stored and secured in the inert gas storage chamber. When the temperature of the battery is not raised to the operating temperature, the sodium Na is dissolved, the communication hole is opened, and the inert gas flows into the sodium storage chamber 12.

従って、この第2および第3実施例においても。Therefore, also in this second and third embodiment.

前述した第1実施例の場合と同様に、電池の組立て工程
の簡素化を図ることができる。
As in the case of the first embodiment described above, the battery assembly process can be simplified.

なお、この発明は前記各実施例の構成に限定されるもの
ではなく、例えば、前記第1実施例において、変形部材
14をバイメタルにより形成しなり、第2実施例におい
ては低融点金属の密閉材17に陰極活物質の金属ナトリ
ウムNaを用いる等、この発明の趣旨から逸脱しない範
囲で、各部の構成を任意に変更して具体化することも可
能である。
Note that the present invention is not limited to the configurations of the respective embodiments described above; for example, in the first embodiment, the deformable member 14 is formed of a bimetal, and in the second embodiment, a sealing material of a low melting point metal is used. It is also possible to change the structure of each part arbitrarily and embody it without departing from the spirit of the present invention, such as using metallic sodium Na as a cathode active material for 17.

[発明の効果] この発明は、以上説明したように構成されているため、
窒化ナトリウムを定量充填する必要がなく、作業性、効
率も良い、また、取扱い上の危険もなく湿気に対する問
題もない、このように組立てを容易かつ短時間に行うこ
とができて、組立て工程の簡素化を図ることができ電池
製造コストを低下できるという優れた効果を奏する。
[Effect of the invention] Since this invention is configured as explained above,
There is no need to charge a fixed amount of sodium nitride, and the workability and efficiency are good. Also, there is no danger in handling and there are no problems with moisture.In this way, assembly can be done easily and in a short time, and the assembly process can be improved. This has the excellent effect of simplifying the structure and reducing battery manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を具体化したナトリウム−硫黄電池に
おけるナトリウム容器の第1実施例を示す断面図、第2
図はその不活性ガス容器の内部構成を拡大して示す断面
図、第3図はこの発明の第2実施例を示す不活性ガス容
器の断面図、第4図・はこの発明の第3実施例を示すナ
トリウム容器の断面図、第5図は従来のナトリウム−硫
黄電池の構成を示す断面図、第6図は従来構成のナトリ
ウム容器を示す断面図、第7図はこの従来構成のナトリ
ウム容器にて陰極構成体を組立てた状態を示す断面図で
ある。 5・・・ナトリウム容器、11・・・不活性ガス容器、
11a・・・区画壁、12・・・ナトリウムの収容室、
13・・・不活性ガスの収容室、16・・・連通孔、1
8・・・区画体、Na・・・ナトリウム、G・・・不活
性ガス。 特許出願人     日本碍子 株式会社代理人   
  弁理士  恩1)博宜)a bじ 第7図 第5図
FIG. 1 is a sectional view showing a first embodiment of a sodium container in a sodium-sulfur battery embodying the present invention;
The figure is a sectional view showing an enlarged internal structure of the inert gas container, FIG. 3 is a sectional view of an inert gas container showing a second embodiment of the invention, and FIG. 4 is a sectional view showing a third embodiment of the invention. 5 is a sectional view showing the configuration of a conventional sodium-sulfur battery, FIG. 6 is a sectional view showing a sodium container with a conventional configuration, and FIG. 7 is a sectional view of a sodium container with a conventional configuration. FIG. 2 is a cross-sectional view showing the assembled cathode structure. 5... Sodium container, 11... Inert gas container,
11a... Compartment wall, 12... Sodium storage chamber,
13...Inert gas storage chamber, 16...Communication hole, 1
8... Compartment body, Na... Sodium, G... Inert gas. Patent applicant Nippon Insulator Co., Ltd. Agent
Patent Attorney On 1) Hiroyoshi) a bji Figure 7 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、陰極活物質としてのナトリウム(Na)を収容する
ためのナトリウム容器(5)内に、ナトリウム(Na)
の収容室(12)と不活性ガス(G)の収容室(13)
とを区画形成し、その区画壁(11a)の一部には加熱
時に両室を連通させるための連通孔(16)を設けたこ
とを特徴とするナトリウム−硫黄電池。
1. In the sodium container (5) for accommodating sodium (Na) as a cathode active material,
storage chamber (12) and inert gas (G) storage chamber (13)
A sodium-sulfur battery, characterized in that a part of the partition wall (11a) is provided with a communication hole (16) for communicating the two chambers during heating.
JP1020388A 1989-01-30 1989-01-30 Sodium-sulfur battery Expired - Lifetime JPH0760700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1020388A JPH0760700B2 (en) 1989-01-30 1989-01-30 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020388A JPH0760700B2 (en) 1989-01-30 1989-01-30 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH02199777A true JPH02199777A (en) 1990-08-08
JPH0760700B2 JPH0760700B2 (en) 1995-06-28

Family

ID=12025640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020388A Expired - Lifetime JPH0760700B2 (en) 1989-01-30 1989-01-30 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH0760700B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412417A (en) * 1977-05-18 1979-01-30 Chloride Silent Power Ltd Method of manufacturing battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412417A (en) * 1977-05-18 1979-01-30 Chloride Silent Power Ltd Method of manufacturing battery

Also Published As

Publication number Publication date
JPH0760700B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
US6361898B1 (en) Container having a hermetic seal
US3960596A (en) Battery casing and hermetically sealed sodium-sulfur battery
WO2017061378A1 (en) Sodium-sulfur battery
US4104448A (en) Alkali metal-sulphur cells
JP3193319B2 (en) Sodium-sulfur battery
US5164272A (en) Alkali metal cell
JPH02199777A (en) Sodium-sulfur battery
EP0585734B1 (en) Hermetically sealed cell comprising liquid active material
JP3049151B2 (en) Sodium-sulfur battery
JP2644256B2 (en) Sodium-sulfur battery
JPH02112168A (en) Sodium-sulfur battery
JPH06283202A (en) Sodium-sulfur battery and pressure adjuster used therefor
JP2708998B2 (en) Sodium-sulfur battery
JP2612888B2 (en) Sodium-sulfur battery
JPH11329488A (en) Sodium-sulfur battery
JPH1064580A (en) Sodium-sulfur battery
JPH02126571A (en) Sodium-sulphur cell
JPH0582161A (en) Sodium sulfur battery
JP2815312B2 (en) Gas filling method in sodium-sulfur battery
JPH11273718A (en) Sodium filling method in sodium-sulfur battery
JPH01120771A (en) Reserve type nonaqueous battery
JPH0256868A (en) Sodium-sulfur battery
JP2003007289A (en) Sodium negative electrode for sodium sulfur battery and manufacturing method therefor
JPH05266922A (en) Sodium-sulfur battery
JPH05266921A (en) Sodium-sulfur battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 14