JPH0760700B2 - Sodium-sulfur battery - Google Patents
Sodium-sulfur batteryInfo
- Publication number
- JPH0760700B2 JPH0760700B2 JP1020388A JP2038889A JPH0760700B2 JP H0760700 B2 JPH0760700 B2 JP H0760700B2 JP 1020388 A JP1020388 A JP 1020388A JP 2038889 A JP2038889 A JP 2038889A JP H0760700 B2 JPH0760700 B2 JP H0760700B2
- Authority
- JP
- Japan
- Prior art keywords
- sodium
- container
- inert gas
- battery
- sulfur battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/3909—Sodium-sulfur cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は、ナトリウム−硫黄電池に関するものであ
り、特に、陰極活物質としてのナトリウムを収容するた
めのナトリウム容器の改良に関するものである。Description: TECHNICAL FIELD The present invention relates to a sodium-sulfur battery, and more particularly to an improvement of a sodium container for containing sodium as a cathode active material.
[従来の技術] 従来、ナトリウム−硫黄電池としては、例えば第5図に
示すような構成のものが知られている。すなわち、陽極
容器1は有底円筒状に形成され、その上端面にはα−ア
ルミナ製の絶縁リング2が熱圧接合されている。絶縁リ
ング2の上面には陰極金具3が熱圧接合されると共に、
絶縁リング2の内周面にはβ″−アルミナ製の固体電解
質管4が接合固定されている。[Prior Art] Conventionally, as a sodium-sulfur battery, for example, one having a structure as shown in FIG. 5 is known. That is, the anode container 1 is formed in a cylindrical shape with a bottom, and an insulating ring 2 made of α-alumina is thermocompression bonded to the upper end surface thereof. The cathode fitting 3 is thermocompression bonded to the upper surface of the insulating ring 2, and
A β ″ -alumina solid electrolyte tube 4 is joined and fixed to the inner peripheral surface of the insulating ring 2.
前記陽極容器1と固体電解質管4との間に形成された陽
極室R1内には、陽極活物質としての溶融硫黄Sを含浸さ
せたカーボンマット等の陽極用導電材Mが収納されてい
る。また、固体電解質管4の内側に形成された陰極室R2
内には、陰極活性物質としての金属ナトリウムNaの貯蔵
用の有蓋有底円筒状をなすナトリウム容器5が収納され
ている。An anode conductive material M such as carbon mat impregnated with molten sulfur S as an anode active material is housed in an anode chamber R1 formed between the anode container 1 and the solid electrolyte tube 4. In addition, the cathode chamber R2 formed inside the solid electrolyte tube 4
A sodium container 5 having a cylindrical shape with a lid and a bottom for storing metal sodium Na as a cathode active substance is housed therein.
前記ナトリウム容器5の底面5aにはナトリウムNaが流出
する小孔5bが透設されている。また、前記ナトリウム容
器5の上部閉空間の圧力室R3には、例えば窒素ガス、ア
ルゴンガス等のナトリウムに対して不活性なガスGが所
定の圧力で封入され、このガス圧によりナトリウムNaが
常時小孔5bから外部へ流出する方向に加圧されている。On the bottom surface 5a of the sodium container 5, there is provided a small hole 5b through which sodium Na flows out. Further, in the pressure chamber R3 in the upper closed space of the sodium container 5, for example, a gas G such as nitrogen gas or argon gas, which is inert to sodium, is sealed at a predetermined pressure, and sodium Na is constantly supplied by this gas pressure. Pressure is applied in the direction in which the small holes 5b flow out.
そして、放電時には、前記ナトリウム容器5の小孔5bか
ら流出されるナトリウムNaが、ナトリウムイオンとなっ
て固体電解質管4を透過し、陽極用導電材M内の硫黄S
と次のように反応して多硫化ナトリウムを生成する。Then, at the time of discharge, sodium Na flowing out from the small holes 5b of the sodium container 5 becomes sodium ions and permeates the solid electrolyte tube 4, so that the sulfur S in the conductive material M for anode is
And reacts as follows to produce sodium polysulfide.
2Na+XS→Na2SX また、充電時には、前記放電時と逆の反応が生じて、ナ
トリウムNa及び硫黄Sがそれぞれ生成される。2Na + XS → Na 2 SX When charging, a reaction reverse to that at the time of discharging occurs, and sodium Na and sulfur S are produced, respectively.
ところで、前記のような従来構成のナトリウム−硫黄電
池の製造に際しては、第6図に示すように、ナトリウム
容器5内に、ナトリウムNaを充填した後に窒化ナトリウ
ムNaN3(例えば特公昭54-12417号公報参照)を充填し、
この状態で容器5の端縁部を真空溶接等により密封して
いた。その後、第7図に示すように、このナトリウム容
器5を固体電解質管4内に管状隔壁(図示略)を介して
収納すると共に、固体電解質管4の上端に絶縁リング2
および陰極金具3を接合固定して陰極構成体を組み立て
ていた。By the way, in the manufacture of the sodium-sulfur battery having the above-mentioned conventional structure, as shown in FIG. 6, after filling the sodium container 5 with sodium Na, sodium nitride NaN 3 (for example, Japanese Patent Publication No. 54-12417). (See gazette),
In this state, the edge of the container 5 was sealed by vacuum welding or the like. Then, as shown in FIG. 7, the sodium container 5 is housed in the solid electrolyte tube 4 via a tubular partition wall (not shown), and the insulating ring 2 is attached to the upper end of the solid electrolyte tube 4.
The cathode metal member 3 was joined and fixed to assemble the cathode assembly.
[発明が解決しようとする課題] ところが、この従来構成では、ナトリウム容器5の製作
時において、数mgの窒化ナトリウムNaN3を定量するのに
時間がかかる上、水分をきらうため取扱いは極力低水分
雰囲気で行なう必要があり作業性、効率が悪かった。ま
た、窒化ナトリウムは危険性が極めて高く取扱いにも充
分注意する必要がある。[Problems to be Solved by the Invention] However, in this conventional configuration, it takes time to quantify a few mg of sodium nitride NaN 3 when the sodium container 5 is manufactured, and since water is absent, handling is as low as possible. It was necessary to perform in an atmosphere, and workability and efficiency were poor. In addition, sodium nitride is extremely dangerous and requires careful handling.
この発明は、このような従来の技術に存在する問題点に
着目してなされたものであって、その目的とするところ
は、電池の組立て工程の簡素化を図ることができるナト
リウム−硫黄電池を提供することにある。The present invention has been made in view of the problems existing in such a conventional technique, and an object thereof is to provide a sodium-sulfur battery capable of simplifying the battery assembly process. To provide.
[課題を解決するための手段] 上記の目的を達成するために、この発明のナトリウム−
硫黄電池においては、電池組立時に陰極活物質としての
ナトリウムを収容するためのナトリウム容器内に、ナト
リウムの収容室と不活性ガスの収容室とを区画形成し、
その区画壁の一部にはナトリウムが溶融する温度以上の
加熱時に両室を連通させるための連通孔を開放する構成
としたものである。[Means for Solving the Problems] In order to achieve the above object, sodium of the present invention
In a sulfur battery, in a sodium container for containing sodium as a cathode active material at the time of battery assembly, a sodium containing chamber and an inert gas containing chamber are formed by partitioning.
A communication hole for communicating the two chambers at the time of heating at a temperature equal to or higher than the melting temperature of sodium is opened in a part of the partition wall.
[作用] 上記のように構成されたナトリウム−硫黄電池によれ
ば、窒化ナトリウムを使用しないため、安全性が増すと
ともに、水分等の混入が少ないため電池特性の安定化を
図ることができる。また、窒化ナトリウムの定量充填が
ないため電池の組立てを容易かつ短時間に行うことがで
きる。[Operation] According to the sodium-sulfur battery configured as described above, since sodium nitride is not used, safety is increased, and battery characteristics can be stabilized because less water or the like is mixed. Moreover, since there is no fixed amount of sodium nitride, the battery can be assembled easily and in a short time.
[実施例] 以下、この発明の具体化したナトリウム−硫黄電池の第
1実施例を、第1図および第2図に基づいて詳細に説明
する。Example Hereinafter, a first example of the sodium-sulfur battery embodying the present invention will be described in detail with reference to FIGS. 1 and 2.
第1図に示すように、ナトリウム容器5の内部には不活
性ガス容器11が組付け収容され、この不活性ガス容器11
によりナトリウム容器5内が、ナトリウムNaの収容室12
と、不活性ガスGの収容室13とに区画されている。そし
て、不活性ガス容器11内の収容室13には、ナトリウム容
器5内への不活性ガス容器11の組付けに先立って、窒素
やアルゴン等の不活性ガスGが予め封入され、ナトリウ
ムNaとともにナトリウムNaの酸化を防止するためにナト
リウム容器5の端縁部が真空溶接等により密封されてい
る。As shown in FIG. 1, an inert gas container 11 is assembled and housed inside the sodium container 5.
The inside of the sodium container 5 is
And an accommodating chamber 13 for the inert gas G. Then, before the assembling of the inert gas container 11 into the sodium container 5, the inert gas G such as nitrogen or argon is previously sealed in the accommodation chamber 13 in the inert gas container 11 together with the sodium Na. In order to prevent the oxidation of sodium Na, the edge of the sodium container 5 is sealed by vacuum welding or the like.
第2図に示すように、前記不活性ガス容器11はナトリウ
ム容器5内で真空状態にさらされるため、電池に組込ま
れるまでは内部ガスは密封されている。その内部には、
形状記憶合金よりなる変形部材14が配設され、その先端
には不活性ガス容器11の区画壁11aに対向する穿孔用針1
5が設けられている。そして、このナトリウム容器5を
電池の陰極部に組付けた後、その電池を運転温度まで昇
温する際、不活性ガス容器11内の温度が100℃以上にな
ったとき、変形部材14の変形により穿孔用針15が区画壁
11aに刺さって、区画壁11aに連通孔16が形成され、この
連通孔16を介して不活性ガスGの収容室13がナトリウム
Naの収容室12に連通される。As shown in FIG. 2, since the inert gas container 11 is exposed to the vacuum state in the sodium container 5, the internal gas is sealed until it is assembled in the battery. Inside it,
A deformable member (14) made of a shape memory alloy is provided, and the tip of the deformable member (14) faces the partition wall (11a) of the inert gas container (11).
Five are provided. Then, after the sodium container 5 is assembled to the cathode part of the battery, when the temperature of the battery is raised to the operating temperature and the temperature in the inert gas container 11 becomes 100 ° C. or higher, the deformation member 14 is deformed. The perforation needle 15 allows the partition wall
A communication hole 16 is formed in the partition wall 11a by being pierced in the partition wall 11a, and the accommodating chamber 13 for the inert gas G is sodium through the communication hole 16
Connected to Na's containment chamber 12.
さて、この実施例によれば、第6図および第7図に示す
従来構成とは異なり、不活性ガスGを発生させるための
窒化ナトリウムNaN3を使用していないので、窒化ナトリ
ウムNaN3の定量を行なう必要がなく作業性、効率も良
い。また、取扱い上の危険もなく、湿気に対する問題点
もない。このように電池の組立てを容易かつ短時間に行
うことができて、組立て工程の簡素化を図るとともに電
池製造コストを下げることができる。Now, according to this embodiment, unlike the conventional configuration shown in FIG. 6 and FIG. 7, since sodium nitride NaN 3 for generating the inert gas G is not used, the determination of sodium nitride NaN 3 is performed. There is no need to perform work and work efficiency is good. Also, there is no danger in handling and no problem with moisture. Thus, the battery can be easily assembled in a short time, the assembling process can be simplified, and the battery manufacturing cost can be reduced.
[別の実施例] 次に、この発明の別の実施例を第3図および第4図に基
づいて説明する。Another Embodiment Next, another embodiment of the present invention will be described with reference to FIGS. 3 and 4.
まず、第3図の第2実施例においては、不活性ガス容器
11の区画壁11aに連通孔16が予め形成され、この連通孔1
6が半田等の低融点金属よりなる密閉材17により密閉さ
れている。そして、電池が組付け状態で運転温度まで昇
温される際、不活性ガス容器11内の温度が100℃以上に
なったとき、密閉材17が溶融して連通孔16が開放され、
この連通孔16を介して不活性ガスGの収容室13がナトリ
ウムNaの収容室12に連通される。First, in the second embodiment of FIG. 3, an inert gas container is used.
A communication hole 16 is formed in advance in the partition wall 11a of 11, and the communication hole 1
6 is sealed by a sealing material 17 made of a low melting point metal such as solder. Then, when the battery is heated to the operating temperature in the assembled state, when the temperature in the inert gas container 11 becomes 100 ° C. or higher, the sealing material 17 is melted and the communication hole 16 is opened,
The storage chamber 13 for the inert gas G communicates with the storage chamber 12 for sodium Na through the communication hole 16.
また、第4図の第3実施例においては、ナトリウム容器
5内に金属板または金網よりなる区画体18を嵌着するこ
とにより、ナトリウム容器5内がナトリウムNaの収容室
12と不活性ガスGの収容室13とに区画されている。ま
た、金属板よりなる区画体18とナトリウム容器5の内周
面との隙間、あるいは金網よりなる区画体18の網目が、
両収容室12,13を連通させるための連通孔となってい
る。なお、一般にナトリウムを充填する温度120〜150℃
程度では収容室12に充填されたナトリウムは濡性が悪い
ため連通孔が塞がれた状態すなわち、金属板とナトリウ
ム容器の内周面のすき間や金網等の連通孔からナトリウ
ムが不活性ガスの収容室13へ流出することはなく不活性
ガス収容室内には所定量のガスが収納確保される。そし
て電池が運転温度に昇温された場合には、ナトリウムNa
が溶解し、連通孔が開放され不活性ガスがナトリウムの
収容室12へ流入する。Further, in the third embodiment of FIG. 4, by fitting the partition 18 made of a metal plate or a wire net in the sodium container 5, the inside of the sodium container 5 is a storage chamber for sodium Na.
It is divided into 12 and a storage chamber 13 for the inert gas G. In addition, the gap between the partition body 18 made of a metal plate and the inner peripheral surface of the sodium container 5, or the mesh of the partition body 18 made of a wire mesh,
It is a communication hole for communicating the two accommodation chambers 12, 13. The temperature at which sodium is charged is generally 120-150 ° C.
In a degree, the sodium filled in the storage chamber 12 has poor wettability, so that the communication hole is closed, that is, sodium is an inert gas from the communication hole such as a gap between the metal plate and the inner peripheral surface of the sodium container or a wire mesh. A predetermined amount of gas is stored and secured in the inert gas storage chamber without flowing out to the storage chamber 13. If the battery is heated to operating temperature, sodium Na
Melts, the communication hole is opened, and the inert gas flows into the sodium containing chamber 12.
従って、第2および第3実施例においても、前述した第
1実施例の場合と同様に、電池の組立て工程の簡素化を
図ることができる。Therefore, also in the second and third embodiments, the battery assembling process can be simplified as in the case of the first embodiment.
なお、この発明は前記各実施例の構成に限定されるもの
ではなく、例えば、前記第1実施例において、変形部材
14をバイメタルにより形成したり、第2実施例において
は低融点金属の密閉材17に陰極活物質の金属ナトリウム
Naを用いる等、この発明の趣旨から逸脱しない範囲で、
各部の構成を任意に変更して具体化することも可能であ
る。It should be noted that the present invention is not limited to the configuration of each of the above-described embodiments. For example, in the first embodiment, the deformation member
14 is made of bimetal, and in the second embodiment, the sealing material 17 made of a low melting point metal is used as the cathode active material metal sodium.
Within the range not departing from the gist of the present invention, such as using Na,
It is also possible to embody the configuration of each unit by arbitrarily changing it.
[発明の効果] この発明は、以上説明したように構成されているため、
窒化ナトリウムを定量充填する必要がなく、作業性、効
率も良い。また、取扱い上の危険もなく湿気に対する問
題もない。さらに、組立てを容易かつ短時間に行うこと
ができて、組立て工程の簡素化を図ることができ電池製
造コストを低下できるという優れた効果を奏する。[Advantages of the Invention] Since the present invention is configured as described above,
Workability and efficiency are good because there is no need to fill in a fixed amount of sodium nitride. Also, there is no danger of handling and no problem with moisture. Further, there is an excellent effect that the assembling can be performed easily and in a short time, the assembling process can be simplified, and the battery manufacturing cost can be reduced.
第1図はこの発明を具体化したナトリウム−硫黄電池に
おけるナトリウム容器の第1実施例を示す断面図、第2
図はその不活性ガス容器の内部構成を拡大して示す断面
図、第3図はこの発明の第2実施例を示す不活性ガス容
器の断面図、第4図はこの発明の第3実施例を示すナト
リウム容器の断面図、第5図は従来のナトリウム−硫黄
電池の構成を示す断面図、第6図は従来構成のナトリウ
ム容器を示す断面図、第7図はこの従来構成のナトリウ
ム容器にて陰極構成体を組立てた状態を示す断面図であ
る。 5……ナトリウム容器、11……不活性ガス容器、11a…
…区画壁、12……ナトリウムの収容室、13……不活性ガ
スの収容室、16……連通孔、18……区画体、Na……ナト
リウム、G……不活性ガス。FIG. 1 is a sectional view showing a first embodiment of a sodium container in a sodium-sulfur battery embodying the present invention, and FIG.
FIG. 3 is an enlarged sectional view showing the internal structure of the inert gas container, FIG. 3 is a sectional view of an inert gas container showing a second embodiment of the present invention, and FIG. 4 is a third embodiment of the present invention. FIG. 5 is a sectional view showing the structure of a conventional sodium-sulfur battery, FIG. 6 is a sectional view showing a sodium container having a conventional structure, and FIG. 7 is a sodium container having this conventional structure. FIG. 6 is a cross-sectional view showing a state where the cathode assembly is assembled. 5 ... Sodium container, 11 ... Inert gas container, 11a ...
Compartment wall, 12 ... Sodium storage chamber, 13 ... Inert gas storage chamber, 16 ... Communication hole, 18 ... Compartment, Na ... Sodium, G ... Inert gas.
Claims (1)
容するためのナトリウム容器(5)内に、ナトリウム
(Na)の収容室(12)と不活性ガス(G)の収容室(1
3)とを区画形成し、その区画壁(11a)の一部にはナト
リウムが溶融する温度以上の加熱時に両室を連通させる
ための連通孔(16)を開放する構成になっていることを
特徴とするナトリウム−硫黄電池。1. A sodium container (5) for containing sodium (Na) as a cathode active material, a sodium (Na) containing chamber (12) and an inert gas (G) containing chamber (1).
3) and the partition wall (11a), and a part of the partition wall (11a) is configured to open a communication hole (16) for communicating the two chambers at the time of heating above the melting temperature of sodium. Characteristic sodium-sulfur battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1020388A JPH0760700B2 (en) | 1989-01-30 | 1989-01-30 | Sodium-sulfur battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1020388A JPH0760700B2 (en) | 1989-01-30 | 1989-01-30 | Sodium-sulfur battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02199777A JPH02199777A (en) | 1990-08-08 |
JPH0760700B2 true JPH0760700B2 (en) | 1995-06-28 |
Family
ID=12025640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1020388A Expired - Lifetime JPH0760700B2 (en) | 1989-01-30 | 1989-01-30 | Sodium-sulfur battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0760700B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1558241A (en) * | 1977-05-18 | 1979-12-19 | Chloride Silent Power Ltd | Electrochemical cells employing an alkali metal and a solid electrolyte |
-
1989
- 1989-01-30 JP JP1020388A patent/JPH0760700B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02199777A (en) | 1990-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3982959A (en) | Sodium-sulphur battery cells | |
US4091188A (en) | Ultraminiature high energy density cell | |
US3960596A (en) | Battery casing and hermetically sealed sodium-sulfur battery | |
US4104448A (en) | Alkali metal-sulphur cells | |
EP3361549A1 (en) | Sodium-sulfur battery | |
JP3193319B2 (en) | Sodium-sulfur battery | |
JPH0760700B2 (en) | Sodium-sulfur battery | |
EP0389557B1 (en) | Improved alkali metal cell | |
US4027075A (en) | Sodium sulfur storage battery | |
US4656102A (en) | Electrochemical storage cell | |
US5354628A (en) | Hermetically sealed cell comprising liquid active material | |
JP3049151B2 (en) | Sodium-sulfur battery | |
US5197995A (en) | Method of making an alkali metal cell | |
KR960002926A (en) | Core tube for sodium-sulfur battery or sodium / nickel chloride battery and its manufacturing method | |
JP2708998B2 (en) | Sodium-sulfur battery | |
JPH11273718A (en) | Sodium filling method in sodium-sulfur battery | |
JP3253827B2 (en) | Cathode structure of sodium-sulfur battery and sodium-sulfur battery using the same | |
JPH0766831B2 (en) | Sodium-sulfur battery | |
JPH11273719A (en) | Manufacture of sodium-sulfur battery | |
JP2815312B2 (en) | Gas filling method in sodium-sulfur battery | |
JPH11329486A (en) | Sodium-sulfur battery | |
JP2644256B2 (en) | Sodium-sulfur battery | |
JP2003007289A (en) | Sodium negative electrode for sodium sulfur battery and manufacturing method therefor | |
JPH0917445A (en) | Sodium-sulfur battery and manufacture thereof | |
JPH0782877B2 (en) | Sodium-sulfur battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080628 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090628 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090628 Year of fee payment: 14 |