JPH11273719A - Manufacture of sodium-sulfur battery - Google Patents

Manufacture of sodium-sulfur battery

Info

Publication number
JPH11273719A
JPH11273719A JP10072633A JP7263398A JPH11273719A JP H11273719 A JPH11273719 A JP H11273719A JP 10072633 A JP10072633 A JP 10072633A JP 7263398 A JP7263398 A JP 7263398A JP H11273719 A JPH11273719 A JP H11273719A
Authority
JP
Japan
Prior art keywords
active material
electrode active
sodium
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10072633A
Other languages
Japanese (ja)
Inventor
Masayuki Fukagawa
雅幸 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10072633A priority Critical patent/JPH11273719A/en
Publication of JPH11273719A publication Critical patent/JPH11273719A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a sodium - sulfur battery capable of surely preventing oxidation of an active material and ensuring good performance without conducting complicated work. SOLUTION: When a negative active material 2 and a positive active material 3 are housed in a negative active material housing part A and a positive active material housing part B respectively, an oxygen adsorbent 17 for removing ambient oxygen by combining with the ambient oxygen, made of powder of titanium or zirconium for example, is put in the negative active material housing part A and the positive active material housing part B. Oxygen in the negative active material housing part A and the positive active material housing part B is removed with the oxygen adsorbent 17, and capacity drop caused by oxidation of the negative active material 2 and the positive active material 3 is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ナトリウム−硫黄
電池の製造方法に係り、特に、容量低下等の不都合を生
じることのないナトリウム−硫黄電池の製造方法に関す
るものである。
[0001] The present invention relates to a method for manufacturing a sodium-sulfur battery, and more particularly to a method for manufacturing a sodium-sulfur battery which does not cause a disadvantage such as a decrease in capacity.

【0002】[0002]

【従来の技術】まず、ナトリウム−硫黄電池を図面を参
照して説明する。図5(a)及び図5(b)に示す円筒
形のナトリウム−硫黄電池1には、ナトリウムからなる
負極活物質2と、硫黄からなる正極活物質3と、負極活
物質2と正極活物質3との間に配置された固体電解質4
と、正極活物質3を含浸して正極活物質3の電子伝導を
補助するための炭素繊維布からなる導電助材5と、正極
活物質3及び導電助材5と外部回路とを電気的に接続す
る正極集電体6とが備えられている。
2. Description of the Related Art First, a sodium-sulfur battery will be described with reference to the drawings. The cylindrical sodium-sulfur battery 1 shown in FIGS. 5A and 5B has a negative electrode active material 2 made of sodium, a positive electrode active material 3 made of sulfur, a negative electrode active material 2 and a positive electrode active material. 3 and a solid electrolyte 4 disposed between
A conductive auxiliary material 5 made of carbon fiber cloth for impregnating the positive electrode active material 3 to assist electron conduction of the positive electrode active material 3, and electrically connecting the positive electrode active material 3, the conductive auxiliary material 5, and an external circuit to each other. A positive electrode current collector 6 to be connected is provided.

【0003】図5(a)及び図5(b)においては、固
体電解質4は有底の円筒管4′であり、その材質はナト
リウムイオンに対して伝導性を有するセラミックスまた
はガラス等からなるものであって、例えばβ−アルミナ
(Na2O・11Al23)や、安定化剤としてMg
O、Li2O等が添加されたβ”−アルミナ(3Na2
・16Al23)等が用いられる。また、図5(a)及
び図5(b)においては、正極集電体6は円筒缶6′で
あり、その材質は例えばステンレス、Ni合金等が用い
られる。
In FIGS. 5 (a) and 5 (b), the solid electrolyte 4 is a bottomed cylindrical tube 4 'made of ceramics or glass having conductivity to sodium ions. For example, β-alumina (Na 2 O · 11Al 2 O 3 ) or Mg as a stabilizer
Β ″ -alumina (3Na 2 O) to which O, Li 2 O, etc. are added
.16Al 2 O 3 ). 5 (a) and 5 (b), the positive electrode current collector 6 is a cylindrical can 6 ', and its material is, for example, stainless steel, Ni alloy, or the like.

【0004】ナトリウム−硫黄電池1においては、負極
活物質2は、固体電解質4の円筒管4′に収納されてい
る。また、固体電解質4の円筒管4′は、正極集電体6
である円筒缶6′に収納されている。更に、正極活物質
3(硫黄)が含浸された炭素繊維布からなる導電助材5
は、円筒缶6′と固体電解質4の円筒管4′との間に配
置されている。このようにして、固体電解質4は、負極
活物質2と正極活物質3との間に配置されて、負極活物
質2と正極活物質3とを隔離している。つまり、負極活
物質2は、固体電解質4からなる円筒管4′内の負極活
物質収納部A内に収納され、また、正極活物質3は、円
筒管4′の外周側における正極集電体6からなる円筒缶
6′内の正極活物質収納部B内に収納されている。
[0004] In the sodium-sulfur battery 1, the negative electrode active material 2 is contained in a cylindrical tube 4 ′ of a solid electrolyte 4. The cylindrical tube 4 ′ of the solid electrolyte 4 is connected to the positive electrode current collector 6.
In a cylindrical can 6 '. Further, a conductive auxiliary material 5 made of carbon fiber cloth impregnated with the positive electrode active material 3 (sulfur)
Is disposed between the cylindrical can 6 ′ and the cylindrical tube 4 ′ of the solid electrolyte 4. In this manner, the solid electrolyte 4 is disposed between the negative electrode active material 2 and the positive electrode active material 3, and separates the negative electrode active material 2 from the positive electrode active material 3. That is, the negative electrode active material 2 is stored in the negative electrode active material storage portion A in the cylindrical tube 4 ′ made of the solid electrolyte 4, and the positive electrode active material 3 is stored in the positive electrode current collector on the outer peripheral side of the cylindrical tube 4 ′. 6 is housed in a positive electrode active material housing B in a cylindrical can 6 ′.

【0005】更に、固体電解質4の円筒管4′の上部に
は、ガラス半田等の接合材によりα−アルミナ等からな
る絶縁リング7が接合されている。絶縁リング7は円筒
缶6′に接合されて負極活物質2及び正極活物質3を密
封している。封口体8は、絶縁リング7に接合されてお
り、負極端子の役割を果たす。また、封口体8には、負
極集電体9が接続されている。負極集電体9は、負極活
物質2と負極端子である封口体8とを電気的に接続して
いる。
Further, an insulating ring 7 made of α-alumina or the like is joined to the upper portion of the cylindrical tube 4 ′ of the solid electrolyte 4 by a joining material such as glass solder. The insulating ring 7 is joined to the cylindrical can 6 ′ to seal the negative electrode active material 2 and the positive electrode active material 3. The sealing body 8 is joined to the insulating ring 7 and serves as a negative electrode terminal. Further, a negative electrode current collector 9 is connected to the sealing body 8. The negative electrode current collector 9 electrically connects the negative electrode active material 2 and the sealing member 8 as a negative electrode terminal.

【0006】このナトリウム−硫黄電池1の負極におけ
る放電反応は、式(1)に示す通りである。即ち、負極
活物質2であるナトリウム(Na)がナトリウムイオン
(Na+)と電子(e-)とに分かれ、ナトリウムイオン
(Na+)は固体電解質4内を伝導して正極活物質3中
に侵入し、電子(e-)は負極集電体9及び封口体8を
介して外部回路に流れる。正極における放電反応は、式
(2)に示す通りであり、正極活物質3中に侵入したナ
トリウムイオン(Na+)が硫黄(S)と反応して、多
硫化ナトリウム(Na2x)を生成する。
The discharge reaction at the negative electrode of the sodium-sulfur battery 1 is as shown in equation (1). That is, sodium (Na), which is the negative electrode active material 2, is divided into sodium ions (Na + ) and electrons (e ), and the sodium ions (Na + ) conduct in the solid electrolyte 4 and enter the positive electrode active material 3. invading electrons (e -) flows in the external circuit via the negative electrode current collector 9 and the sealing member 8. The discharge reaction at the positive electrode is as shown in equation (2). Sodium ions (Na + ) that have entered the positive electrode active material 3 react with sulfur (S) to convert sodium polysulfide (Na 2 S x ). Generate.

【0007】ナトリウム−硫黄電池1の充電時には、放
電反応と逆の反応が起こり、ナトリウム(Na)および
硫黄(S)が生成する。通常は、多硫化ナトリウム(N
2x)の一部が残留する程度まで充電する。これは、
硫黄(S)よりも多硫化ナトリウム(Na2x)の固有
抵抗が低いために、多硫化ナトリウム(Na2x)を残
存させておけば正極活物質の抵抗の上昇を抑えることが
できるからである。
[0007] When charging the sodium-sulfur battery 1, a reaction reverse to the discharge reaction occurs, and sodium (Na) and sulfur (S) are generated. Usually, sodium polysulfide (N
a 2 S x ) is charged to the extent that a portion thereof remains. this is,
Since the specific resistance of sodium polysulfide (Na 2 S x ) is lower than that of sulfur (S), an increase in the resistance of the positive electrode active material can be suppressed by leaving sodium polysulfide (Na 2 S x ). Because.

【0008】[0008]

【数1】 (Equation 1)

【0009】[0009]

【数2】 (Equation 2)

【0010】[0010]

【発明が解決しようとする課題】ところで、上記ナトリ
ウム−硫黄電池1の製造工程において、負極活物質2及
び正極活物質3がそれぞれ収納される負極活物質収納部
A及び正極活物質収納部B内に酸素が混入していると、
これら負極活物質2及び正極活物質3が酸化してしま
い、特に、負極活物質2であるナトリウムが酸化して酸
化ナトリウムが生成されると、容量低下などの原因とな
ってしまう。このため、これら負極活物質2及び正極活
物質3を各収納部A、Bへ収納する際には、アルゴンガ
ス等の不活性ガスによって収納部A、B内をパージしな
ければならず、その作業に多大な手間を要してしまい、
電池の製造期間の長期化及びコストアップを招いてしま
うという問題があった。
By the way, in the manufacturing process of the above-mentioned sodium-sulfur battery 1, in the negative electrode active material storage portion A and the positive electrode active material storage portion B in which the negative electrode active material 2 and the positive electrode active material 3 are stored, respectively. If oxygen is mixed in
The negative electrode active material 2 and the positive electrode active material 3 are oxidized. In particular, when sodium as the negative electrode active material 2 is oxidized to generate sodium oxide, it causes a decrease in capacity and the like. For this reason, when storing the negative electrode active material 2 and the positive electrode active material 3 in the storage sections A and B, the storage sections A and B must be purged with an inert gas such as argon gas. It takes a lot of time to work,
There has been a problem that the production period of the battery is lengthened and the cost is increased.

【0011】この発明は、上記事情に鑑みてなされたも
ので、極めて容易に優れた性能のナトリウム−硫黄電池
を短期間にてかつ低コストにて製造することが可能なナ
トリウム−硫黄電池の製造方法を提供することを目的と
している。
The present invention has been made in view of the above circumstances, and is a method for manufacturing a sodium-sulfur battery capable of extremely easily manufacturing a high-performance sodium-sulfur battery in a short period of time and at low cost. It is intended to provide a way.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載のナトリウム−硫黄電池の製造方法
は、少なくともナトリウムを含む負極活物質と、少なく
とも硫黄を含む正極活物質と、前記負極活物質と前記正
極活物質との間に位置してナトリウムイオンに対して伝
導性を有する固体電解質とを有するナトリウム−硫黄電
池の製造方法であって、前記負極活物質及び前記正極活
物質を収納する際に、これら負極活物質及び正極活物質
が収納される収納部の両方あるいは少なくともいずれか
一方に、酸素を吸着する酸素吸着材を投入することを特
徴としている。つまり、収納部へ負極活物質及び正極活
物質を収納する際に、収納部の両方あるいは少なくとも
いずれか一方に、酸素を吸着する酸素吸着材を投入する
ので、この酸素吸着材が投入された収納部内の酸素が確
実に除去される。
According to a first aspect of the present invention, there is provided a method for manufacturing a sodium-sulfur battery, comprising: a negative electrode active material containing at least sodium; a positive electrode active material containing at least sulfur; A method for producing a sodium-sulfur battery having a solid electrolyte having conductivity for sodium ions located between a negative electrode active material and the positive electrode active material, wherein the negative electrode active material and the positive electrode active material are At the time of storage, an oxygen adsorbent that adsorbs oxygen is introduced into both or at least one of the storage sections in which the negative electrode active material and the positive electrode active material are stored. In other words, when the negative electrode active material and the positive electrode active material are stored in the storage section, an oxygen adsorbent for adsorbing oxygen is charged into both or at least one of the storage sections. Oxygen in the section is reliably removed.

【0013】[0013]

【発明の実施の形態】以下、本発明のナトリウム−硫黄
電池の製造方法を図によって説明する。図1において、
符号11は、本実施の形態のナトリウム−硫黄電池であ
る。このナトリウム−硫黄電池11は、円筒管4′内の
負極活物質収納部Aに設けられた負極集電体9が、有底
円筒状に形成された負極円筒体9′とされており、その
上端が前記封口体8に接続されている。この有底円筒状
に形成された負極円筒体9′の底板部分には、その中心
に孔部12が形成されており、これにより、この負極円
筒体9′の内部と固体電解質4からなる円筒管4′内と
が連通されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a sodium-sulfur battery according to the present invention will be described below with reference to the drawings. In FIG.
Reference numeral 11 denotes a sodium-sulfur battery of the present embodiment. In this sodium-sulfur battery 11, the negative electrode current collector 9 provided in the negative electrode active material storage section A in the cylindrical tube 4 'is a negative electrode cylindrical body 9' formed in a bottomed cylindrical shape. The upper end is connected to the sealing body 8. A hole 12 is formed at the center of the bottom plate portion of the negative electrode cylindrical body 9 ′ formed in a bottomed cylindrical shape, whereby a cylinder composed of the inside of the negative electrode cylindrical body 9 ′ and the solid electrolyte 4 is formed. The inside of the pipe 4 'is communicated.

【0014】そして、この負極円筒体9′の内部及び負
極円筒体9′と円筒管4′との隙間、つまり、負極活物
質収納部Aに、ナトリウムからなる負極活物質2が充填
されて収納されている。また、封口体8には、その中心
に、前記負極円筒体9′の内径と略同一径の開口部13
が形成されており、この開口部13は、封口体8の上部
から固定された蓋体14によって封鎖されている。
The inside of the negative electrode cylinder 9 'and the gap between the negative electrode cylinder 9' and the cylindrical tube 4 ', that is, the negative electrode active material storage portion A is filled with the negative electrode active material 2 made of sodium and stored. Have been. The sealing member 8 has, at its center, an opening 13 having substantially the same diameter as the inner diameter of the negative electrode cylinder 9 ′.
The opening 13 is closed by a lid 14 fixed from above the sealing body 8.

【0015】次に、上記構成のナトリウム−硫黄電池1
1の製造方法をその手順に沿って説明する。 (1)まず、液状の硫黄からなる正極活物質3を含浸さ
せた後正極活物質3を固化させた導電助材5を円筒缶
6′内に収納し、この導電助材5内へ円筒管4′を挿入
し、円筒管4′内へ負極円筒体9′を挿入するととも
に、円筒管4′の上端外周に固定した絶縁リング7と円
筒缶6′の上端及び絶縁リング7と封口体8とを、ガラ
ス半田等の接合材を用いて熱圧接合する。このようにす
ると、正極活物質3が含浸された導電助材5が収納され
た円筒管4′の外周側における円筒缶6′内の正極活物
質収納部Bが封鎖され、また、円筒管4′内の所定位置
に、負極円筒体9′が配置された状態に封口体8が取り
付けられて、図2に示す状態とされる。ここで、導電助
材5に含浸された正極活物質3が収納される正極活物質
収納部Bには、この正極活物質収納部Bを封鎖する直前
に、酸素吸着材17を投入する。この酸素吸着材17
は、周囲の酸素と結合することによりその周囲における
酸素を除去する、例えば、酸素と結合して酸化物となる
チタンあるいはジルコニウム等の粉末である。
Next, the sodium-sulfur battery 1 having the above structure
The first manufacturing method will be described along the procedure. (1) First, a conductive auxiliary material 5 in which a positive electrode active material 3 made of liquid sulfur is impregnated and then solidified is stored in a cylindrical can 6 ′, and a cylindrical tube is inserted into the conductive auxiliary material 5. 4 ', the negative electrode cylinder 9' is inserted into the cylindrical tube 4 ', and the insulating ring 7 fixed to the outer periphery of the upper end of the cylindrical tube 4', the upper end of the cylindrical can 6 ', the insulating ring 7 and the sealing member 8 Are thermally and pressure-bonded using a bonding material such as glass solder. In this way, the positive electrode active material storage portion B in the cylindrical can 6 'on the outer peripheral side of the cylindrical tube 4' in which the conductive auxiliary material 5 impregnated with the positive electrode active material 3 is stored is closed. The sealing body 8 is attached in a state where the negative electrode cylindrical body 9 'is arranged at a predetermined position in the space shown in FIG. Here, the oxygen adsorbent 17 is charged into the positive electrode active material storage section B in which the positive electrode active material 3 impregnated in the conductive auxiliary material 5 is stored, just before the positive electrode active material storage section B is closed. This oxygen adsorbent 17
Is a powder such as titanium or zirconium, which combines with oxygen in the surroundings to remove the oxygen in the surroundings, for example, becomes an oxide by combining with oxygen.

【0016】(2)次いで、図3に示すように、封口体
8の開口部13に、ナトリウム容器15の吐出口16を
接続する。このナトリウム容器15は、その吐出口16
が、封口体8の開口部13と略同一径とされており、そ
の内部には、固形ナトリウム2′が収納されている。 (3)封口体8の開口部13へナトリウム容器15の吐
出口16を接続した状態にて、ナトリウム容器15内の
固形ナトリウム2′を吐出口16から押し出す。このよ
うにすると、図4に示すように、ナトリウム容器15の
吐出口16から押し出された固形ナトリウム2′が封口
体8の開口部13を介して負極活物質収納部Aに配置さ
れた負極円筒体9′の内部へ入り込む。
(2) Next, as shown in FIG. 3, the discharge port 16 of the sodium container 15 is connected to the opening 13 of the sealing body 8. This sodium container 15 has an outlet 16
Has a diameter substantially the same as that of the opening 13 of the sealing body 8, and contains therein solid sodium 2 ′. (3) With the discharge port 16 of the sodium container 15 connected to the opening 13 of the sealing body 8, the solid sodium 2 ′ in the sodium container 15 is pushed out from the discharge port 16. In this manner, as shown in FIG. 4, the solid sodium 2 ′ extruded from the discharge port 16 of the sodium container 15 is placed in the negative electrode active material accommodating section A through the opening 13 of the sealing body 8. It gets inside the body 9 '.

【0017】(4)所定量の固形ナトリウム2′を負極
活物質収納部A内の負極円筒体9′内へ充填して収納し
たら、封口体8の開口部13に蓋体14を取り付け、負
極活物質収納部Aを封鎖する(図4参照)。ここで、固
形ナトリウム2′が収納される負極活物質収納部Aに
は、負極活物質Aを蓋体14によって封鎖する直前に、
前述したように、酸素吸着材17を投入する。この酸素
吸着材17としては、前記同様、周囲の酸素と結合す
る、例えば、酸素と結合して酸化物となるチタンあるい
はジルコニウム等の粉末が用いられる。なお、この負極
活物質収納部Aへの酸素吸着材17の投入量としては、
負極活物質収納部A内の酸素を十分に吸着することがで
き、しかも収納されるナトリウムの容量低下等の不都合
を生じることのない量(負極活物質収納部A内に充填さ
れるナトリウム量の約5〜15%程度)が好ましい。
(4) After a predetermined amount of solid sodium 2 'is filled and stored in the negative electrode cylindrical body 9' in the negative electrode active material storage section A, the lid 14 is attached to the opening 13 of the sealing body 8, The active material storage section A is closed (see FIG. 4). Here, in the negative electrode active material storage section A in which the solid sodium 2 ′ is stored, immediately before the negative electrode active material A is closed by the lid 14,
As described above, the oxygen adsorbent 17 is charged. As described above, as the oxygen adsorbing material 17, a powder such as titanium or zirconium which binds to the surrounding oxygen, for example, becomes an oxide by binding to oxygen is used. The amount of the oxygen adsorbent 17 charged into the negative electrode active material storage section A is as follows.
An amount capable of sufficiently adsorbing oxygen in the negative electrode active material storage part A and causing no inconvenience such as a decrease in the capacity of the stored sodium (the amount of sodium filled in the negative electrode active material storage part A). About 5 to 15%) is preferable.

【0018】(5)次に、ナトリウムの融点(約80
℃)以上に加熱するとともに、蓋体14に設けられた調
整孔から加圧する。このようにすると、負極円筒体9′
内の固形ナトリウム2′が液状化して負極円筒体9′の
底板部分の孔部12から負極円筒体9′の外部へ流出
し、この負極円筒体9′と円筒管4′との隙間へ入り込
み、負極活物質収納部Aへのナトリウムの充填が完了す
る(図1参照)。ここで、負極活物質収納部A及び正極
活物質収納部Bへ投入した酸素吸着材17は、それぞれ
負極活物質2及び正極活物質3に拡散し、これにより、
負極活物質収納部A及び正極活物質収納部B内の酸素が
除去され、酸素による容量低下等の不都合が確実に取り
除かれる。
(5) Next, the melting point of sodium (about 80
(° C.) or more, and pressurize through an adjustment hole provided in the lid 14. In this way, the negative electrode cylinder 9 '
The solid sodium 2 'in the inside liquefies and flows out of the hole 12 in the bottom plate portion of the negative electrode cylinder 9' to the outside of the negative electrode cylinder 9 'and enters the gap between the negative electrode cylinder 9' and the cylindrical tube 4 '. Then, the filling of the negative electrode active material container A with sodium is completed (see FIG. 1). Here, the oxygen adsorbent 17 charged into the negative electrode active material storage part A and the positive electrode active material storage part B diffuses into the negative electrode active material 2 and the positive electrode active material 3, respectively.
Oxygen in the negative electrode active material storage section A and the positive electrode active material storage section B is removed, and disadvantages such as a decrease in capacity due to oxygen are reliably removed.

【0019】このように、本実施の形態のナトリウム−
硫黄電池の製造方法によれば、負極活物質収納部A及び
正極活物質収納部Bへ負極活物質2及び正極活物質3を
収納する際に、負極活物質収納部A及び正極活物質収納
部Bへ、周囲の酸素と結合することによりその周囲にお
ける酸素を除去する、例えば、チタンあるいはジルコニ
ウム等の粉末からなる酸素吸着材17を投入するので、
前述したように、負極活物質収納部A及び正極活物質収
納部B内の酸素を確実に除去することができる。これに
より、負極活物質収納部A及び正極活物質収納部B内に
混入した酸素による負極活物質2及び正極活物質3の酸
化を確実に防止することができ、特に、負極活物質2で
あるナトリウムが酸化して酸化ナトリウムが生成される
ことによる容量低下が確実に防止されて安定した充放電
性能が得られた電池を製造することができる。
As described above, the sodium-
According to the method for manufacturing a sulfur battery, when the negative electrode active material 2 and the positive electrode active material 3 are stored in the negative electrode active material storage A and the positive electrode active material storage B, the negative electrode active material storage A and the positive electrode active material storage B, the oxygen adsorbent 17 made of a powder such as titanium or zirconium, for example, is added to remove oxygen in the surroundings by combining with the surrounding oxygen.
As described above, oxygen in the negative electrode active material storage section A and the positive electrode active material storage section B can be reliably removed. Thereby, the oxidation of the negative electrode active material 2 and the positive electrode active material 3 by the oxygen mixed in the negative electrode active material storage part A and the positive electrode active material storage part B can be reliably prevented. It is possible to manufacture a battery in which a reduction in capacity due to oxidation of sodium to generate sodium oxide is reliably prevented, and stable charge / discharge performance is obtained.

【0020】また、単に、負極活物質収納部A及び正極
活物質収納部Bへ酸素吸着材17を投入する作業を行う
だけで良いので、従来のように、アルゴンガス等の不活
性ガスによって負極活物質収納部A及び正極活物質収納
部B内をパージするような煩雑な作業を不要とすること
ができ、これにより、電池の製造期間の短縮及び製造コ
ストの低減を図ることができる。
Further, since it is only necessary to simply perform the operation of charging the oxygen adsorbing material 17 into the negative electrode active material storage section A and the positive electrode active material storage section B, as in the conventional case, the negative electrode is inert gas such as argon gas. Complicated work such as purging the active material storage section A and the positive electrode active material storage section B can be eliminated, thereby shortening the manufacturing period of the battery and reducing the manufacturing cost.

【0021】なお、上記実施の形態のナトリウム−硫黄
電池の製造方法は、上記構造のナトリウム−硫黄電池1
1に限らず、例えば、円筒管4′の外周側の空間が、負
極活物質2が収納される負極活物質収納部Aとされ、円
筒管4′の内部が、正極活物質3が収納される正極活物
質収納部Bとされた構造のナトリウム−硫黄電池を製造
する場合にも適応することができるのは勿論である。ま
た、負極活物質収納部A及び正極活物質収納部Bへ投入
する酸素吸着材17としては、粉末に限らず棒状であっ
ても良い。なおまた、各収納部A、Bへの負極活物質
2、正極活物質3の充填の仕方としては、上記の例に限
定されることはなく、例えば、液状のナトリウムを負極
収納部Aへ充填するような充填方法であっても良い。ま
た、酸素吸着材17は、負極活物質収納部A及び正極活
物質収納部Bへそれぞれ負極活物質2及び正極活物質3
を収納させる前に投入しても良い。
The method for manufacturing the sodium-sulfur battery according to the above-described embodiment uses the sodium-sulfur battery 1 having the above structure.
For example, the space on the outer peripheral side of the cylindrical tube 4 ′ is a negative electrode active material storage portion A in which the negative electrode active material 2 is stored, and the inside of the cylindrical tube 4 ′ stores the positive electrode active material 3. Needless to say, the present invention can be applied to the case of manufacturing a sodium-sulfur battery having a structure in which the positive electrode active material storage portion B is used. Further, the oxygen adsorbing material 17 to be charged into the negative electrode active material storage part A and the positive electrode active material storage part B is not limited to powder, but may be rod-shaped. In addition, the method of filling the negative electrode active material 2 and the positive electrode active material 3 into each of the storage sections A and B is not limited to the above example. For example, liquid sodium is charged into the negative electrode storage section A. The filling method may be as follows. Further, the oxygen adsorbing material 17 transfers the negative electrode active material 2 and the positive electrode active material 3 to the negative electrode active material storage portion A and the positive electrode active material
May be put in before storing.

【0022】[0022]

【発明の効果】以上、説明したように、本発明のナトリ
ウム−硫黄電池の製造方法によれば、下記の効果を得る
ことができる。請求項1記載のナトリウム−硫黄電池の
製造方法によれば、収納部へ負極活物質及び正極活物質
を収納する際に、収納部の両方あるいは少なくともいず
れか一方に、酸素を吸着する酸素吸着材を投入するの
で、この酸素吸着材が投入された収納部内の酸素を確実
に除去することができる。これにより、収納部内に混入
した酸素による活物質の酸化を確実に防止することがで
き活物質の酸化による容量低下が確実に防止されて安定
した充放電性能が得られた電池を製造することができ
る。また、単に、収納部へ酸素吸着材を投入する作業を
行うだけで良いので、従来のように、アルゴンガス等の
不活性ガスによって収納部内をパージするような煩雑な
作業を不要とすることができ、これにより、電池の製造
期間の短縮及び製造コストの低減を図ることができる。
As described above, according to the method for manufacturing a sodium-sulfur battery of the present invention, the following effects can be obtained. According to the method for manufacturing a sodium-sulfur battery according to claim 1, when storing the negative electrode active material and the positive electrode active material in the storage section, an oxygen adsorbent that adsorbs oxygen to both or at least one of the storage sections. , The oxygen in the storage section into which the oxygen adsorbent has been charged can be reliably removed. This makes it possible to reliably prevent the oxidation of the active material due to the oxygen mixed in the storage portion, and to reliably manufacture the battery in which the capacity reduction due to the oxidation of the active material is prevented and stable charge / discharge performance is obtained. it can. In addition, since it is sufficient to simply perform the operation of charging the oxygen adsorbent into the storage unit, it is not necessary to perform a complicated operation of purging the storage unit with an inert gas such as argon gas as in the related art. As a result, the manufacturing period of the battery and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態のナトリウム−硫黄電池
の製造方法を説明するナトリウム−硫黄電池の縦断面図
である。
FIG. 1 is a longitudinal sectional view of a sodium-sulfur battery explaining a method for manufacturing a sodium-sulfur battery according to an embodiment of the present invention.

【図2】 本発明の実施の形態のナトリウム−硫黄電池
の製造方法を説明する固形ナトリウムの充填前のナトリ
ウム−硫黄電池の縦断面図である。
FIG. 2 is a longitudinal sectional view of a sodium-sulfur battery before filling with solid sodium, illustrating a method for manufacturing a sodium-sulfur battery according to an embodiment of the present invention.

【図3】 本発明の実施の形態のナトリウム−硫黄電池
の製造方法を説明する固形ナトリウムの充填作業中のナ
トリウム−硫黄電池の縦断面図である。
FIG. 3 is a vertical cross-sectional view of the sodium-sulfur battery during a filling operation of solid sodium for explaining the method of manufacturing the sodium-sulfur battery according to the embodiment of the present invention.

【図4】 本発明の実施の形態のナトリウム−硫黄電池
の製造方法を説明する固形ナトリウムが充填されたナト
リウム−硫黄電池の縦断面図である。
FIG. 4 is a longitudinal sectional view of a sodium-sulfur battery filled with solid sodium, illustrating a method for manufacturing a sodium-sulfur battery according to an embodiment of the present invention.

【図5】 ナトリウム−硫黄電池の構成及び構造を示す
図であって、(a)はナトリウム−硫黄電池の縦断面図
であり、(b)はナトリウム−硫黄電池の横断面図であ
る。
5A and 5B are diagrams showing a configuration and a structure of a sodium-sulfur battery, wherein FIG. 5A is a longitudinal sectional view of the sodium-sulfur battery, and FIG. 5B is a transverse sectional view of the sodium-sulfur battery.

【符号の説明】[Explanation of symbols]

2 負極活物質(ナトリウム) 3 正極活物質 4 固体電解質 11 ナトリウム−硫黄電池 17 酸素吸着材 A 負極活物質収納部(収納部) B 正極活物質収納部(収納部) 2 negative electrode active material (sodium) 3 positive electrode active material 4 solid electrolyte 11 sodium-sulfur battery 17 oxygen adsorbent A negative electrode active material storage section (storage section) B positive electrode active material storage section (storage section)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくともナトリウムを含む負極活物質
と、少なくとも硫黄を含む正極活物質と、前記負極活物
質と前記正極活物質との間に位置してナトリウムイオン
に対して伝導性を有する固体電解質とを有するナトリウ
ム−硫黄電池の製造方法であって、 前記負極活物質及び前記正極活物質を収納する際に、こ
れら負極活物質及び正極活物質が収納される収納部の両
方あるいは少なくともいずれか一方に、酸素を吸着する
酸素吸着材を投入することを特徴とするナトリウム−硫
黄電池の製造方法。
1. A negative electrode active material containing at least sodium, a positive electrode active material containing at least sulfur, and a solid electrolyte located between the negative electrode active material and the positive electrode active material and having conductivity for sodium ions. A method for manufacturing a sodium-sulfur battery having: wherein, when the negative electrode active material and the positive electrode active material are stored, both or at least one of the storage units in which the negative electrode active material and the positive electrode active material are stored A method for producing a sodium-sulfur battery, characterized in that an oxygen adsorbent for adsorbing oxygen is introduced into the device.
JP10072633A 1998-03-20 1998-03-20 Manufacture of sodium-sulfur battery Pending JPH11273719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10072633A JPH11273719A (en) 1998-03-20 1998-03-20 Manufacture of sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10072633A JPH11273719A (en) 1998-03-20 1998-03-20 Manufacture of sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPH11273719A true JPH11273719A (en) 1999-10-08

Family

ID=13494998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10072633A Pending JPH11273719A (en) 1998-03-20 1998-03-20 Manufacture of sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH11273719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092856A (en) * 2008-10-07 2010-04-22 General Electric Co <Ge> Energy storage device and associated method
JP2014239025A (en) * 2013-05-07 2014-12-18 株式会社神戸製鋼所 Positive electrode container for sodium-sulfur battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092856A (en) * 2008-10-07 2010-04-22 General Electric Co <Ge> Energy storage device and associated method
JP2014239025A (en) * 2013-05-07 2014-12-18 株式会社神戸製鋼所 Positive electrode container for sodium-sulfur battery

Similar Documents

Publication Publication Date Title
US3870561A (en) Electric accumulator
JP3172201B2 (en) Rechargeable high temperature electrochemical power storage battery
US5019466A (en) Electrochemical cell
US3982959A (en) Sodium-sulphur battery cells
US4517736A (en) Method of fabrication of an electrochemical cell
JPH11273719A (en) Manufacture of sodium-sulfur battery
JPH11273718A (en) Sodium filling method in sodium-sulfur battery
JP4975202B2 (en) Non-aqueous electrolyte battery
JP2013041825A (en) Energy storage device and associated method
JP2000058033A5 (en)
JP2002184456A (en) Sodium-sulfur battery
CA2432255A1 (en) Electrode system for a metal halide lamp, and associated lamp
JP3477364B2 (en) Sodium-sulfur battery
JP3091890B2 (en) Sodium / molten salt battery
JPH0760700B2 (en) Sodium-sulfur battery
JPH06104009A (en) Sealed secondary battery
JP3253827B2 (en) Cathode structure of sodium-sulfur battery and sodium-sulfur battery using the same
JPH06104008A (en) Sealed secondary battery
JP2002343422A (en) Sodium secondary battery and manufacturing method therefor
JP2001223019A (en) Manufacturing method of sodium battery
JP2016066582A (en) Metal-air battery
AU2020338256A1 (en) Electrochemical energy storage device
JPH11214031A (en) Manufacture of sodium-sulfur battery
JP2635989B2 (en) Sodium-sulfur battery
JPH06223873A (en) Negative electrode chamber of sodium-sulfur battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125