JP2016066582A - Metal-air battery - Google Patents

Metal-air battery Download PDF

Info

Publication number
JP2016066582A
JP2016066582A JP2015047826A JP2015047826A JP2016066582A JP 2016066582 A JP2016066582 A JP 2016066582A JP 2015047826 A JP2015047826 A JP 2015047826A JP 2015047826 A JP2015047826 A JP 2015047826A JP 2016066582 A JP2016066582 A JP 2016066582A
Authority
JP
Japan
Prior art keywords
reaction product
negative electrode
product recovery
metal
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015047826A
Other languages
Japanese (ja)
Inventor
達郎 永山
Tatsuro Nagayama
達郎 永山
貴博 中野
Takahiro Nakano
貴博 中野
健司 和田
Kenji Wada
健司 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JP2016066582A publication Critical patent/JP2016066582A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a long life metal-air battery which efficiently uses a negative electrode material.SOLUTION: A metal-air battery includes: a negative electrode 1 including at least a metal which may be ionized to be eluted in an electrolytic solution 2; a positive electrode 3 which is disposed so as to contact with the electrolytic solution 2; and a holding member including a conductive part which contacts with the negative electrode 1 to hold the negative electrode 1 at a position where the negative electrode 1 is not exposed from an interface between the electrolytic solution 2 and a gas phase.SELECTED DRAWING: Figure 1

Description

本発明は、外部に電力供給可能な金属空気電池に関する。   The present invention relates to a metal-air battery capable of supplying power to the outside.

金属空気電池として、特許文献1が知られている。   Patent Document 1 is known as a metal-air battery.

特許文献1には、負極を構成する金属を負極活物質とし、かつ、正極と接触する空気中の酸素を正極活物質として使用する金属空気電池であって、該負極が、電解液と気相との界面から遠ざかるに従って、その厚みまたは幅が小さくなる構成が記載されている。特許文献1で解決しようとする課題は下記のとおりである。すなわち、例えば特許文献1の図1に記載されるように、負極が電解液と気相との界面から露出していると、電解液と気相との界面近傍で負極が消耗・破損してしまい、その部分より下方の負極が電解液中に落下して、負極として機能しなくなることがある。このような問題は、特にマグネシウム等の反応性が高い負極材料ほど顕著に発生する。特許文献1では、電解液と気相との界面から露出する部分の負極の幅または厚みを大きくすることで、負極の電解液中への落下を防ぐ方法を提案している。   Patent Document 1 discloses a metal-air battery in which a metal constituting a negative electrode is used as a negative electrode active material, and oxygen in air that is in contact with the positive electrode is used as a positive electrode active material. A configuration is described in which the thickness or width decreases as the distance from the interface increases. The problem to be solved in Patent Document 1 is as follows. That is, for example, as shown in FIG. 1 of Patent Document 1, when the negative electrode is exposed from the interface between the electrolyte and the gas phase, the negative electrode is consumed and damaged in the vicinity of the interface between the electrolyte and the gas phase. In other words, the negative electrode below the portion may fall into the electrolyte solution and not function as the negative electrode. Such a problem occurs more remarkably in a negative electrode material having higher reactivity, such as magnesium. Patent Document 1 proposes a method of preventing the negative electrode from falling into the electrolytic solution by increasing the width or thickness of the negative electrode exposed from the interface between the electrolytic solution and the gas phase.

特開2010−238644号公報JP 2010-238644 A

しかしながら、特許文献1では、電解液と気相との界面から露出した部分の負極のエネルギーを取り出すことができず、負極材料を効率よく利用できないという問題がある。   However, Patent Document 1 has a problem in that the energy of the negative electrode exposed from the interface between the electrolytic solution and the gas phase cannot be extracted, and the negative electrode material cannot be used efficiently.

そこで、本発明は、上記問題点に鑑みてなされたものであって、負極の電解液と気相との界面付近における消耗・破損を抑え、負極材料を効率よく利用可能な長寿命の金属空気電池を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and suppresses consumption and breakage in the vicinity of the interface between the electrolyte solution and the gas phase of the negative electrode, and the long-life metal air that can efficiently use the negative electrode material. An object is to provide a battery.

上記課題を解決するため、本発明は、イオン化して電解液に溶出可能な金属を少なくとも含む負極と、前記電解液に接触するように配置された正極と、前記電解液と気相との界面から前記負極が露出しない位置で前記負極に接触して保持可能な導電部を含む保持部材とを備える、金属空気電池の構成としている。   In order to solve the above problems, the present invention provides a negative electrode containing at least a metal that can be ionized and eluted into an electrolytic solution, a positive electrode disposed so as to be in contact with the electrolytic solution, and an interface between the electrolytic solution and a gas phase. And a holding member including a conductive portion that can be held in contact with the negative electrode at a position where the negative electrode is not exposed.

本発明によれば、負極材料を効率よく利用可能な長寿命の金属空気電池を実現することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to implement | achieve the long life metal air battery which can utilize negative electrode material efficiently.

実施の形態1の金属空気電池を側方から見たときの概略構成を模式的に示す要部断面図である。It is principal part sectional drawing which shows typically schematic structure when the metal air battery of Embodiment 1 is seen from the side. 図1に示した金属空気電池の負極1及び導電性保持部材4のみを示す要部斜視図であり、(a)は負極1の上方の中央部を単一の部材で部分的に狭持接合する構成を示す図であり、(b)は負極1の上方を複数の部材で部分的に狭持接合する構成を示す図であり、(c)は負極1の上方を全体的に単一の部材で狭持接合する構成を示す図である。It is a principal part perspective view which shows only the negative electrode 1 and the electroconductive holding member 4 of the metal-air battery shown in FIG. 1, (a) is a sandwiching part of the upper central part of the negative electrode 1 with a single member. (B) is a diagram showing a configuration in which the upper portion of the negative electrode 1 is partially sandwiched and joined by a plurality of members, and (c) is a diagram showing a single upper portion of the negative electrode 1 as a whole. It is a figure which shows the structure which carries out pinching joining by the member. 実施の形態2の金属空気電池を側方から見たときの概略構成を模式的に示す要部断面図である。It is principal part sectional drawing which shows typically schematic structure when the metal air battery of Embodiment 2 is seen from the side. 実施の形態3の金属空気電池を側方から見たときの概略構成を模式的に示す要部断面図である。It is principal part sectional drawing which shows typically schematic structure when the metal air battery of Embodiment 3 is seen from the side. 実施の形態4の金属空気電池を側方から見たときの概略構成を模式的に示す要部断面図である。It is principal part sectional drawing which shows typically schematic structure when the metal air battery of Embodiment 4 is seen from the side. 実施の形態5の金属空気電池を側方から見たときの概略構成を模式的に示す要部断面図である。It is principal part sectional drawing which shows typically schematic structure when the metal air battery of Embodiment 5 is seen from the side. 実施の形態6の金属空気電池を側方から見たときの概略構成を模式的に示す要部断面図である。It is principal part sectional drawing which shows typically schematic structure when the metal air battery of Embodiment 6 is seen from the side. 図7に示した金属空気電池の負極1及び導電性保持部材4のみを示す要部斜視図であり、(a)は導電性保持部材4の開口部41に負極1を嵌め込んでいない状態を示す図であり、(b)は導電性保持部材4の開口部41に負極1を嵌め込んだ状態を示す図である。It is a principal part perspective view which shows only the negative electrode 1 and the electroconductive holding member 4 of the metal air battery shown in FIG. 7, (a) is the state which has not inserted the negative electrode 1 in the opening part 41 of the electroconductive holding member 4. FIG. FIG. 4B is a diagram illustrating a state in which the negative electrode 1 is fitted in the opening 41 of the conductive holding member 4. 実施の形態6の金属空気電池の負極1及び導電性保持部材4のみを示す要部斜視図あって、図8示す構成とは別の構成を示す図である。FIG. 9 is a perspective view of a main part showing only a negative electrode 1 and a conductive holding member 4 of a metal-air battery according to a sixth embodiment, and shows a configuration different from the configuration shown in FIG. 実施の形態7の金属空気電池を側方から見たときの概略構成を模式的に示す要部断面図である。It is principal part sectional drawing which shows typically schematic structure when the metal air battery of Embodiment 7 is seen from the side. 実施の形態8の金属空気電池を側方から見たときの概略構成を模式的に示す要部断面図である。It is principal part sectional drawing which shows typically schematic structure when the metal air battery of Embodiment 8 is seen from the side. 実施の形態8の金属空気電池における反応生成物回収膜7と反応生成物回収膜用フレーム8の一形態の概略構成を模式的に示す要部分解斜視図である。FIG. 10 is an exploded perspective view of a main part schematically showing a schematic configuration of one form of a reaction product recovery membrane 7 and a reaction product recovery membrane frame 8 in a metal-air battery of an eighth embodiment. 実施の形態8の金属空気電池における反応生成物回収膜7と反応生成物回収膜用フレーム8の一形態の概略構成を模式的に示す要部分解斜視図である。FIG. 10 is an exploded perspective view of a main part schematically showing a schematic configuration of one form of a reaction product recovery membrane 7 and a reaction product recovery membrane frame 8 in a metal-air battery of an eighth embodiment. 実施の形態9の金属空気電池を側方から見たときの概略構成を模式体に示す要部断面図である。It is principal part sectional drawing which shows a schematic structure when the metal air battery of Embodiment 9 is seen from the side in a model body. 実施の形態10の金属空気電池を側方から見たときの概略構成を模式体に示す要部断面図である。It is principal part sectional drawing which shows a schematic structure when the metal air battery of Embodiment 10 is seen from the side in a model body. 実施の形態11の金属空気電池を側方から見たときの概略構成を模式体に示す要部断面図である。It is principal part sectional drawing which shows a schematic structure when the metal air battery of Embodiment 11 is seen from the side in a model body. 実施の形態12の金属空気電池を側方から見たときの概略構成を模式体に示す要部断面図である。It is principal part sectional drawing which shows a schematic structure when the metal air battery of Embodiment 12 is seen from the side. 実施の形態13の金属空気電池を側方から見たときの概略構成を模式体に示す要部断面図である。It is principal part sectional drawing which shows a schematic structure when the metal air battery of Embodiment 13 is seen from the side. 実施の形態14の金属空気電池を側方から見たときの概略構成を模式体に示す要部断面図である。It is principal part sectional drawing which shows a schematic structure when the metal air battery of Embodiment 14 is seen from the side. 実施の形態14の金属空気電池を側方から見たときの概略構成を模式体に示す要部断面図である。It is principal part sectional drawing which shows a schematic structure when the metal air battery of Embodiment 14 is seen from the side. 実施の形態15の金属空気電池における反応生成物回収膜7と反応生成物回収膜用フレーム8の一形態の概略構成を模式的に示す要部斜視図である。FIG. 22 is a perspective view schematically showing a main part of a schematic configuration of an embodiment of a reaction product recovery film 7 and a reaction product recovery film frame 8 in the metal-air battery according to the fifteenth embodiment.

以下に、本発明の実施形態について図面を参照して説明する。なお、これらの図面において、同一の参照符号は同一部分または相当部分を表すものとする。   Embodiments of the present invention will be described below with reference to the drawings. In these drawings, the same reference numerals represent the same or corresponding parts.

<実施の形態1>
図1は、実施の形態1の金属空気電池を側方から見たときの概略構成を示す要部断面図である。
<Embodiment 1>
FIG. 1 is a cross-sectional view of a main part showing a schematic configuration when the metal-air battery of Embodiment 1 is viewed from the side.

本実施形態の金属空気電池は、負極1と電解液2と正極3と負極1を保持する導電性保持部材4とが、容器5内に収納されて構成されている。なお、図1において、負極1の下端は容器5に接触していても構わない。また、図1において、正極3は容器5内で気相と接するように図示しているが、正極3は全て電解液2内に漬かっていても構わない。また、容器5は内部を密閉している必要はなく、容器5内に1つまたは複数の開口部があってもよい。   The metal-air battery of the present embodiment is configured such that a negative electrode 1, an electrolytic solution 2, a positive electrode 3, and a conductive holding member 4 that holds the negative electrode 1 are housed in a container 5. In FIG. 1, the lower end of the negative electrode 1 may be in contact with the container 5. In FIG. 1, the positive electrode 3 is shown in contact with the gas phase in the container 5, but the positive electrode 3 may be entirely immersed in the electrolytic solution 2. Further, the container 5 does not need to be sealed inside, and one or a plurality of openings may be provided in the container 5.

ここで、負極1は、電解液2に対してイオン化して溶解可能な金属を含むものであれば良い。より具体的には、例えば、電解液2に水を含む場合は、負極1は、標準電極電位が水素より卑な金属単体又は標準電極電位が水素より卑な元素を含む合金からなる負極活物質を含む。また、負極1には、電池特性および所望の特性を得るために、金属または非金属元素が添加されてもよい。なお、添加される金属または非金属元素は合金化して負極活物質として機能していてもよく、合金化していなくてもよい。場合によっては、負極は多孔質の材料や粉状材料で形成されていてもよく、負極の形状や表面状態は限定されない。   Here, the negative electrode 1 should just contain the metal which can be ionized and melt | dissolved with respect to the electrolyte solution 2. FIG. More specifically, for example, when water is included in the electrolytic solution 2, the negative electrode 1 is composed of a single metal whose standard electrode potential is lower than that of hydrogen or an anode active material made of an alloy including an element whose standard electrode potential is lower than that of hydrogen. including. Moreover, in order to obtain battery characteristics and desired characteristics, the negative electrode 1 may be added with a metal or a nonmetallic element. The added metal or nonmetallic element may be alloyed to function as a negative electrode active material, or may not be alloyed. In some cases, the negative electrode may be formed of a porous material or a powdery material, and the shape and surface state of the negative electrode are not limited.

標準電極電位が水素より卑な金属単体としては、例えばリチウム(Li)、カルシウム(Ca)、イットリウム(Y)、セリウム(Ce)、ネオジウム(Nd)、ベリリウム(Be)、ジルコニウム(Zr)、インジウム(In)、コバルト(Co)、ニッケル(Ni)、スズ(Sn)、鉛(Pb)、亜鉛(Zn)、鉄(Fe)、アルミニウム(Al)、マグネシウム(Mg)、マンガン(Mn)、ケイ素(Si)、チタン(Ti)、クロム(Cr)、バナジウム(V)などを挙げることができる。また、合金を適用することもできる。このような負極活物質は、一種のみを単独で用いてもよく、二種以上を併用してもよい。   Examples of simple metals whose standard electrode potential is lower than that of hydrogen include lithium (Li), calcium (Ca), yttrium (Y), cerium (Ce), neodymium (Nd), beryllium (Be), zirconium (Zr), and indium. (In), cobalt (Co), nickel (Ni), tin (Sn), lead (Pb), zinc (Zn), iron (Fe), aluminum (Al), magnesium (Mg), manganese (Mn), silicon (Si), titanium (Ti), chromium (Cr), vanadium (V), and the like. An alloy can also be applied. Such negative electrode active materials may be used alone or in combination of two or more.

なお、合金とは、一般に金属元素に一種以上の金属元素又は非金属元素を加えたものであって、金属的性質を持っているものの総称である。具体的には、上述の金属元素に一種以上の金属元素又は非金属元素を加えたものを挙げることができる。なお、合金の組織には、成分元素が共晶、共析、包晶、包析反応等を起こすことにより別個の結晶とのいわば混合状態にあるもの;成分元素が完全に溶け合い固溶体となっているもの;成分元素が金属間化合物又は金属と非金属との化合物を形成しているものなどがある。本実施形態ではいずれの合金組織であってもよい。しかしながら、これらに限定されるものではなく、金属空気電池に適用される従来公知の材料を用いることができる。   In general, an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties. Specifically, a material obtained by adding one or more metal elements or non-metal elements to the above metal element can be given. In the alloy structure, the component elements are in a mixed state with separate crystals by causing eutectic, eutectoid, peritectic, and peritectic reaction, etc .; the component elements are completely mixed to form a solid solution. There are those in which the constituent elements form an intermetallic compound or a compound of a metal and a nonmetal. In this embodiment, any alloy structure may be used. However, it is not limited to these, The conventionally well-known material applied to a metal air battery can be used.

本発明は、標準電極電位が水素より卑な金属単体の中で、とくに、反応性の高い金属単体に用いることが有効であり、たとえば、マグネシウム単体またはマグネシウム合金に用いることができる。マグネシウム合金とは、マグネシウム(Mg)を主成分とする合金、例えば、マグネシウムを50原子%以上含有する合金のことである。マグネシウム合金としては、例えば、Mg−Al系、Mg−Mn系、Mg−Zn系、Mg−Al−Mn系、Mg−Al−Mn−Ca系、Mg−Al−Zn−Ca系、Mg−Al−Zn系、Mg−Zn−Zr系などがある。さらに、マグネシウム合金には、Al、Ca、Zn、Mn、Si、Cu、Li、Na、K、Fe、Ni、Ti、Zr、Ce、Ga、Hgなどの元素を添加しても良い。   In the present invention, it is effective to use a single metal having a higher standard electrode potential than hydrogen, in particular, a highly reactive metal, for example, a single magnesium or a magnesium alloy. The magnesium alloy is an alloy containing magnesium (Mg) as a main component, for example, an alloy containing 50 atomic% or more of magnesium. Examples of magnesium alloys include Mg—Al, Mg—Mn, Mg—Zn, Mg—Al—Mn, Mg—Al—Mn—Ca, Mg—Al—Zn—Ca, and Mg—Al. -Zn-based, Mg-Zn-Zr-based, and the like. Furthermore, elements such as Al, Ca, Zn, Mn, Si, Cu, Li, Na, K, Fe, Ni, Ti, Zr, Ce, Ga, and Hg may be added to the magnesium alloy.

また、本発明は、亜鉛単体または亜鉛合金にも用いることができる。亜鉛合金とは、亜鉛(Zn)を主成分とする合金、例えば、Znを50原子%以上含有する合金のことである。亜鉛合金としては、Zn−Al系、Zn−Be系、Zn−C系、Zn−Ca系、Zn−Ce系、Zn−Cr系、Zn−Fe系、Zn−Ga系、Zn−Ge系、Zn−H系、Zn−In系、Zn−K系、Zn−Li系、Zn−Mg系、Zn−Mn系、Zn−N系、Zn−Na系、Zn−Ni系、Zn−O系、Zn−S系、Zn−Ti系、Zn−Zr系などがある。或いは、上述の2元系亜鉛合金を組み合わせた、3元系以上の亜鉛合金であっても良い。   Moreover, this invention can be used also for a zinc simple substance or a zinc alloy. The zinc alloy is an alloy containing zinc (Zn) as a main component, for example, an alloy containing 50 atomic% or more of Zn. Examples of the zinc alloy include Zn—Al, Zn—Be, Zn—C, Zn—Ca, Zn—Ce, Zn—Cr, Zn—Fe, Zn—Ga, Zn—Ge, Zn—H, Zn—In, Zn—K, Zn—Li, Zn—Mg, Zn—Mn, Zn—N, Zn—Na, Zn—Ni, Zn—O, There are a Zn-S system, a Zn-Ti system, a Zn-Zr system, and the like. Alternatively, a ternary or higher zinc alloy obtained by combining the above binary zinc alloys may be used.

電解液2は、例えば、塩化カリウム、塩化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、過炭酸ナトリウムなどの水溶液や非水溶液を適用することができる。このような水溶液や非水溶液は、一種のみを単独で用いてもよく、二種以上を併用してもよい。またはpH調整等の処理を行ってもよい。しかしながら、これらに限定されるものではなく、フッ化物の水溶液、ハロゲンを含む水溶液等や多価カルボン酸の水溶液等、金属空気電池に適用される従来公知の電解液を適用することができる。   As the electrolytic solution 2, for example, an aqueous solution or a non-aqueous solution of potassium chloride, sodium chloride, potassium hydroxide, sodium hydrogen carbonate, sodium percarbonate, or the like can be applied. Such an aqueous solution or non-aqueous solution may be used alone or in combination of two or more. Alternatively, treatment such as pH adjustment may be performed. However, the present invention is not limited to these, and conventionally known electrolytic solutions applicable to metal-air batteries, such as an aqueous solution of fluoride, an aqueous solution containing halogen, and an aqueous solution of polyvalent carboxylic acid, can be applied.

正極3は、空気に接して空気中の酸素に電子を供給する役割を有しているものであって、導電性を有する材料であれば特に制限されるものではなく、活性炭、炭素繊維、カーボンフェルトなどの炭素質材料や、鉄、銅などの金属材料等を用いることができる。正極3の材料としては、空気中の酸素との接触面積が大きく集電効率に優れているという観点から、炭素粉末を用いることが特に好ましい。また、正極3の材料の上に、酸素の還元反応を促進する触媒作用のある物質が存在していてもよい。なお、正極3の構成はこれらに限定されるものではなく、空気電池や水素燃料電池に適用される従来公知の正極を用いてもよい。   The positive electrode 3 has a role of supplying electrons to oxygen in the air in contact with air, and is not particularly limited as long as it is a conductive material. Activated carbon, carbon fiber, carbon Carbonaceous materials such as felt and metal materials such as iron and copper can be used. As the material of the positive electrode 3, it is particularly preferable to use carbon powder from the viewpoint of a large contact area with oxygen in the air and excellent current collection efficiency. In addition, a substance having a catalytic action for promoting a reduction reaction of oxygen may be present on the material of the positive electrode 3. In addition, the structure of the positive electrode 3 is not limited to these, You may use the conventionally well-known positive electrode applied to an air cell or a hydrogen fuel cell.

導電性保持部材4は、電解液2の界面から負極1が露出しない位置で負極1に接触して保持可能な導電性材料からなる導電部を含むものである。導電性保持部材4が負極1に接触する導電部を含むので、負極1と導電性保持部材4とが電気的に接続されることになる。   The conductive holding member 4 includes a conductive portion made of a conductive material that can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface of the electrolytic solution 2. Since the conductive holding member 4 includes a conductive portion that contacts the negative electrode 1, the negative electrode 1 and the conductive holding member 4 are electrically connected.

したがって、例えば、正極3と導電性保持部材4とに配線を施して、外部回路に接続すれば、その外部回路に電力を供給することができる。   Therefore, for example, if the positive electrode 3 and the conductive holding member 4 are wired and connected to an external circuit, power can be supplied to the external circuit.

導電性保持部材4は、導電性材料から構成される導電部のみで構成されていてもよく、また、導電性材料から構成される導電部と絶縁材料から構成される絶縁部から構成されていてもよい。なお、導電性保持部材4が導電部と絶縁部から構成される場合は、導電部のみで負極1を保持可能である必要はなく、導電部と絶縁部を合わせた構造として負極1を保持可能であってもよい。   The conductive holding member 4 may be composed of only a conductive portion made of a conductive material, or a conductive portion made of a conductive material and an insulating portion made of an insulating material. Also good. When the conductive holding member 4 is composed of a conductive portion and an insulating portion, the negative electrode 1 need not be held only by the conductive portion, and the negative electrode 1 can be held as a structure in which the conductive portion and the insulating portion are combined. It may be.

導電性保持部材4の導電部に適用適当可能な導電性材料としては、一般的な導電性材料を用いることができ、銅および銅合金、アルミニウムおよびアルミニウム合金、鉄および鉄合金、銀および銀合金、金および金合金、ニッケルおよびニッケル合金、チタニウムおよびチタニウム合金が特に好ましい。また、このような導電性材料は一種のみを単独で用いてもよく、二種以上を併用してもよい。   As a conductive material applicable to the conductive portion of the conductive holding member 4, a general conductive material can be used, such as copper and copper alloy, aluminum and aluminum alloy, iron and iron alloy, silver and silver alloy. Gold and gold alloys, nickel and nickel alloys, titanium and titanium alloys are particularly preferred. Moreover, such a conductive material may be used alone or in combination of two or more.

導電性保持部材4の絶縁部に適用可能な材料としては、一般的な絶縁材料を用いることができ、とくに、プラスチック材料、セラミックス材料、ガラス材料、合成樹脂材料、木材、ゴム材、高分子材料等を用いることができる。   As a material applicable to the insulating portion of the conductive holding member 4, a general insulating material can be used, and in particular, a plastic material, a ceramic material, a glass material, a synthetic resin material, a wood, a rubber material, and a polymer material. Etc. can be used.

本実施の形態においては、導電性保持部材4は負極1の上方を挟持、上方を接合、または上方を挟持かつ接合することにより保持する構成としている。より具体的には、導電性保持部材4としては、例えば、図1に示した金属空気電池の負極1及び導電性保持部材4のみを示す要部斜視図である図2に示すように、負極1の上方の中央部を単一の部材で部分的に狭持接合する構成(図2(a))、負極1の上方を複数の部材で部分的に狭持、接合または狭持接合する構成(図2(b))、負極1の上方を全体的に単一の部材で狭持接合する構成(図2(c))などを適用することができる。   In the present embodiment, the conductive holding member 4 is configured to hold the negative electrode 1 by sandwiching the upper part, joining the upper part, or sandwiching and joining the upper part. More specifically, as the conductive holding member 4, for example, as shown in FIG. 2, which is a main part perspective view showing only the negative electrode 1 and the conductive holding member 4 of the metal-air battery shown in FIG. A structure in which the central part above 1 is partially sandwiched and joined by a single member (FIG. 2A), and a structure in which the upper part of negative electrode 1 is partially sandwiched, joined or sandwiched by a plurality of members (FIG. 2B), a configuration in which the upper portion of the negative electrode 1 is entirely sandwiched and joined by a single member (FIG. 2C), and the like can be applied.

なお、挟持する方法としては、クリップで留める、万力またはこれに類似する構造で留める、紐状のもので留める、ミゾや凹凸等の嵌め合わせで留める、磁力を用いて留める、弾性変形が元に戻ろうとする力を用いて留める、形状記憶合金の形状記憶効果を用いて留める、といった方法を例示することができる。   In addition, as a clamping method, it is fastened with a clip, fastened with a vise or a similar structure, fastened with a string-like thing, fastened with a fitting such as a groove or unevenness, fastened with magnetic force, elastic deformation is the original Examples thereof include a method of fastening using a force to return to the shape of the material and a method of fastening using the shape memory effect of the shape memory alloy.

また、接合する方法としては、ガス溶接、アーク溶接、エレクトロスラグ溶接、電子ビーム溶接、レーザービーム溶接等の一般的な融接方法や、抵抗溶接、鍛接、摩擦圧接、爆発圧接等の一般的な圧接方法、ろう付け、はんだ付け、拡散接合、超音波接合、蒸着、アトミックボンディング、圧延接合といった方法を例示することができる。   In addition, as a joining method, general welding methods such as gas welding, arc welding, electroslag welding, electron beam welding, and laser beam welding, and general welding methods such as resistance welding, forging welding, friction welding, and explosion welding are used. Examples thereof include a pressure welding method, brazing, soldering, diffusion bonding, ultrasonic bonding, vapor deposition, atomic bonding, and rolling bonding.

本実施の形態においては、負極1に含まれイオン化して電解液2に溶出可能な金属が電子を放出する物質として機能し、空気中の酸素が正極から供給されて電子を受け取る物質とし機能して起電力が発生することになる。   In the present embodiment, the metal contained in the negative electrode 1 that can be ionized and eluted into the electrolyte 2 functions as a substance that emits electrons, and oxygen in the air functions as a substance that receives electrons from the positive electrode. As a result, an electromotive force is generated.

負極1に含まれるその金属が例えばマグネシウムであった場合、負極1のマグネシウムは電子を放出してマグネシウムイオンとなって電解液2中に溶出し、正極3では酸素と水が電子を受け取って水酸化物イオンとなる。金属空気電池全体で見ると、マグネシウム、酸素、及び水から水酸化マグネシウム(Mg(OH))が生成することで両極間に起電力が発生する。正極3及び負極1でのそれぞれの反応式は、以下の通りとなる。
正極:O+2HO+4e → 4OH
負極:2Mg → 2Mg2++4e
全体:2Mg+O+2HO → 2Mg(OH)
When the metal contained in the negative electrode 1 is, for example, magnesium, the magnesium in the negative electrode 1 emits electrons and becomes magnesium ions and is eluted into the electrolyte solution 2. In the positive electrode 3, oxygen and water receive the electrons and receive water. It becomes oxide ion. When viewed as a whole metal-air battery, an electromotive force is generated between the two electrodes by producing magnesium hydroxide (Mg (OH) 2 ) from magnesium, oxygen, and water. Each reaction formula in the positive electrode 3 and the negative electrode 1 is as follows.
Positive electrode: O 2 + 2H 2 O + 4e → 4OH
Negative electrode: 2Mg → 2Mg2 ++ 4e
Overall: 2Mg + O 2 + 2H 2 O → 2Mg (OH) 2

または、負極1に含まれる金属が例えば亜鉛であった場合、負極1の亜鉛は電子を放出して亜鉛イオンとなって電解液2中に溶出し、正極3では酸素と水が電子を受け取って水酸化物イオンとなる。金属空気全体で見ると、亜鉛、酸素、及び水から水酸化亜鉛または酸化亜鉛が生成されることで両極間に起電力が発生する。正極及び負極でのそれぞれの反応式は、以下の通りとなる。
正極:O+2HO+4e → 4OH
負極:2Zn → 2Zn++4e
全体:2Zn+O+2HO → 2Zn(OH) → 2ZnO↓+2H
Alternatively, when the metal contained in the negative electrode 1 is, for example, zinc, the zinc in the negative electrode 1 emits electrons and becomes zinc ions and elutes into the electrolytic solution 2. In the positive electrode 3, oxygen and water receive the electrons. It becomes hydroxide ion. When viewed from the whole metal air, an electromotive force is generated between the two electrodes by generating zinc hydroxide or zinc oxide from zinc, oxygen and water. The respective reaction formulas at the positive electrode and the negative electrode are as follows.
Positive electrode: O 2 + 2H 2 O + 4e → 4OH
Negative electrode: 2Zn → 2Zn 2 ++ 4e
Overall: 2Zn + O 2 + 2H 2 O → 2Zn (OH) 2 → 2ZnO ↓ + 2H 2 O

本実施の形態の金属空気電池によれば、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   According to the metal-air battery of the present embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

なお、このような効果は反応性が高い負極材料ほど顕著に得られるので、特に少なくともマグネシウムを含む負極を用いる構成に適用されることが好ましい。   In addition, since such an effect is more remarkable as the negative electrode material having higher reactivity, it is preferably applied to a configuration using a negative electrode containing at least magnesium.

<実施の形態2>
実施の形態2として、上記実施の形態1では導電性保持部材4が負極1の上方を挟持、上方を接合、または上方を挟持かつ接合することにより保持する構成としたのに対して、導電性保持部材4が負極1の上面を接合または上面のみをはめ込みすることにより保持する構成について説明する。なお、ここで説明する導電性保持部材4による負極1の保持構成以外については、上記実施の形態1と同様であるので、説明を繰り返さない。
<Embodiment 2>
In the second embodiment, the conductive holding member 4 is configured to hold the upper part of the negative electrode 1 by sandwiching the upper part, joining the upper part, or holding and joining the upper part. A configuration in which the holding member 4 holds the negative electrode 1 by bonding or fitting only the upper surface thereof will be described. In addition, since it is the same as that of the said Embodiment 1 except the holding structure of the negative electrode 1 by the electroconductive holding member 4 demonstrated here, description is not repeated.

図3は、実施の形態2の金属空気電池を側方から見たときの概略構成を示す要部断面図である。   FIG. 3 is a cross-sectional view of a principal part showing a schematic configuration when the metal-air battery of the second embodiment is viewed from the side.

図3に示すように、本実施の形態2において、上記実施の形態1と異なる点は、導電性保持部材4が負極1の上面を接合または上面のみをはめ込みすることにより保持する構成として点だけであって、これ以外は上記実施の形態1と同様である。   As shown in FIG. 3, the second embodiment is different from the first embodiment only in that the conductive holding member 4 holds the upper surface of the negative electrode 1 by bonding or fitting only the upper surface. However, the rest is the same as in the first embodiment.

本実施の形態2の金属空気電池によっても、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Even in the metal-air battery of the second embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

<実施の形態3>
実施の形態3として、上記実施の形態1では導電性保持部材4が負極1の上方を挟持、上方を接合、または上方を挟持かつ接合することにより保持する構成としたのに対して、結合部材を用いて導電性保持部材4と負極1とを結合することにより保持する構成について説明する。なお、ここで説明する導電性保持部材4による負極1の保持構成以外については、上記実施の形態1と同様であるので、説明を繰り返さない。
<Embodiment 3>
In Embodiment 3, the conductive holding member 4 is configured to hold the negative electrode 1 by sandwiching the upper portion, joining the upper portion, or sandwiching and joining the upper portion. The structure which hold | maintains by combining the electroconductive holding member 4 and the negative electrode 1 using FIG. Is demonstrated. In addition, since it is the same as that of the said Embodiment 1 except the holding structure of the negative electrode 1 by the electroconductive holding member 4 demonstrated here, description is not repeated.

図4は、実施の形態3の金属空気電池を側方から見たときの概略構成を示す要部断面図である。   FIG. 4 is a cross-sectional view of the main part showing a schematic configuration when the metal-air battery of Embodiment 3 is viewed from the side.

本実施の形態3において、上記実施の形態1と異なる点は、導電性保持部材4が負極1の上方を挟持し、結合部材6を用いて導電性保持部材4と負極1とを結合することにより保持する構成として点だけであって、これ以外は上記実施の形態1と同様である。   The third embodiment is different from the first embodiment in that the conductive holding member 4 sandwiches the upper side of the negative electrode 1 and uses the coupling member 6 to bond the conductive holding member 4 and the negative electrode 1. However, the configuration is the same as that of the first embodiment except for the point.

図4に示すように、結合部材6としては、例えばピンを用いることができ、その際には導電性保持部材4に貫通部を設けると共に、負極1にその導電性保持部材4に貫通部に対応した位置に凹部を設け、これら貫通部及び凹部を共通のピンで貫くような配置とすることにより、電性保持部材4と負極1とを結合して保持することができる。   As shown in FIG. 4, for example, a pin can be used as the coupling member 6, and in this case, a through-hole is provided in the conductive holding member 4, and the negative electrode 1 has a through-hole in the conductive holding member 4. The electric holding member 4 and the negative electrode 1 can be combined and held by providing a concave portion at a corresponding position and arranging the through portion and the concave portion with a common pin.

本実施の形態3の金属空気電池によっても、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Even in the metal-air battery of the third embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

<実施の形態4>
実施の形態4として、上記実施の形態1では導電性保持部材4が負極1の上方を挟持、上方を接合、または上方を挟持かつ接合することにより保持する構成としたのに対して、導電性保持部材4が負極1の下面を受けるようにして保持する構成について説明する。なお、ここで説明する導電性保持部材4による負極1の保持構成以外については、上記実施の形態1と同様であるので、説明を繰り返さない。
<Embodiment 4>
In the fourth embodiment, the conductive holding member 4 is configured to hold the negative electrode 1 by sandwiching the upper part, joining the upper part, or sandwiching and joining the upper part. A configuration in which the holding member 4 holds the lower surface of the negative electrode 1 will be described. In addition, since it is the same as that of the said Embodiment 1 except the holding structure of the negative electrode 1 by the electroconductive holding member 4 demonstrated here, description is not repeated.

図5は、実施の形態4の金属空気電池を側方から見たときの概略構成を示す要部断面図である。   FIG. 5 is a cross-sectional view of a main part showing a schematic configuration when the metal-air battery of the fourth embodiment is viewed from the side.

図5に示すように、本実施の形態4において、上記実施の形態1と異なる点は、導電性保持部材4が負極1の下面を受けるようにして保持する構成として点だけであって、これ以外は上記実施の形態1と同様である。なお、本実施の形態4においては、導電性保持部材4が略J字型形状となり、負極1の下面を受けるので、少なくともその下面で接触し電気的に接続されることになる。また、上記実施の形態1〜3のように、負極1と導電性保持部材4とを接合又は結合させても良い。   As shown in FIG. 5, the fourth embodiment is different from the first embodiment only in that the conductive holding member 4 receives and holds the lower surface of the negative electrode 1. Other than the above, the second embodiment is the same as the first embodiment. In the fourth embodiment, since the conductive holding member 4 has a substantially J-shape and receives the lower surface of the negative electrode 1, at least the lower surface contacts and is electrically connected. Moreover, you may join or couple | bond the negative electrode 1 and the electroconductive holding member 4 like the said Embodiment 1-3.

本実施の形態4の金属空気電池によっても、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Even in the metal-air battery of the fourth embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

<実施の形態5>
実施の形態5として、上記実施の形態1では導電性保持部材4が負極1の上方を挟持、上方を接合、または上方を挟持かつ接合することにより保持する構成としたのに対して、導電性保持部材4を網状部材として負極1を覆うようにして保持する構成について説明する。なお、ここで説明する導電性保持部材4による負極1の保持構成以外については、上記実施の形態1と同様であるので、説明を繰り返さない。
<Embodiment 5>
In the fifth embodiment, the conductive holding member 4 is configured to hold the negative electrode 1 by sandwiching the upper part, joining the upper part, or sandwiching and joining the upper part. A configuration in which the holding member 4 is held as a net-like member so as to cover the negative electrode 1 will be described. In addition, since it is the same as that of the said Embodiment 1 except the holding structure of the negative electrode 1 by the electroconductive holding member 4 demonstrated here, description is not repeated.

図6は、実施の形態5の金属空気電池を側方から見たときの概略構成を示す要部断面図である。   FIG. 6 is a cross-sectional view of a principal part showing a schematic configuration when the metal-air battery of the fifth embodiment is viewed from the side.

図6に示すように、本実施の形態5において、上記実施の形態1と異なる点は、導電性保持部材4を網状部材として、網状の導電性保持部材で負極1を覆うようにして保持する構成として点だけであって、これ以外は上記実施の形態1と同様である。なお、本実施の形態5においては、負極1の荷重が掛って、負極1の少なくとも下面が導電性保持部材4に接触し電気的に接続されることになる。また、上記実施の形態1〜3のように、負極1と導電性保持部材4とを接合又は結合させても良い。   As shown in FIG. 6, the fifth embodiment is different from the first embodiment in that the conductive holding member 4 is a net-like member, and the negative electrode 1 is covered with the net-like conductive holding member. The configuration is only a point, and the rest is the same as in the first embodiment. In the fifth embodiment, the load of the negative electrode 1 is applied, and at least the lower surface of the negative electrode 1 comes into contact with and is electrically connected to the conductive holding member 4. Moreover, you may join or couple | bond the negative electrode 1 and the electroconductive holding member 4 like the said Embodiment 1-3.

本実施の形態5の金属空気電池によっても、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Even in the metal-air battery of the fifth embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

<実施の形態6>
実施の形態6として、上記実施の形態1では導電性保持部材4が負極1の上方を挟持、上方を接合、または上方を挟持かつ接合することにより保持する構成としたのに対して、導電性保持部材4に開口部41を設け、その開口部41に負極1を嵌め込むようにして保持する構成について説明する。なお、ここで説明する導電性保持部材4による負極1の保持構成以外については、上記実施の形態1と同様であるので、説明を繰り返さない。
<Embodiment 6>
As the sixth embodiment, in the first embodiment, the conductive holding member 4 is configured to hold the negative electrode 1 by sandwiching the upper part, joining the upper part, or sandwiching and joining the upper part. A configuration in which the holding member 4 is provided with the opening 41 and the negative electrode 1 is fitted in the opening 41 will be described. In addition, since it is the same as that of the said Embodiment 1 except the holding structure of the negative electrode 1 by the electroconductive holding member 4 demonstrated here, description is not repeated.

図7は、実施の形態6の金属空気電池を側方から見たときの概略構成を示す要部断面図である。図8は図7に示した金属空気電池の負極1及び導電性保持部材4のみを示す要部斜視図であり、図8(a)は導電性保持部材4の開口部41に負極1を嵌め込んでいない状態を示し、図8(b)は導電性保持部材4の開口部41に負極1を嵌め込んだ状態を示す。   FIG. 7 is a cross-sectional view of an essential part showing a schematic configuration when the metal-air battery of Embodiment 6 is viewed from the side. FIG. 8 is a perspective view of the main part showing only the negative electrode 1 and the conductive holding member 4 of the metal-air battery shown in FIG. 7, and FIG. 8A shows the negative electrode 1 fitted into the opening 41 of the conductive holding member 4. FIG. 8B shows a state in which the negative electrode 1 is fitted in the opening 41 of the conductive holding member 4.

本実施の形態6において、上記実施の形態1と異なる点は、導電性保持部材4に開口部41を設け、その開口部41に負極1を嵌め込むようにして保持する構成として点だけであって、これ以外は上記実施の形態1と同様である。   In the sixth embodiment, the only difference from the first embodiment is that the conductive holding member 4 is provided with an opening 41 and the negative electrode 1 is fitted into the opening 41 and held therein. The rest is the same as in the first embodiment.

より具体的には、図8(a)に示すように、導電性保持部材4に開口部41が設けられており、例えば図8(a)の図中の矢印の示す方向から、その開口部41に負極1を嵌め込む。これにより、図8(b)に示すように導電性保持部材4に負極1を嵌め込むようにして保持する構成とでき、図7に示すような金属空気電池を構成できる。   More specifically, as shown in FIG. 8A, the conductive holding member 4 is provided with an opening 41. For example, from the direction indicated by the arrow in FIG. The negative electrode 1 is fitted into 41. Thereby, as shown in FIG.8 (b), it can be set as the structure hold | maintained so that the negative electrode 1 may be engage | inserted in the electroconductive holding member 4, and a metal air battery as shown in FIG. 7 can be comprised.

なお、本実施の形態6においては、導電性保持部材4の開口部41への負極1の嵌め込みにより、負極1と導電性保持部材4との接する部分が形成され、そこで電気的に接続されることになる。また、上記実施の形態1〜3のように、負極1と導電性保持部材4とを接合又は結合させても良い。   In the sixth embodiment, a portion where the negative electrode 1 and the conductive holding member 4 are in contact with each other is formed by fitting the negative electrode 1 into the opening 41 of the conductive holding member 4 and is electrically connected there. It will be. Moreover, you may join or couple | bond the negative electrode 1 and the electroconductive holding member 4 like the said Embodiment 1-3.

図8に示す構成においては、一つの負極1を一つの導電性保持部材4で保持する構成を示したが、例えば図9に示すように、一つの導電性保持部材4に対して、縦方向及び横方向のうちの少なくとも一方について負極1が複数保持された構成とすることもできる。   In the configuration shown in FIG. 8, the configuration in which one negative electrode 1 is held by one conductive holding member 4 is shown. For example, as shown in FIG. In addition, a plurality of negative electrodes 1 may be held in at least one of the lateral directions.

本実施の形態6の金属空気電池によっても、導電性保持部材4を用いて電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Since the metal-air battery of the sixth embodiment is also configured to be able to contact and hold the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase using the conductive holding member 4. As a result, it is possible to easily supply electric power to the outside, to efficiently use the negative electrode material, and to achieve a long-life metal-air battery.

<実施の形態7>
実施の形態7として、上記実施の形態1では導電性保持部材4が負極1の上方を挟持、上方を接合、または上方を挟持かつ接合することにより保持する構成としたのに対して、導電性保持部材4に負極1を付着させるようにして保持する構成について説明する。なお、ここで説明する導電性保持部材4による負極1の保持構成以外については、上記実施の形態1と同様であるので、説明を繰り返さない。
<Embodiment 7>
In the seventh embodiment, the conductive holding member 4 is configured to hold the negative electrode 1 by sandwiching the upper part, joining the upper part, or holding and joining the upper part. A configuration for holding the negative electrode 1 so as to adhere to the holding member 4 will be described. In addition, since it is the same as that of the said Embodiment 1 except the holding structure of the negative electrode 1 by the electroconductive holding member 4 demonstrated here, description is not repeated.

図10に示すように、本実施の形態7において、上記実施の形態1と異なる点は、導電性保持部材4に負極1を付着させるようにして保持する構成として点だけであって、これ以外は上記実施の形態1と同様である。   As shown in FIG. 10, the seventh embodiment is different from the first embodiment only in that the negative electrode 1 is attached to the conductive holding member 4 so as to hold it. Is the same as in the first embodiment.

導電性保持部材4に負極1を付着させるには、例えば、上記実施の形態1のように負極1と導電性保持部材4とを接合したり、導電性保持部材4に成膜技術を用いて蒸着法などにより負極1として負極材料からなる膜を導電性保持部材4に成膜するなど膜形成すれば良い。   In order to attach the negative electrode 1 to the conductive holding member 4, for example, the negative electrode 1 and the conductive holding member 4 are joined as in the first embodiment, or a film forming technique is used for the conductive holding member 4. A film made of a negative electrode material as the negative electrode 1 may be formed on the conductive holding member 4 by vapor deposition or the like.

本実施の形態7の金属空気電池によっても、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Even in the metal-air battery according to the seventh embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

<実施の形態8>
特開2004−362869号公報には、負極を使い切って放電が終了した際に、金属空気電池における負極以外の構成要素はそのままで負極のみを交換して再び放電することが可能となる負極の供給方法(以下、「メカニカルチャージ」と記載する)が提案されている。
<Eighth embodiment>
Japanese Patent Application Laid-Open No. 2004-362869 discloses a supply of a negative electrode that can be discharged again by replacing only the negative electrode while leaving all the components other than the negative electrode in the metal-air battery when the discharge is completed after using up the negative electrode. A method (hereinafter referred to as “mechanical charge”) has been proposed.

金属空気電池においては、電池反応等の反応による反応生成物が電解液内に堆積し、液抵抗の増加による出力の低下や、電池構成部材の汚染により電池反応の停止が起こり電池が短寿命化する、等の弊害が生じる可能性がある。さらに、メカニカルチャージを用いて金属空気電池を運用する場合、上述の反応生成物は累積して堆積していくため、メカニカルチャージの回数が嵩む程、上述の弊害の影響が大きくなる可能性がある。   In metal-air batteries, reaction products due to reactions such as battery reactions accumulate in the electrolyte, resulting in a decrease in output due to increased liquid resistance and battery reaction termination due to contamination of battery components, resulting in shorter battery life. May cause adverse effects such as Furthermore, when a metal-air battery is operated using mechanical charge, the reaction products described above accumulate and accumulate. Therefore, the greater the number of mechanical charges, the greater the adverse effects described above. .

以下に説明する実施の形態8〜15は、このような問題点に鑑みてなされたものであって、電池反応等の反応による反応生成物を効率的に回収することで、反応生成物に起因する出力低下がなく、かつ反応生成物に起因する短寿命化がない金属空気電池を提供することも目的としている。なお、ここで言う電池反応等の反応とは、電池反応を始めとして、金属空気電池を構成する系にて起こり得るあらゆる反応のことを示している。   Embodiments 8 to 15 to be described below have been made in view of such problems, and are caused by reaction products by efficiently recovering reaction products due to reactions such as battery reactions. Another object of the present invention is to provide a metal-air battery that does not cause a decrease in output and does not have a shortened life caused by a reaction product. Here, the reaction such as the battery reaction refers to any reaction that can occur in the system constituting the metal-air battery including the battery reaction.

実施の形態8として、上記実施の形態1の構成に加えて、反応生成物回収膜用フレーム8に固定した反応生成物回収膜7を、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置する構成について説明する。なお、ここで説明する反応生成物回収膜7と反応生成物回収膜用フレーム8以外については、上記実施の形態1と同様であるので、説明を繰り返さない。   As an eighth embodiment, in addition to the configuration of the first embodiment, the reaction product recovery film 7 fixed to the reaction product recovery film frame 8 is used, and the reaction product recovery film 7 forms at least a part of the negative electrode 1. The structure arrange | positioned so that it may surround is demonstrated. In addition, since it is the same as that of the said Embodiment 1 except the reaction product collection | recovery film | membrane 7 and the reaction product collection | recovery film | membrane frame 8 demonstrated here, description is not repeated.

図11に示すように、本実施の形態8において、上記実施の形態1と異なる点は、上記実施の形態1の構成に加えて、負極1の少なくとも一部を囲むように配置される反応生成物回収膜7と、反応生成物回収膜7が固定されており、かつ、導電性保持部材4に対しての脱着が可能な構造を備えた反応生成物回収膜用フレーム8が追加されている点であって、これ以外は上記実施の形態1と同様である。   As shown in FIG. 11, in the eighth embodiment, the difference from the first embodiment is that the reaction product is arranged so as to surround at least a part of the negative electrode 1 in addition to the configuration of the first embodiment. The product recovery membrane 7 and the reaction product recovery membrane 7 are fixed, and a reaction product recovery membrane frame 8 having a structure that can be detached from the conductive holding member 4 is added. The other points are the same as in the first embodiment.

反応生成物回収膜用フレーム8は反応生成物回収膜用フレーム固定突起81を有し、該反応生成物回収膜用フレーム固定突起81が導電性保持部材4の反応生成物回収膜用フレーム固定孔41に挿入されることにより、これら反応生成物回収膜用フレーム固定突起81と反応生成物回収膜用フレーム固定孔41とが嵌合して、反応生成物回収膜用フレーム8が導電性保持部材4に固定される。   The reaction product recovery film frame 8 has a reaction product recovery film frame fixing protrusion 81, and the reaction product recovery film frame fixing protrusion 81 is a reaction product recovery film frame fixing hole of the conductive holding member 4. 41, the reaction product recovery film frame fixing projection 81 and the reaction product recovery film frame fixing hole 41 are fitted to each other so that the reaction product recovery film frame 8 is electrically conductive. 4 is fixed.

反応生成物回収膜用フレーム固定突起81の形状は特に制限されないが、例えば略直方体形状のものを選択することができる。反応生成物回収膜用フレーム固定突起81の数は特に限定されず、図11に示すように2つでもよいし、単数、或いは2つ以上の複数であっても良い。または、反応生成物回収膜用フレーム8が導電性保持部材4と接する全面に設けて有っても良い。   The shape of the reaction product recovery film frame fixing projection 81 is not particularly limited, but for example, a substantially rectangular parallelepiped shape can be selected. The number of reaction product recovery film frame fixing projections 81 is not particularly limited, and may be two as shown in FIG. 11, or may be one or more than two. Alternatively, the reaction product recovery film frame 8 may be provided on the entire surface in contact with the conductive holding member 4.

反応生成物回収膜用フレーム固定孔41の形状と数量は、反応生成物回収膜用フレーム固定突起81が入る形状と数量であれば特に制限されない。なお、反応生成物回収膜用フレーム固定孔41は、図11に示すように導電性保持部材4の下面に設けてあっても良いが、この位置に限定されることはなく、例えば導電性保持部材4の側面に設けてあっても良い。   The shape and quantity of the reaction product recovery film frame fixing hole 41 are not particularly limited as long as the shape and quantity allow the reaction product recovery film frame fixing protrusion 81 to enter. The reaction product recovery film frame fixing hole 41 may be provided on the lower surface of the conductive holding member 4 as shown in FIG. 11, but is not limited to this position. It may be provided on the side surface of the member 4.

図12および図13に、反応生成物回収膜用フレーム8の形状の例を示す。図12では反応生成物回収膜用フレーム8として略環状の形状のものを用いており、図13では反応生成物回収膜用フレーム8として反応生成物回収膜用フレーム(左)82と反応生成物回収膜用フレーム(右)83に分かれた形状のものを用いている。なお、反応生成物回収膜用フレーム8の形状は、ここに述べた形状例に限定されない。   12 and 13 show examples of the shape of the reaction product recovery film frame 8. In FIG. 12, the reaction product recovery membrane frame 8 has a substantially annular shape, and in FIG. 13, the reaction product recovery membrane frame (left) 82 and the reaction product are used as the reaction product recovery membrane frame 8. A shape divided into a recovery film frame (right) 83 is used. The shape of the reaction product recovery membrane frame 8 is not limited to the shape example described here.

反応生成物回収膜7の反応生成物回収膜用フレーム8への固定について、図12を例に説明する。反応生成物回収膜7は反応生成物回収膜接合部71を有しており、矢印方向に反応生成物回収膜7及び反応生成物回収膜用フレーム8を相対的に移動させて、反応生成物回収膜接合部71を反応生成物回収膜用フレーム8に固定することで、反応生成物回収膜7を反応生成物回収膜用フレーム8に固定している。なお、図13に示す例においても、同様にして、反応生成物回収膜接合部71を反応生成物回収膜用フレーム82,83に固定することができる。   The fixing of the reaction product recovery membrane 7 to the reaction product recovery membrane frame 8 will be described with reference to FIG. The reaction product recovery membrane 7 has a reaction product recovery membrane joint 71, and the reaction product recovery membrane 7 and the reaction product recovery membrane frame 8 are moved relative to each other in the direction of the arrow to thereby generate a reaction product. By fixing the recovery membrane joining portion 71 to the reaction product recovery membrane frame 8, the reaction product recovery membrane 7 is fixed to the reaction product recovery membrane frame 8. In the example shown in FIG. 13, the reaction product recovery membrane joint 71 can be fixed to the reaction product recovery membrane frames 82 and 83 in the same manner.

反応生成物回収膜接合部71を反応生成物回収膜用フレーム8に固定する場所は、図12,13の様に反応生成物回収膜用フレーム8の下部でも良いが、それに制限されることはなく、例えば反応生成物回収膜用フレーム8の側面部でも良い。反応生成物回収膜7の反応生成物回収膜用フレーム8への固定方法は、従来公知の固定方法を用いることができるが、例えば、熱風融着や溶剤融着、加熱融着、通電融着等の一般的な融着方法や、接着剤で留める、のりで留める等の固定方法を挙げることができる。なお、反応生成物回収膜7は、反応生成物回収膜用フレーム8と共に導電性保持部材4から取り外した際に、反応生成物回収膜用フレーム8を軸に表裏をひっくり返す(反転する)ことのできる構造となっていることが望ましい。反応生成物回収膜7の形状は特に限定されず、また、反応生成物回収膜7は負極1に接していても接していなくても良い。   The place where the reaction product recovery membrane joint 71 is fixed to the reaction product recovery membrane frame 8 may be the lower part of the reaction product recovery membrane frame 8 as shown in FIGS. For example, the side part of the reaction product recovery film frame 8 may be used. As a method for fixing the reaction product recovery film 7 to the reaction product recovery film frame 8, a conventionally known fixing method can be used. For example, hot air fusion, solvent fusion, heat fusion, and electric fusion And a general fixing method such as fastening with an adhesive or glue. When the reaction product recovery film 7 is removed from the conductive holding member 4 together with the reaction product recovery film frame 8, the reaction product recovery film 7 is turned over (reversed) around the reaction product recovery film frame 8. It is desirable to have a structure that can be used. The shape of the reaction product recovery film 7 is not particularly limited, and the reaction product recovery film 7 may or may not be in contact with the negative electrode 1.

反応生成物回収膜7に用いることのできる材料は、空気電池や水素燃料電池に適用される従来公地のセパレータ材料または樹脂材料を用いればよいが、例えば、撥水処理を行っていないグラスペーパー、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜を好適に用いることができる。また、反応生成物回収膜用フレーム8に用いることのできる材料としては、金属空気電池に適用される従来公知の材料を適用することができ、例えば樹脂や金属、これらの複合材からなるものを適用することができる。   The material that can be used for the reaction product recovery film 7 may be a conventional public separator material or resin material applied to an air battery or a hydrogen fuel cell. For example, glass paper that has not been subjected to water repellent treatment. A microporous film made of polyolefin such as polyethylene or polypropylene can be preferably used. In addition, as a material that can be used for the reaction product recovery film frame 8, a conventionally known material that is applied to a metal-air battery can be applied. For example, a material made of resin, metal, or a composite material thereof can be used. Can be applied.

本実施の形態8の金属空気電池によっても、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Even in the metal-air battery of the eighth embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

また、電池反応等の反応により生じる反応生成物に関しても、本実施の形態8では、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置されているため、反応生成物は反応生成物回収膜7が負極1を囲んでいる部分に主に堆積し、該部分より外側には拡散/堆積し辛い。結果、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ高出力の金属空気電池を提供することができる。   In addition, regarding the reaction product generated by the reaction such as the battery reaction, in the eighth embodiment, since the reaction product recovery film 7 is disposed so as to surround at least a part of the negative electrode 1, the reaction product is reacted. The product recovery film 7 is deposited mainly on the portion surrounding the negative electrode 1 and hardly diffuses / deposits outside the portion. As a result, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stoppage due to contamination of battery constituent members, and a long-life and high-output metal-air battery can be provided.

また、反応生成物回収膜用フレーム8を導電性保持部材4から取り外すことにより反応生成物回収膜7も容易に導電性保持部材4から取り外すことができ、かつ、反応生成物回収膜7は反応生成物回収膜用フレーム8を軸に表裏にひっくり返す(反転する)ことのできる構造となっているため、反応生成物回収膜7を導電性保持部材4から取り外した状態で反応生成物が堆積している反応生成物回収膜7の内側が外側になるように表裏をひっくり返せば、反応生成物回収膜7の中に堆積した反応生成物を簡単に取り除くことができる。これは、メカニカルチャージにて金属空気電池を運用する際、反応生成物回収膜7および反応生成物回収膜用フレーム8が繰り返し使用可能であり、かつ、メカニカルチャージによる交換前の負極による反応生成物をメカニカルチャージの度に除去できることを意味している。故に、メカニカルチャージを用いて金属空気電池を運用する場合も、上述の様に、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ繰り返し使用可能で、高出力の金属空気電池を提供することができる。   Further, by removing the reaction product recovery film frame 8 from the conductive holding member 4, the reaction product recovery film 7 can be easily removed from the conductive holding member 4, and the reaction product recovery film 7 is reacted. Since the structure is such that the product recovery film frame 8 can be turned upside down (inverted) around the axis, the reaction product is deposited with the reaction product recovery film 7 removed from the conductive holding member 4. The reaction product deposited in the reaction product recovery film 7 can be easily removed by turning the front and back so that the inner side of the reaction product recovery film 7 is outside. This is because the reaction product recovery membrane 7 and the reaction product recovery membrane frame 8 can be used repeatedly when the metal-air battery is operated by mechanical charge, and the reaction product by the negative electrode before replacement by mechanical charge. It can be removed at every mechanical charge. Therefore, even when a metal-air battery is operated using mechanical charge, as described above, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stop due to contamination of battery components. It is possible to provide a high-power metal-air battery that has a long life and can be used repeatedly.

<実施の形態9>
実施の形態9として、上記実施の形態8では反応生成物回収膜7が固定された反応生成物回収膜用フレーム8が導電性保持部材4に固定されている構成であったのに対し、反応生成物回収膜7が固定された反応生成物回収膜用フレーム8が容器5に固定されている構成について説明する。なお、ここで説明する筺体5による反応生成物回収膜用フレーム8の固定構成以外については、上記実施の形態8と同様であるので、説明を繰り返さない。
<Embodiment 9>
In the ninth embodiment, the reaction product recovery film frame 8 to which the reaction product recovery film 7 is fixed is fixed to the conductive holding member 4 in the eighth embodiment. A configuration in which the reaction product recovery film frame 8 to which the product recovery film 7 is fixed is fixed to the container 5 will be described. In addition, since it is the same as that of the said Embodiment 8 except the fixing structure of the reaction product collection | recovery film | membrane frame 8 by the housing 5 demonstrated here, description is not repeated.

図14に示すように、本実施の形態9において、上記実施の形態8と異なる点は、容器5に、反応生成物回収膜7が固定された反応生成物回収膜用フレーム8が固定されていることであって、これ以外は上記実施の形態8と同様である。   As shown in FIG. 14, the ninth embodiment is different from the eighth embodiment in that the reaction product recovery film frame 8 to which the reaction product recovery film 7 is fixed is fixed to the container 5. In other respects, this embodiment is the same as the eighth embodiment.

容器5は容器突起51を有しており、該容器突起51が反応生成物回収膜用フレーム8の反応生成物回収膜用フレーム固定孔(フレーム)84に挿入されることにより、これら容器突起51とフレーム側の反応生成物回収膜用フレーム固定孔84とが嵌合して、反応生成物回収膜用フレーム8が容器5に固定される。容器突起51の形状は特に制限されないが、例えば略直方体形状のものを選択することができる。容器突起51の数は特に限定されず、図14に示すように2つでもよいし、単数、或いは2つ以上の複数であっても良い。または、反応生成物回収膜用フレーム8が容器5と接する全面に設けて有っても良い。反応生成物回収膜用フレーム固定孔(フレーム)84の形状と数量は、容器突起51が入る形状と数量であれば特に制限されない。   The container 5 has container protrusions 51, and these container protrusions 51 are inserted into the reaction product recovery film frame fixing holes (frames) 84 of the reaction product recovery film frame 8. And the frame-side reaction product recovery membrane frame fixing hole 84 are fitted together, and the reaction product recovery membrane frame 8 is fixed to the container 5. Although the shape of the container protrusion 51 is not particularly limited, for example, a substantially rectangular parallelepiped shape can be selected. The number of container protrusions 51 is not particularly limited, and may be two as shown in FIG. 14, or may be one or more than two. Alternatively, the reaction product recovery film frame 8 may be provided on the entire surface in contact with the container 5. The shape and quantity of the reaction product recovery membrane frame fixing hole (frame) 84 are not particularly limited as long as the shape and quantity allow the container protrusion 51 to enter.

本実施の形態9の金属空気電池によっても、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Even in the metal-air battery according to the ninth embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolyte 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

また、電池反応等の反応により生じる反応生成物に関しても、本実施の形態9では、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置されているため、反応生成物は反応生成物回収膜7が負極1を囲んでいる部分に主に堆積し、該部分より外側には拡散/堆積し辛い。結果、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ高出力の金属空気電池を提供することができる。   In addition, regarding the reaction product generated by the reaction such as the battery reaction, in the ninth embodiment, since the reaction product recovery film 7 is disposed so as to surround at least a part of the negative electrode 1, the reaction product is reacted. The product recovery film 7 is deposited mainly on the portion surrounding the negative electrode 1 and hardly diffuses / deposits outside the portion. As a result, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stoppage due to contamination of battery constituent members, and a long-life and high-output metal-air battery can be provided.

また、反応生成物回収膜用フレーム8を容器5から取り外すことにより反応生成物回収膜7も容易に容器5から取り外すことができ、かつ、反応生成物回収膜7は反応生成物回収膜用フレーム8を軸に表裏にひっくり返す(反転する)ことのできる構造となっているため、反応生成物回収膜7を容器5から取り外した状態で反応生成物が堆積している反応生成物回収膜7の内側が外側になるように表裏をひっくり返せば、反応生成物回収膜7の中に堆積した反応生成物を簡単に取り除くことができる。これは、メカニカルチャージにて金属空気電池を運用する際、反応生成物回収膜7および反応生成物回収膜用フレーム8が繰り返し使用可能であり、かつ、メカニカルチャージによる交換前の負極による反応生成物をメカニカルチャージの度に除去できることを意味している。故に、メカニカルチャージを用いて金属空気電池を運用する場合も、上述の様に、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ繰り返し使用可能で、高出力の金属空気電池を提供することができる。   Further, the reaction product recovery membrane 7 can be easily detached from the container 5 by removing the reaction product recovery membrane frame 8 from the container 5, and the reaction product recovery membrane 7 can be removed from the reaction product recovery membrane frame. 8 is a structure that can be turned upside down (inverted) around the axis, so that the reaction product is deposited with the reaction product recovery film 7 removed from the container 5. If the front and back are turned over so that the inside is the outside, the reaction product deposited in the reaction product recovery film 7 can be easily removed. This is because the reaction product recovery membrane 7 and the reaction product recovery membrane frame 8 can be used repeatedly when the metal-air battery is operated by mechanical charge, and the reaction product by the negative electrode before replacement by mechanical charge. It can be removed at every mechanical charge. Therefore, even when a metal-air battery is operated using mechanical charge, as described above, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stop due to contamination of battery components. It is possible to provide a high-power metal-air battery that has a long life and can be used repeatedly.

<実施の形態10>
実施の形態10として、上記実施の形態3の構成に加えて、反応生成物回収膜用フレーム8に固定した反応生成物回収膜7を、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置する構成について説明する。なお、ここで説明する反応生成物回収膜7と反応生成物回収膜用フレーム8以外については、上記実施の形態3と同様であるので、説明を繰り返さない。
<Embodiment 10>
In the tenth embodiment, in addition to the configuration of the third embodiment, the reaction product recovery film 7 fixed to the reaction product recovery film frame 8 is used, and the reaction product recovery film 7 forms at least a part of the negative electrode 1. The structure arrange | positioned so that it may surround is demonstrated. In addition, since it is the same as that of the said Embodiment 3 except the reaction product collection | recovery film | membrane 7 and the reaction product collection | recovery film | membrane frame 8 demonstrated here, description is not repeated.

図15に示すように、本実施の形態10において、上記実施の形態3と異なる点は、上記実施の形態3の構成に加えて、負極1の少なくとも一部を囲むように配置される反応生成物回収膜7と、反応生成物回収膜7が固定されており、かつ、導電性保持部材4に対しての脱着が可能な構造を備えた反応生成物回収膜用フレーム8が追加されている点であって、これ以外は上記実施の形態3と同様である。   As shown in FIG. 15, in the tenth embodiment, the difference from the third embodiment is that the reaction product arranged to surround at least a part of the negative electrode 1 in addition to the configuration of the third embodiment. The product recovery membrane 7 and the reaction product recovery membrane 7 are fixed, and a reaction product recovery membrane frame 8 having a structure that can be detached from the conductive holding member 4 is added. The other points are the same as in the third embodiment.

反応生成物回収膜用フレーム8は、反応生成物回収膜用フレーム結合部材85が貫通する孔を有し、反応生成物回収膜用フレーム結合部材85によって導電性保持部材4に固定される。反応生成物回収膜用フレーム結合部材85の形状は特に限定されず、例えばネジ山を有していても良い。また、反応生成物回収膜用フレーム結合部材85の数量は特に制限されない。また、反応生成物回収膜用フレーム結合部材85は、結合部材6と同一とし、上記実施の形態3の様に負極1を導電性保持部材4に固定することに加えて、反応生成物回収膜用フレーム結合部材85を導電性保持部材4に固定する役割を併せ持っても良い。   The reaction product collection film frame 8 has a hole through which the reaction product collection film frame coupling member 85 passes, and is fixed to the conductive holding member 4 by the reaction product collection film frame coupling member 85. The shape of the reaction product recovery film frame coupling member 85 is not particularly limited, and may have, for example, a thread. Further, the number of the reaction product recovery membrane frame coupling members 85 is not particularly limited. The reaction product recovery film frame coupling member 85 is the same as the coupling member 6, and in addition to fixing the negative electrode 1 to the conductive holding member 4 as in the third embodiment, the reaction product recovery film 85 The frame connecting member 85 may also have a role of fixing to the conductive holding member 4.

反応生成物回収膜7の反応生成物回収膜用フレーム8への固定方法については、上記実施の形態8と同様なので省略する。   The method for fixing the reaction product recovery membrane 7 to the reaction product recovery membrane frame 8 is the same as that in the eighth embodiment, and is therefore omitted.

反応生成物回収膜7と反応生成物回収膜用フレーム8に用いることのできる材料については、上記実施の形態8と同様なので省略する。   The materials that can be used for the reaction product recovery film 7 and the reaction product recovery film frame 8 are the same as those in the eighth embodiment, and are therefore omitted.

本実施の形態10の金属空気電池によっても、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Even in the metal-air battery of the tenth embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

また、電池反応等の反応により生じる反応生成物に関しても、本実施の形態8では、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置されているため、反応生成物は反応生成物回収膜7が負極1を囲んでいる部分に主に堆積し、該部分より外側には拡散/堆積し辛い。結果、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ高出力の金属空気電池を提供することができる。   In addition, regarding the reaction product generated by the reaction such as the battery reaction, in the eighth embodiment, since the reaction product recovery film 7 is disposed so as to surround at least a part of the negative electrode 1, the reaction product is reacted. The product recovery film 7 is deposited mainly on the portion surrounding the negative electrode 1 and hardly diffuses / deposits outside the portion. As a result, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stoppage due to contamination of battery constituent members, and a long-life and high-output metal-air battery can be provided.

また、反応生成物回収膜用フレーム8を導電性保持部材4から取り外すことにより反応生成物回収膜7も容易に導電性保持部材4から取り外すことができ、かつ、反応生成物回収膜7は反応生成物回収膜用フレーム8を軸に表裏にひっくり返す(反転する)ことのできる構造となっているため、反応生成物回収膜7を導電性保持部材4から取り外した状態で反応生成物が堆積している反応生成物回収膜7の内側が外側になるように表裏をひっくり返せば、反応生成物回収膜7の中に堆積した反応生成物を簡単に取り除くことができる。これは、メカニカルチャージにて金属空気電池を運用する際、反応生成物回収膜7および反応生成物回収膜用フレーム8が繰り返し使用可能であり、かつ、メカニカルチャージによる交換前の負極による反応生成物をメカニカルチャージの度に除去できることを意味している。故に、メカニカルチャージを用いて金属空気電池を運用する場合も、上述の様に、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ繰り返し使用可能で、高出力の金属空気電池を提供することができる。   Further, by removing the reaction product recovery film frame 8 from the conductive holding member 4, the reaction product recovery film 7 can be easily removed from the conductive holding member 4, and the reaction product recovery film 7 is reacted. Since the structure is such that the product recovery film frame 8 can be turned upside down (inverted) around the axis, the reaction product is deposited with the reaction product recovery film 7 removed from the conductive holding member 4. The reaction product deposited in the reaction product recovery film 7 can be easily removed by turning the front and back so that the inner side of the reaction product recovery film 7 is outside. This is because the reaction product recovery membrane 7 and the reaction product recovery membrane frame 8 can be used repeatedly when the metal-air battery is operated by mechanical charge, and the reaction product by the negative electrode before replacement by mechanical charge. It can be removed at every mechanical charge. Therefore, even when a metal-air battery is operated using mechanical charge, as described above, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stop due to contamination of battery components. It is possible to provide a high-power metal-air battery that has a long life and can be used repeatedly.

<実施の形態11>
実施の形態11として、上記実施の形態7の構成に加えて、反応生成物回収膜用フレーム8に固定した反応生成物回収膜7を、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置する構成について説明する。なお、ここで説明する反応生成物回収膜7と反応生成物回収膜用フレーム8以外については、上記実施の形態7と同様であるので、説明を繰り返さない。
<Embodiment 11>
As an eleventh embodiment, in addition to the configuration of the seventh embodiment, the reaction product recovery film 7 fixed to the reaction product recovery film frame 8 is used, and the reaction product recovery film 7 forms at least a part of the negative electrode 1. The structure arrange | positioned so that it may surround is demonstrated. In addition, since it is the same as that of the said Embodiment 7 except the reaction product collection | recovery film | membrane 7 and the reaction product collection | recovery film | membrane frame 8 demonstrated here, description is not repeated.

図16に示すように、本実施の形態11において、上記実施の形態7と異なる点は、上記実施の形態7の構成に加えて、負極1の少なくとも一部を囲むように配置される反応生成物回収膜7と、反応生成物回収膜7が固定されており、かつ、導電性保持部材4に対しての脱着が可能な構造を備えた反応生成物回収膜用フレームが追加されている点であって、これ以外は上記実施の形態7と同様である。   As shown in FIG. 16, in the eleventh embodiment, the difference from the seventh embodiment is that the reaction product arranged so as to surround at least a part of the negative electrode 1 in addition to the configuration of the seventh embodiment. The reaction product collection film 7 and the reaction product collection film 7 are fixed, and a reaction product collection film frame having a structure that can be attached to and detached from the conductive holding member 4 is added. The rest is the same as in the seventh embodiment.

反応生成物回収膜用フレーム8の導電性保持部材4への固定方法は特に制限されないが、例えば、上記実施の形態8、9、10で例示した固定方法を用いることができる。   The method for fixing the reaction product recovery film frame 8 to the conductive holding member 4 is not particularly limited. For example, the fixing method exemplified in the above-described eighth, ninth, and tenth embodiments can be used.

反応生成物回収膜7の反応生成物回収膜用フレーム8への固定方法については、上記実施の形態8と同様なので省略する。   The method for fixing the reaction product recovery membrane 7 to the reaction product recovery membrane frame 8 is the same as that in the eighth embodiment, and is therefore omitted.

反応生成物回収膜7と反応生成物回収膜用フレーム8に用いることのできる材料については、上記実施の形態8と同様なので省略する。   The materials that can be used for the reaction product recovery film 7 and the reaction product recovery film frame 8 are the same as those in the eighth embodiment, and are therefore omitted.

本実施の形態11の金属空気電池によっても、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Even in the metal-air battery of the eleventh embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

また、電池反応等の反応により生じる反応生成物に関しても、本実施の形態8では、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置されているため、反応生成物は反応生成物回収膜7が負極1を囲んでいる部分に主に堆積し、該部分より外側には拡散/堆積し辛い。結果、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ高出力の金属空気電池を提供することができる。   In addition, regarding the reaction product generated by the reaction such as the battery reaction, in the eighth embodiment, since the reaction product recovery film 7 is disposed so as to surround at least a part of the negative electrode 1, the reaction product is reacted. The product recovery film 7 is deposited mainly on the portion surrounding the negative electrode 1 and hardly diffuses / deposits outside the portion. As a result, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stoppage due to contamination of battery constituent members, and a long-life and high-output metal-air battery can be provided.

また、反応生成物回収膜用フレーム8を導電性保持部材4から取り外すことにより反応生成物回収膜7も容易に導電性保持部材4から取り外すことができ、かつ、反応生成物回収膜7は反応生成物回収膜用フレーム8を軸に表裏にひっくり返す(反転する)ことのできる構造となっているため、反応生成物回収膜7を導電性保持部材4から取り外した状態で反応生成物が堆積している反応生成物回収膜7の内側が外側になるように表裏をひっくり返せば、反応生成物回収膜7の中に堆積した反応生成物を簡単に取り除くことができる。これは、メカニカルチャージにて金属空気電池を運用する際、反応生成物回収膜7および反応生成物回収膜用フレーム8が繰り返し使用可能であり、かつ、メカニカルチャージによる交換前の負極による反応生成物をメカニカルチャージの度に除去できることを意味している。故に、メカニカルチャージを用いて金属空気電池を運用する場合も、上述の様に、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ繰り返し使用可能で、高出力の金属空気電池を提供することができる。   Further, by removing the reaction product recovery film frame 8 from the conductive holding member 4, the reaction product recovery film 7 can be easily removed from the conductive holding member 4, and the reaction product recovery film 7 is reacted. Since the structure is such that the product recovery film frame 8 can be turned upside down (inverted) around the axis, the reaction product is deposited with the reaction product recovery film 7 removed from the conductive holding member 4. The reaction product deposited in the reaction product recovery film 7 can be easily removed by turning the front and back so that the inner side of the reaction product recovery film 7 is outside. This is because the reaction product recovery membrane 7 and the reaction product recovery membrane frame 8 can be used repeatedly when the metal-air battery is operated by mechanical charge, and the reaction product by the negative electrode before replacement by mechanical charge. It can be removed at every mechanical charge. Therefore, even when a metal-air battery is operated using mechanical charge, as described above, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stop due to contamination of battery components. It is possible to provide a high-power metal-air battery that has a long life and can be used repeatedly.

<実施の形態12>
実施の形態12として、上記実施の形態4の構成に加えて、反応生成物回収膜用フレーム8に固定した反応生成物回収膜7を、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置する構成について説明する。なお、ここで説明する反応生成物回収膜7と反応生成物回収膜用フレーム8以外については、上記実施の形態4と同様であるので、説明を繰り返さない。
<Embodiment 12>
In the twelfth embodiment, in addition to the configuration of the fourth embodiment, the reaction product recovery film 7 fixed to the reaction product recovery film frame 8 is used, and the reaction product recovery film 7 forms at least a part of the negative electrode 1. The structure arrange | positioned so that it may surround is demonstrated. In addition, since it is the same as that of the said Embodiment 4 except the reaction product collection | recovery film | membrane 7 and the reaction product collection | recovery film | membrane frame 8 demonstrated here, description is not repeated.

図17に示すように、本実施の形態12において、上記実施の形態4と異なる点は、上記実施の形態4の構成に加えて、負極1の少なくとも一部を囲むように配置される反応生成物回収膜7と、反応生成物回収膜7が固定されており、かつ、導電性保持部材4に対しての脱着が可能な構造を備えた反応生成物回収膜用フレーム8が追加されている点であって、これ以外は上記実施の形態4と同様である。   As shown in FIG. 17, in the present twelfth embodiment, the difference from the fourth embodiment is that the reaction product arranged to surround at least part of the negative electrode 1 in addition to the configuration of the fourth embodiment. The product recovery membrane 7 and the reaction product recovery membrane 7 are fixed, and a reaction product recovery membrane frame 8 having a structure that can be detached from the conductive holding member 4 is added. The other points are the same as in the fourth embodiment.

反応生成物回収膜用フレーム8の導電性保持部材4への固定方法は特に制限されないが、例えば、上記実施の形態8、9、10で例示した固定方法を用いることができる。   The method for fixing the reaction product recovery film frame 8 to the conductive holding member 4 is not particularly limited. For example, the fixing method exemplified in the above-described eighth, ninth, and tenth embodiments can be used.

反応生成物回収膜7の反応生成物回収膜用フレーム8への固定方法については、上記実施の形態8と同様なので省略する。   The method for fixing the reaction product recovery membrane 7 to the reaction product recovery membrane frame 8 is the same as that in the eighth embodiment, and is therefore omitted.

反応生成物回収膜7と反応生成物回収膜用フレーム8に用いることのできる材料については、上記実施の形態8と同様なので省略する。   The materials that can be used for the reaction product recovery film 7 and the reaction product recovery film frame 8 are the same as those in the eighth embodiment, and are therefore omitted.

本実施の形態12の金属空気電池によっても、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Even in the metal-air battery of the twelfth embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

また、電池反応等の反応により生じる反応生成物に関しても、本実施の形態8では、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置されているため、反応生成物は反応生成物回収膜7が負極1を囲んでいる部分に主に堆積し、該部分より外側には拡散/堆積し辛い。結果、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ高出力の金属空気電池を提供することができる。   In addition, regarding the reaction product generated by the reaction such as the battery reaction, in the eighth embodiment, since the reaction product recovery film 7 is disposed so as to surround at least a part of the negative electrode 1, the reaction product is reacted. The product recovery film 7 is deposited mainly on the portion surrounding the negative electrode 1 and hardly diffuses / deposits outside the portion. As a result, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stoppage due to contamination of battery constituent members, and a long-life and high-output metal-air battery can be provided.

また、反応生成物回収膜用フレーム8を導電性保持部材4から取り外すことにより反応生成物回収膜7も容易に導電性保持部材4から取り外すことができ、かつ、反応生成物回収膜7は反応生成物回収膜用フレーム8を軸に表裏にひっくり返す(反転する)ことのできる構造となっているため、反応生成物回収膜7を導電性保持部材4から取り外した状態で反応生成物が堆積している反応生成物回収膜7の内側が外側になるように表裏をひっくり返せば、反応生成物回収膜7の中に堆積した反応生成物を簡単に取り除くことができる。これは、メカニカルチャージにて金属空気電池を運用する際、反応生成物回収膜7および反応生成物回収膜用フレーム8が繰り返し使用可能であり、かつ、メカニカルチャージによる交換前の負極による反応生成物をメカニカルチャージの度に除去できることを意味している。故に、メカニカルチャージを用いて金属空気電池を運用する場合も、上述の様に、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ繰り返し使用可能で、高出力の金属空気電池を提供することができる。   Further, by removing the reaction product recovery film frame 8 from the conductive holding member 4, the reaction product recovery film 7 can be easily removed from the conductive holding member 4, and the reaction product recovery film 7 is reacted. Since the structure is such that the product recovery film frame 8 can be turned upside down (inverted) around the axis, the reaction product is deposited with the reaction product recovery film 7 removed from the conductive holding member 4. The reaction product deposited in the reaction product recovery film 7 can be easily removed by turning the front and back so that the inner side of the reaction product recovery film 7 is outside. This is because the reaction product recovery membrane 7 and the reaction product recovery membrane frame 8 can be used repeatedly when the metal-air battery is operated by mechanical charge, and the reaction product by the negative electrode before replacement by mechanical charge. It can be removed at every mechanical charge. Therefore, even when a metal-air battery is operated using mechanical charge, as described above, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stop due to contamination of battery components. It is possible to provide a high-power metal-air battery that has a long life and can be used repeatedly.

<実施の形態13>
実施の形態13として、上記実施の形態2の構成に加えて、反応生成物回収膜用フレーム8に固定した反応生成物回収膜7を、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置する構成について説明する。なお、ここで説明する反応生成物回収膜7と反応生成物回収膜用フレーム8以外については、上記実施の形態2と同様であるので、説明を繰り返さない。
<Embodiment 13>
As Embodiment 13, in addition to the configuration of Embodiment 2 above, the reaction product recovery film 7 fixed to the reaction product recovery film frame 8 is used. The structure arrange | positioned so that it may surround is demonstrated. In addition, since it is the same as that of the said Embodiment 2 except the reaction product collection | recovery film | membrane 7 and the reaction product collection | recovery film | membrane frame 8 demonstrated here, description is not repeated.

図18に示すように、本実施の形態13において、上記実施の形態2と異なる点は、上記実施の形態2の構成に加えて、負極1の少なくとも一部を囲むように配置される反応生成物回収膜7と、反応生成物回収膜7が固定されており、かつ、導電性保持部材4に対しての脱着が可能な構造を備えた反応生成物回収膜用フレーム8が追加されている点であって、これ以外は上記実施の形態2と同様である。   As shown in FIG. 18, in the thirteenth embodiment, the difference from the second embodiment is that the reaction product arranged to surround at least a part of the negative electrode 1 in addition to the configuration of the second embodiment. The product recovery membrane 7 and the reaction product recovery membrane 7 are fixed, and a reaction product recovery membrane frame 8 having a structure that can be detached from the conductive holding member 4 is added. The other points are the same as in the second embodiment.

反応生成物回収膜用フレーム8の導電性保持部材4への固定方法は特に制限されないが、例えば、上記実施の形態8、9、10で例示した固定方法を用いることができる。   The method for fixing the reaction product recovery film frame 8 to the conductive holding member 4 is not particularly limited. For example, the fixing method exemplified in the above-described eighth, ninth, and tenth embodiments can be used.

反応生成物回収膜7の反応生成物回収膜用フレーム8への固定方法については、上記実施の形態8と同様なので省略する。   The method for fixing the reaction product recovery membrane 7 to the reaction product recovery membrane frame 8 is the same as that in the eighth embodiment, and is therefore omitted.

反応生成物回収膜7と反応生成物回収膜用フレーム8に用いることのできる材料については、上記実施の形態8と同様なので省略する。   The materials that can be used for the reaction product recovery film 7 and the reaction product recovery film frame 8 are the same as those in the eighth embodiment, and are therefore omitted.

本実施の形態13の金属空気電池によっても、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Even in the metal-air battery of the thirteenth embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

また、電池反応等の反応により生じる反応生成物に関しても、本実施の形態8では、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置されているため、反応生成物は反応生成物回収膜7が負極1を囲んでいる部分に主に堆積し、該部分より外側には拡散/堆積し辛い。結果、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ高出力の金属空気電池を提供することができる。   In addition, regarding the reaction product generated by the reaction such as the battery reaction, in the eighth embodiment, since the reaction product recovery film 7 is disposed so as to surround at least a part of the negative electrode 1, the reaction product is reacted. The product recovery film 7 is deposited mainly on the portion surrounding the negative electrode 1 and hardly diffuses / deposits outside the portion. As a result, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stoppage due to contamination of battery constituent members, and a long-life and high-output metal-air battery can be provided.

また、反応生成物回収膜用フレーム8を導電性保持部材4から取り外すことにより反応生成物回収膜7も容易に導電性保持部材4から取り外すことができ、かつ、反応生成物回収膜7は反応生成物回収膜用フレーム8を軸に表裏にひっくり返す(反転する)ことのできる構造となっているため、反応生成物回収膜7を導電性保持部材4から取り外した状態で反応生成物が堆積している反応生成物回収膜7の内側が外側になるように表裏をひっくり返せば、反応生成物回収膜7の中に堆積した反応生成物を簡単に取り除くことができる。これは、メカニカルチャージにて金属空気電池を運用する際、反応生成物回収膜7および反応生成物回収膜用フレーム8が繰り返し使用可能であり、かつ、メカニカルチャージによる交換前の負極による反応生成物をメカニカルチャージの度に除去できることを意味している。故に、メカニカルチャージを用いて金属空気電池を運用する場合も、上述の様に、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ繰り返し使用可能で、高出力の金属空気電池を提供することができる。   Further, by removing the reaction product recovery film frame 8 from the conductive holding member 4, the reaction product recovery film 7 can be easily removed from the conductive holding member 4, and the reaction product recovery film 7 is reacted. Since the structure is such that the product recovery film frame 8 can be turned upside down (inverted) around the axis, the reaction product is deposited with the reaction product recovery film 7 removed from the conductive holding member 4. The reaction product deposited in the reaction product recovery film 7 can be easily removed by turning the front and back so that the inner side of the reaction product recovery film 7 is outside. This is because the reaction product recovery membrane 7 and the reaction product recovery membrane frame 8 can be used repeatedly when the metal-air battery is operated by mechanical charge, and the reaction product by the negative electrode before replacement by mechanical charge. It can be removed at every mechanical charge. Therefore, even when a metal-air battery is operated using mechanical charge, as described above, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stop due to contamination of battery components. It is possible to provide a high-power metal-air battery that has a long life and can be used repeatedly.

<実施の形態14>
実施の形態14として、上記実施の形態6の構成に加えて、反応生成物回収膜用フレーム8に固定した反応生成物回収膜7を、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置する構成について説明する。なお、ここで説明する反応生成物回収膜7と反応生成物回収膜用フレーム8以外については、上記実施の形態6と同様であるので、説明を繰り返さない。
<Embodiment 14>
As Embodiment 14, in addition to the configuration of Embodiment 6, the reaction product recovery film 7 fixed to the reaction product recovery film frame 8 is used, and the reaction product recovery film 7 forms at least a part of the negative electrode 1. The structure arrange | positioned so that it may surround is demonstrated. In addition, since it is the same as that of the said Embodiment 6 except the reaction product collection | recovery film | membrane 7 and the reaction product collection | recovery film | membrane frame 8 demonstrated here, description is not repeated.

図19に示すように、本実施の形態14において、上記実施の形態6と異なる点は、上記実施の形態6の構成に加えて、負極1の少なくとも一部を囲むように配置される反応生成物回収膜7と、反応生成物回収膜7が固定されており、かつ、導電性保持部材4に対しての脱着が可能な構造を備えた反応生成物回収膜用フレーム8が追加されている点であって、これ以外は上記実施の形態6と同様である。   As shown in FIG. 19, the difference between Embodiment 14 and Embodiment 6 is that the reaction product arranged to surround at least a part of negative electrode 1 in addition to the configuration of Embodiment 6 above. The product recovery membrane 7 and the reaction product recovery membrane 7 are fixed, and a reaction product recovery membrane frame 8 having a structure that can be detached from the conductive holding member 4 is added. The other points are the same as in the sixth embodiment.

反応生成物回収膜用フレーム8の導電性保持部材4への固定方法は特に制限されないが、例えば、上記実施の形態8、9、10で例示した固定方法を用いることができる。   The method for fixing the reaction product recovery film frame 8 to the conductive holding member 4 is not particularly limited. For example, the fixing method exemplified in the above-described eighth, ninth, and tenth embodiments can be used.

反応生成物回収膜7の反応生成物回収膜用フレーム8への固定方法については、上記実施の形態8と同様なので省略する。   The method for fixing the reaction product recovery membrane 7 to the reaction product recovery membrane frame 8 is the same as that in the eighth embodiment, and is therefore omitted.

反応生成物回収膜7は、図19に示すように、導電性保持部材4の下部まで覆っていても良いが、その形状には制限されず、例えば図20に示すように、負極1を複数個所で覆う形状としても良い。   As shown in FIG. 19, the reaction product recovery film 7 may cover up to the lower part of the conductive holding member 4, but the shape is not limited, and for example, as shown in FIG. It is good also as the shape covered with a part.

反応生成物回収膜7と反応生成物回収膜用フレーム8に用いることのできる材料については、上記実施の形態8と同様なので省略する。   The materials that can be used for the reaction product recovery film 7 and the reaction product recovery film frame 8 are the same as those in the eighth embodiment, and are therefore omitted.

本実施の形態14の金属空気電池によっても、導電性保持部材4を電解液2と気相との界面から負極1が露出しない位置で負極1に接触して保持可能な構成としているので、容易に外部への電力供給が可能で、負極材料を効率よく利用可能として、長寿命の金属空気電池を実現することが可能となるという効果を奏する。   Even in the metal-air battery of the fourteenth embodiment, the conductive holding member 4 can be held in contact with the negative electrode 1 at a position where the negative electrode 1 is not exposed from the interface between the electrolytic solution 2 and the gas phase. In addition, it is possible to supply electric power to the outside, and it is possible to realize a long-life metal-air battery by making it possible to efficiently use the negative electrode material.

また、電池反応等の反応により生じる反応生成物に関しても、本実施の形態8では、反応生成物回収膜7が負極1の少なくとも一部を囲むように配置されているため、反応生成物は反応生成物回収膜7が負極1を囲んでいる部分に主に堆積し、該部分より外側には拡散/堆積し辛い。結果、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ高出力の金属空気電池を提供することができる。   In addition, regarding the reaction product generated by the reaction such as the battery reaction, in the eighth embodiment, since the reaction product recovery film 7 is disposed so as to surround at least a part of the negative electrode 1, the reaction product is reacted. The product recovery film 7 is deposited mainly on the portion surrounding the negative electrode 1 and hardly diffuses / deposits outside the portion. As a result, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stoppage due to contamination of battery constituent members, and a long-life and high-output metal-air battery can be provided.

また、反応生成物回収膜用フレーム8を導電性保持部材4から取り外すことにより反応生成物回収膜7も容易に導電性保持部材4から取り外すことができ、かつ、反応生成物回収膜7は反応生成物回収膜用フレーム8を軸に表裏にひっくり返す(反転する)ことのできる構造となっているため、反応生成物回収膜7を導電性保持部材4から取り外した状態で反応生成物が堆積している反応生成物回収膜7の内側が外側になるように表裏をひっくり返せば、反応生成物回収膜7の中に堆積した反応生成物を簡単に取り除くことができる。これは、メカニカルチャージにて金属空気電池を運用する際、反応生成物回収膜7および反応生成物回収膜用フレーム8が繰り返し使用可能であり、かつ、メカニカルチャージによる交換前の負極による反応生成物をメカニカルチャージの度に除去できることを意味している。故に、メカニカルチャージを用いて金属空気電池を運用する場合も、上述の様に、液抵抗の増加による出力の低下や、電池構成部材の汚染による電池反応の停止等の弊害を抑制することができ、長寿命かつ繰り返し使用可能で、高出力の金属空気電池を提供することができる。   Further, by removing the reaction product recovery film frame 8 from the conductive holding member 4, the reaction product recovery film 7 can be easily removed from the conductive holding member 4, and the reaction product recovery film 7 is reacted. Since the structure is such that the product recovery film frame 8 can be turned upside down (inverted) around the axis, the reaction product is deposited with the reaction product recovery film 7 removed from the conductive holding member 4. The reaction product deposited in the reaction product recovery film 7 can be easily removed by turning the front and back so that the inner side of the reaction product recovery film 7 is outside. This is because the reaction product recovery membrane 7 and the reaction product recovery membrane frame 8 can be used repeatedly when the metal-air battery is operated by mechanical charge, and the reaction product by the negative electrode before replacement by mechanical charge. It can be removed at every mechanical charge. Therefore, even when a metal-air battery is operated using mechanical charge, as described above, it is possible to suppress adverse effects such as a decrease in output due to an increase in liquid resistance and a battery reaction stop due to contamination of battery components. It is possible to provide a high-power metal-air battery that has a long life and can be used repeatedly.

<実施の形態15>
実施の形態15として、反応生成物回収膜7の一形態について説明する。上記実施の形態8で説明した図12、図13で説明した反応生成物回収膜7の形状例では、反応生成物回収膜7は負極1の側面の一部と下部を覆う形状として図示したが、反応生成物回収膜7の形状はこれに限定されず、例えば、図21に示すように、負極1の側面全てと下部を覆う形状としても良い。本実施の形態15の反応生成物回収膜7では、負極1が電解液2に接する全ての面を覆うことになるため、反応生成物回収膜7の内部に反応生成物を効率よく堆積させることができる。なお、ここで説明する反応生成物回収膜7以外については、上記実施の形態8と同様であるので、説明を繰り返さない。
<Embodiment 15>
As an fifteenth embodiment, an embodiment of the reaction product recovery film 7 will be described. In the example of the shape of the reaction product recovery film 7 described in FIGS. 12 and 13 described in the eighth embodiment, the reaction product recovery film 7 is illustrated as a shape that covers a part of the side surface and the lower part of the negative electrode 1. The shape of the reaction product recovery film 7 is not limited to this, and for example, as shown in FIG. In the reaction product recovery film 7 of the fifteenth embodiment, since the negative electrode 1 covers all surfaces in contact with the electrolytic solution 2, the reaction product is efficiently deposited inside the reaction product recovery film 7. Can do. In addition, since it is the same as that of the said Embodiment 8 except the reaction product collection | recovery film | membrane 7 demonstrated here, description is not repeated.

本実施の形態15の金属空気電池においても、上記実施の形態8、9、10、11、12、13、14で説明してきた効果と同様の効果を得ることができる。   Also in the metal-air battery of the fifteenth embodiment, the same effects as those described in the eighth, ninth, tenth, eleventh, twelfth, thirteenth and fourteenth embodiments can be obtained.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 負極
2 電解液
3 正極
4 導電性保持部材(保持部材)
41 反応生成物回収膜用フレーム固定孔
5 容器
51 容器突起
6 結合部材
7 反応生成物回収膜
71 反応生成物回収膜接合部
8 反応生成物回収膜用フレーム
81 反応生成物回収膜用フレーム固定突起
82 反応生成物回収膜用フレーム(左)
83 反応生成物回収膜用フレーム(右)
84 反応生成物回収膜用フレーム固定孔(フレーム)
85 反応生成物回収膜用フレーム結合部材
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Electrolytic solution 3 Positive electrode 4 Conductive holding member (holding member)
41 Reaction Product Recovery Membrane Frame Fixing Hole 5 Container 51 Container Projection 6 Bonding Member 7 Reaction Product Recovery Membrane 71 Reaction Product Recovery Membrane Joint 8 Reaction Product Recovery Membrane Frame 81 Reaction Product Recovery Membrane Frame Fixing Protrusion 82 Frame for reaction product recovery membrane (left)
83 Reaction product recovery membrane frame (right)
84 Frame fixing hole for reaction product recovery membrane (frame)
85 Frame coupling member for reaction product recovery membrane

Claims (6)

イオン化して電解液に溶出可能な金属を少なくとも含む負極と、
前記電解液に接触するように配置された正極と、
前記電解液と気相との界面から前記負極が露出しない位置で前記負極に接触して保持可能な導電部を含む保持部材とを備える、金属空気電池。
A negative electrode containing at least a metal that can be ionized and eluted into the electrolyte;
A positive electrode disposed in contact with the electrolyte;
A metal-air battery comprising: a holding member including a conductive portion that can be held in contact with the negative electrode at a position where the negative electrode is not exposed from the interface between the electrolytic solution and the gas phase.
前記保持部材は、前記負極下方を保持する請求項1記載の金属空気電池。   The metal-air battery according to claim 1, wherein the holding member holds the lower part of the negative electrode. 前記保持部材は、前記負極上方を保持する請求項1に記載の金属空気電池。   The metal-air battery according to claim 1, wherein the holding member holds the upper part of the negative electrode. 前記保持部材は、前記負極の複数を保持する請求項1から3のいずれか1項に記載の金属空気電池。   The metal-air battery according to any one of claims 1 to 3, wherein the holding member holds a plurality of the negative electrodes. 前記負極はマグネシウムおよびマグネシウムを50原子%以上含む合金からなる請求項1から4のいずれか1項に記載の金属空気電池。   The metal-air battery according to any one of claims 1 to 4, wherein the negative electrode is made of magnesium and an alloy containing 50 atomic% or more of magnesium. 前記負極の少なくとも一部を取り囲むように配置される反応生成物回収膜を更に備える請求項1から5のいずれか1項に記載の金属空気電池。   The metal-air battery according to claim 1, further comprising a reaction product recovery film disposed so as to surround at least a part of the negative electrode.
JP2015047826A 2014-09-22 2015-03-11 Metal-air battery Pending JP2016066582A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014192068 2014-09-22
JP2014192068 2014-09-22

Publications (1)

Publication Number Publication Date
JP2016066582A true JP2016066582A (en) 2016-04-28

Family

ID=55804238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015047826A Pending JP2016066582A (en) 2014-09-22 2015-03-11 Metal-air battery

Country Status (1)

Country Link
JP (1) JP2016066582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315992B1 (en) 2022-03-11 2023-07-27 株式会社ドリームエンジン Cell structure of magnesium air battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315992B1 (en) 2022-03-11 2023-07-27 株式会社ドリームエンジン Cell structure of magnesium air battery
JP2023133021A (en) * 2022-03-11 2023-09-22 株式会社ドリームエンジン Cell structure for magnesium air battery

Similar Documents

Publication Publication Date Title
JP7349355B2 (en) Seals for high temperature reactive material equipment
JP4446205B2 (en) Battery and manufacturing method thereof
US20130295444A1 (en) Secondary Battery With Enhanced Contact Resistance
JP4526996B2 (en) Lithium ion secondary battery
JP2011124024A (en) Battery pack and electric cell
WO2019151063A1 (en) Negative electrode for metal air cell
JP5542472B2 (en) Battery component, battery pack, and battery pack manufacturing method
CN111628135B (en) Sealed battery and battery pack
JP2008294001A (en) Electrochemical cell with terminal
JP2008294001A5 (en)
JP2007066537A (en) Secondary battery
JP2015060665A (en) Air cell, negative electrode for air cell, and air cell unit
JP5510410B2 (en) battery
WO2020066241A1 (en) Secondary battery
JP2016066582A (en) Metal-air battery
JP6299247B2 (en) Air battery unit and air battery
JP6154999B2 (en) Battery electrode body, battery and metal-air battery
JP5847283B1 (en) Magnesium-air battery with multiple cells
JP2016170860A (en) Metal air battery
JP2016085789A (en) Metal fuel battery
JP2002117906A (en) LiMn SECONDARY BATTERY, BATTERY MANUFACTURING METHOD AND MOTOR-DRIVEN MOBILE VEHICLE
JP2002343333A (en) Nickel hydride battery
JP3112869U (en) Water battery
JP2011228119A (en) Non-aqueous electrolyte secondary battery
JP6347321B2 (en) Negative electrode structure, air battery using the same, and method of manufacturing negative electrode structure

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161104